

Planning in-flight calibration for XRISM

Eric D. Miller (MIT) for the XRISM Team IACHEC CoObs WG, 10 February 2023

XRISM IFCP Team

X-Ray Imaging and Spectroscopy Mission

Chair Co-chair	Eric Miller * Makoto Sawada *	Science Management Office	Makoto Tashiro Richard Kelley Rob Petre
Resolve Instrument Team	Megan Eckart Caroline Kilbourne Maurice Leutenegger		Matteo Guainazzi * Brian Williams Hiroya Yamaguchi
	Scott Porter Masahiro Tsujimoto Cor de Vries Takashi Okajima Takayuki Hayashi Keisuke Tamura Rozenn Boissay-Malaquin	Science Team	Marc Audard Ehud Behar Laura Brenneman Lia Corrales Renata Cumbee Teruaki Enoto Liyi Gu
Xtend Instrument Team	Hironori Matsumoto Koji Mori Hiroshi Nakajima Takaaki Tanaka		Edmund Hodges-Kluck Yoshitomo Maeda Maxim Markevitch * Paul Plucinsky Katia Pottschmidt
Science Operations Team	Yukikatsu Terada Mike Loewenstein Tahir Yaqoob Masayoshi Nobukawa Tomokage Yoneyama		Minami Sakama Takumi Shioiri Aurora Simionescu * * IFCP sub-group lead.

10 February 2023

2

Mission

- XRISM is led by JAXA, with contributions from NASA and ESA
- 3-year nominal mission + cryogen-free mode
- Low Earth orbit, $i = 31^{\circ}$
- Launch in ~ May 2023
 - 0-3 months: initial phase (commissioning)
 - 3–9 months: calibration + PV phase
 - 9+ months: GO phase

Ris

Instrument	FOV	PSF (HPD)	ΔE (FWHM @6 keV)	Energy band
Resolve	3′×3′ (6×6 pixels)	<1.7′	<mark>7 eV</mark> (goal 5 eV)	0.3–12 keV
Xtend	38'×38'	<1.7′	< 250 eV at EOL (< 200 eV at BOL)	0.4–13 keV

Parameter	Requirement	Hitomi Values	
Energy resolution	7 eV (FWHM)	5.0 eV	
Energy scale accuracy	± 2 eV	± 0.5 eV	
Residual Background	2 x 10 ⁻³ counts/s/keV	0.8 x 10 ⁻³ counts/s/keV	
Field of view	2.9 x 2.9 arcmin	same, by design	
Angular resolution	1.7 arcmin (HPD)	1.2 arcmin	
Effective area (1 keV)	> 160 cm ²	250 cm ²	
Effective area (6 keV)	> 210 cm ²	312 cm ²	
Cryogen-mode Lifetime	3 years	4.2 years (projected)	
Operational Efficiency	> 90%	> 98%	

Requirement	Resolve	Xtend
Energy scale	2 eV for each pixel [1 eV (0.05–12 keV), 3 eV (12–25 keV)]	$5\% (1 \text{ keV}) \\ 0.3\% (6 \text{ keV})$
Energy resolution (FWHM)	1 [0.5] eV for each pixel ^b [2 eV (12–25 keV)]	$10\% (1 \text{ keV})^c$ 5% (6 keV) ^c
Abs. eff. area on-axis ^{d}	10% [5%]	$10\% \ [5\%]$
Abs. eff. area off-axis ^{d}	10% [5%] within 5'	15% [10%] within 10'
Rel. eff. area on-axis ^{d}	5% [3%] [5% (12-25 keV)]	5% [2%]
Rel. eff. area $< 2'$ off-axis ^d	5% [3%] [5% (12-25 keV)]	$10\% \ [5\%]$
Rel. eff. area $2'-5'$ off-axis ^d	$10\% \ [10\% \ (1225 \ \text{keV})]$	$10\% \; [5\%]$
Rel. eff. area $> 5'$ off-axis ^d	N/A	$10\% \ [5\%]$
Rel. eff. area fine structure ^{d}	5% in 1 eV bins around C, N, O K edges ^e	15% at Si K edge
$PSF \text{ on-axis}^f$	$5\% \ [3\% \ (0.325 \ \text{keV})]$	10%
$PSF off-axis^g$	$5\% \ [5\% \ (1225 \ \mathrm{keV})]$	[10%]
Absolute timing^h	$1.0 \mathrm{\ ms}$	$10 \mathrm{\ ms}$
Relative timing^h	$0.5 \mathrm{ms}$	TBD
Aimpoint	Difference in the aimpoint and optica	l axis known to 30"

X-Ray Imaging and Spectroscopy Mission

X-Ray Imaging and Spectroscopy Mission

^aUnless otherwise noted, requirements are 1σ uncertainties over 0.3–12 keV. Values given in [] are goals.

^bKnowledge of the Gaussian peak width for hi- and mid-res primary events. Off-peak redistribution components have additional requirements for ground calibration and will be spot-checked if feasible in flight.

 $^c{\rm Knowledge}$ of the full redistribution width on the on-axis CCD. Off-axis CCDs have no current response calibration requirements.

^dAll effective area requirements apply to all allowed Resolve filter and gate valve combinations. The effective area knowledge in the gate valve closed configuration can be relaxed by 5% precision compared to the requirements in the nominal configuration, and is only applicable to energies above 1.8 keV. The fine structure effective area in these configurations must be calibrated for appropriate K edges (edges of the primary materials and known contaminants) and other known features (e.g., Bragg diffraction features).

 e Additional requirements apply to ground calibration of filter transmission edges at higher energies. Those shown are relevant to on-orbit monitoring of molecular contamination.

 f For Resolve, the point spread function (PSF) requirement is defined as the uncertainty in the fraction of photons on each pixel for a source at the aimpoint.

^gFor Resolve, this is defined as the uncertainty in the fraction of photons on each pixel for a source within 2' of the aimpoint; or in 3×3 corner pixel groups for a source 2'-4' off-axis.

 h Timing requirements are defined for the end-to-end satellite timing system; i.e., values include allocations for both the instrument time tagging uncertainty and the spacecraft time coordinate uncertainty. The uncertainty interval that defines the Xtend absolute timing requirement is TBD.

M. Sawada

- Timing requirement (1 ms at 1 sigma) is applicable only to events of the H and Mp grades.
- Absolute timing is not strongly required for PV targets, but relative timing is required to be calibrated for extracting appropriate pulse profiles.
- Coordinated observations with NICER
 - T. Enoto and K. Pottschmidt agreed to be PoCs for coordinating XRISM + NICER calibration observations (more later).
 - PoC to collect information on possible limitations on NICER observation conditions.
 - Goal of this coordinated observation is to derive the absolute timing and jitter from the crosscorrelation analyses of the light curve and/or pulse profile, using the NICER data as a template.
- Targets
 - PSR B0540 is not suitable as calibration source due to broad pulse peak (M. Sakama report).
 - Reorganized the candidates as one primary (Crab), three secondaries (PSR B1821, J1937, and J0218), and backup (B0540) sources.
 - Since calibration is not time-sensitive, we can wait for the Crab, although early observation of secondary source still under consideration.

L. Brenneman

- 3C273, PKS2155, 1ES0033, Mrk 421 and 1ES0229 are all good calibration targets for Resolve; G21.5, 1ES0033 and 1ES0229 are good for Xtend.
 - Would recommend ~50 ks exposures for each to ensure <5% precision across 0.3- 12 keV and in most individual energy bins.
 - Resolve calibration will be challenging for high energies (>8 keV), especially for filters. Very challenging >12 keV for both Resolve and Xtend.
- Care must be taken when evaluating Resolve spectra for very bright sources such as Mrk 421: a significant fraction of events will be graded as low-res and/or secondaries.
 - This seems to impact spectral flux in a uniform way across the bandpass, but not slope.
 - Consequence is that there will be discrepancies between measured flux and input model flux (i.e., accuracy), but precision of flux measurements is still excellent.
 - This will make it challenging to tell whether differences in flux seen on-orbit vs. in our models are attributable to intrinsic changes or instrumentation characteristics (i.e., event grading).
 - Need to consider how to handle event filtering in on-orbit calibration work.
 - Simultaneous observations with other telescopes will help.

Resolve PSF verification

Risk X-Ray Imaging and Spectroscopy Mission

Table 2.4.1: Plan for verifying the Resolve PSF ground calibration in flight.

Target	Energy band	Roll angle	Offset (arcmin)	Total t_{exp} (ks)
PKS 2155-304	$0.2–7~{\rm keV}$	4 quadrants (x)	1.8, 3	20(?), 32
PKS 2155-304	$0.27~\mathrm{keV}$	XMA shadow*	1.8, 3	10(?), 22
Cyg X-2	57 keV	4 quadrants (x)	4.5	4
Cyg X-2	57 keV	1 quadrant (\mathbf{x})	6, 9	4, 9
Cyg X-2	57 keV	XMA shadow*	4.5, 6	2, 5
Total			18 pointings	108

Resolve energy scale and spectral response

X-Ray Imaging and Spectroscopy Mission

European Space Agency

Simulations by M. Guainazzi

Ris

+

+ 1

- Capella raster scan to uniformly illuminate all Resolve pixels.
- Obtain >1000 counts in two Fe L lines (0.72 and 0.82 keV).
- Two modes (normal/forced mid-res) × three operating temperatures.
- Simultaneous observation? Orbital velocity is well known. Relative X-ray fluxes of the binary stars may be one concern. Don't need strict GTI overlap.
 - Suggestion for deeper central pointing (~30 ks).
 - Bootstrap/bracket the off-axis raster scan observations with on-axis "truth" observations.
 - Confer with Chandra HETG team, IACHEC high-resolution WG.

IFCP Points of Contact (PoC)

X-Ray Imaging and Spectroscopy Mission

- Useful to have "informal" discussion with calibration scientists from other missions as we plan coordinated *calibration* observations.
- IFCP PoCs will:
 - Communicate with counterpart(s) from designated mission.
 - Discuss operational constraints, calibration requirements and goals, instrument settings, other elements to ensure appropriate data is acquired by each mission.
 - Do not make operational or programmatic decisions.
- IFCP PoCs:
 - T. Enoto (NICER)
 - K. Pottschmidt (NuSTAR)
 - M. Guainazzi (XMM)
 - P. Plucinsky (Chandra)
 - TBD (Swift)
 - E. Miller (IACHEC)
- Scheduling PoCs: Chris (XRISM) -> other missions

In-flight Calibration Targets

Risk X-Ray Imaging and Spectroscopy Mission

Table 3.2.1: Calibration targets listed by calibration element.						
Calibration element	Resolve GV closed	Resolve GV open	Xtend			
Energy scale (on-axis)	HR1099(50), ABDor(50), CP, FW, MXS	Capella(50), HR1099(50), ABDor(50), Procyon, σ Gem, CP, FW, MXS	Perseus(2x40=80), Cygnus Loop(2x30=60), 1E0102-72(30), any Resolve source with lines			
Energy scale (pixel-to-pixel, off-axis)	CP, FW, MXS	Capella (2x3x40=240), CP, FW, MXS	See Energy scale (on-axis)			
Gain (short-term stability)	CP, MXS	CP, MXS	CS			
LSF/RMF	See Energy scale (on-axis)	See Energy scale (on-axis)	See Energy scale (on-axis)			
Effective area (on-axis) (absolute and relative)	3C273(50), PKS2155-304(50), Crab(10)	3C273(50), PKS2155-304(50), G21.5-0.9(50), 1ES0229+200(TBD), Mrk421, PSR1509-58, Abell clusters, PV	1ES0033+595(75), G21.5-0.9(50), 1ES0229+200(TBD), Abell clusters, PV			
Effective area (off-axis)	NA	See PSF (calibrating vignetting x PSF)	Abell 478(40), PKS 0745-191(TBD), Abell 1795(TBD), Abell 2029(TBD)			
Effective area (fine structure) (ISM baseline)	NA	3C273(75), 4U0614+091(75)	NA			
Contamination (on-axis)	NA	RXJ1856-3754(40), 1E0102-72(30)	RXJ1856-3754(40), 1E0102-72(30)			
Contamination (off-axis)	NA	NA	See Energy scale (on-axis) Vela SNR(60)			
Timing	NA	Crab(10), PSR0540-69(50), PSR1821-24(50), PSR.1037+21(50), PSR.10218+4232(50) (exposure times for abs, relative requires more time, or MXS; TBD)	Crab(10)			
Optical axis	NA	LMCX-1(6x5=30), Capella (See Energy scale off-axis)	See Effective area (off-axis) 1E0102-72(8x3=24), G21.5-0.9(8x7.5=60)			
PSF on-axis	NA	Capella, PV targets (See Energy scale off-axis)	PV targets, V1223Sgr			
PSF off-axis (wings)	NA	Cyg X-2+PKS2155(200), 3C273, Mrk 421 Total exposure less if first obs. confirm that ground cal. is applicable	Rely on ground cal.			
Astrometry	NA	Capella, 1ES0033 (energy scale Resolve raster, Xtend eff. area)	Capella, 1ES0033 (see Xtend eff. area)			
Stray light	INA NA	$\operatorname{Crab}(45)$	Crab(45)			
Atomic Models	NA	Abell 1060(100), M87(100),	INA			

Notes: Exposure times in ks are given in parentheses. Primary targets are shown in blue, secondary targets in orange, and possible alternate targets in black. CP=calibration pixel, FW=filter wheel ⁵⁵Fe source, MXS=direct Modulated X-ray Source, CS=⁵⁵Fe calibration source.

In-flight Calibration Targets

Table 3.2.2: List of primary calibration targets with total exposure time and observing strategies.

Target name	$\begin{array}{c} t_{exp} \\ (\mathbf{ks}) \end{array}$	RA	Dec	Purpose	Coo.	Notes
1ES0033+595	75	8.9690	+59.8345	Xtend on-axis Aeff	а	
3c273	150	187.2779	+2.0524	Resolve on-axis Aeff	a	50 ks each with Resolve open filter, Be filter, and ND filter. Xtend operated in 1/8 window or burst mode
Abell 478	40	63.3363	+10.4764	Xtend optical axis	N/A	4 pointings of 10 ks each, separated by 10 arcmin
Capella	50	79.1723	+45.9980	Resolve gain/LSF on-axis	b	
Capella raster	258	79.1723	+45.9980	Resolve gain/LSF pixel-by-pixel	N/A	6x9 pointing raster scan (see Figure 2.2 7); 3 ks on-axis, 4 ks at edges, 6 ks at corners, times 3 temps and 2 modes (Hi-Res and forced Mid-Res)
Crab	10	83.6331	+22.0145	Timing	с	Observed off Resolve field. Xtend in "Crab" mode.
Crab stray light	45	83.6331	+22.0145	Stray light	N/A	Observe at 1° offset [TBD]
Cygnus Loop	60	313.9091	+31.0038	Xtend gain/LSF	N/A	30 ks full window, 30 ks 1/8 window; roll constraints TBD
Cyg X-2	24	326.1715	+38.3214	Resolve off-axis PSF	d	Xtend operated in 1/8 window or burst mode
E0102	60	16.0050	-72.0312	Xtend energy scale, Resolve and Xtend contamination monitoring	N/A	One 30-ks observation soon after GV and Xtend door open, then another 30-ks observation one month later.
HR 1099	50	54.1970	+0.5878	Resolve gain/LSF on-axis	b	
LMCX-1	30	84.9118	-69.7432	Resolve optical axis	a	6x 5-ks observations w/ target just outside Resolve FOV [Capella may be sufficient]
NGC 1550	100	64.9080	+02.4099	Astrophysical models	N/A	
North Polar Spur	100	Х	х	Galactic foreground	N/A	[needs discussion; do we want this, Lockman Hole, or neither?]
Perseus Cluster	80	49.9467	+41.5131	Xtend energy scale	N/A	40 ks full window, 40 ks 1/8 window; roll constraints TBD
PKS2155	84	329.7169	-30.2256	Resolve off-axis PSF	d	Xtend operated in 1/8 window or burst mode
RXJ 1856	40	284.1463	-37.9085	Resolve and Xtend contamination monitoring	N/A	Observe soon after GV and Xtend door open.

Coo. = coordination with other mission required. Key:

a: NuSTAR required; at least one of XMM or Swift or Chandra required. Observations should be overlapping but exact GTI are not required (i.e., we will use the analysis strategy in Madsen et al. 2017^{12}

b: Chandra/HETG or XMM/RGS. [TBD if this is required; archival data or short anchor observation may be sufficient

c: NICER recommended.

d: One of Swift, NICER, or XMM required, with as strict GTI overlap as possible.

Table 3.2.3: Decision tree for selecting a secondary target if the primary is unavailable.

Ris

Target name	t_{exp} (ks)	RA	Dec	Purpose	Coo.	Notes
1ES0033+595 PKS2155-304 G21.5-0.9 1ES0229+200	50 50 TBD			Xtend on-axis Aeff	a N/A a	Xtend: 1/8 window or burst Xtend: full window Xtend: TBD
3c273 PKS2155-304 G21.5-0.9 1ES0229+200	50 50 TBD			Resolve on-axis Aeff	a N/A a	Xtend: 1/8 win or burst Xtend: full window Xtend: TBD
Abell 478 PKS0745-191 Abell 1795 Abell 2029	TBD TBD TBD			Xtend optical axis	N/A N/A N/A	
Capella ABDor	50			Resolve gain/LSF on-axis	ь	
Capella raster none				Resolve gain/LSF pixel-by-pixel	N/A	Use FW, indirect MXS
Crab PSR0540-69	50			Timing	с	Secondary always visible
Crab stray light none Cygnus Loop				Stray light	N/A	Observe when visible
none				Xtend $gain/LSF$	N/A	Observe when visible
Cyg X-2 3C273 Mrk 421	TBD TBD			Resolve off-axis PSF	a a	Xtend: 1/8 window or burst
E0102 N132D	30			Xtend energy scale, Resolve and Xtend contamination monitoring	N/A	Primary always visible. N132D is an optional calibration target.
HR 1099 ABDor	50			Resolve gain/LSF on-axis	ь	
LMCX-1 Capella				Resolve optical axis	а	Capella raster scan can be used instead
NGC 1550 M87 Abell 1060	100 100			Atomic models	N/A	Can wait until primary is visible.
North Polar Spur none				Galactic foreground	N/A	Observe when visible
Perseus Cluster none				Xtend energy scale	N/A	Observe when visible
PKS2155 none				Resolve off-axis PSF	а	Observe when visible
RXJ 1856 none				Resolve and Xtend contamination monitoring	N/A	E0102 can be used, always visible

Coo. = coordination with other mission required. Key: a: NuSTAR required; at least one of XMM or Swift or Chandra required. Observations should be overlapping but exact GTI are not required (i.e.,

we will use the analysis strategy in Madsen et al. 2017¹² b: Chandra/HETG or XMM/RGS. [TBD if this is required; archival data or short anchor observation may be sufficient

c: NICER recommended.

d: One of Swift, NICER, or XMM required, with as strict GTI overlap as possible.

X-Ray Imaging and Spectroscopy Mission

Draft calibration observing schedule

X-Ray Imaging and Spectroscopy Mission

Ri

Case study XRISM calibration-and-PV-phase observing schedule, assuming launch in the middle of May 2023. Only calibration targets are shown, Performance Verification (PV) science targets have been redacted. Calibration targets, exposure times, and schedule are unofficial, and only a case study plan. Compiled 2022-10-21.

TARGET	START_DATE	END_DATE	TEXP
E0102 #1	8/12/23 0:00	8/13/23 6:30	30
1ES0033+595	8/13/23 6:41	8/14/23 23:22	75
Capella raster	8/14/23 23:44	8/21/23 3:41	258
Crab	8/21/23 4:00	8/21/23 9:11	10
Abell 478 #1	8/21/23 9:29	8/21/23 14:36	10
Abell 478 #2	8/21/23 14:49	8/21/23 20:00	10
Abell 478 #3	8/21/23 20:13	8/22/23 1:23	10
Abell 478 #4	8/22/23 1:36	8/22/23 6:51	10
HR 1099	8/22/23 7:07	8/23/23 9:43	50
Perseus Cluster	8/23/23 10:05	8/24/23 7:31	40
Perseus Cluster	8/24/23 7:44	8/25/23 6:14	40
NGC 1550	8/25/23 6:36	8/27/23 15:03	100
Capella	8/27/23 15:26	8/28/23 21:18	50
E0102 #2	8/28/23 21:58	8/29/23 14:30	30
Crab stray ligh	8/29/23 15:06	8/30/23 20:32	45
LMCX-1 #1	8/30/23 21:05	8/31/23 0:41	5
LMCX-1 #2	8/31/23 0:54	8/31/23 3:08	5
LMCX-1 #3	8/31/23 3:21	8/31/23 5:28	5
LMCX-1 #4	8/31/23 5:41	8/31/23 7:49	5
LMCX-1 #5	8/31/23 8:02	8/31/23 10:10	5
LMCX-1 #6	8/31/23 10:23	8/31/23 14:22	5
RXJ 1856	9/3/23 2:45	9/4/23 14:39	40
Cygnus Loop Ful	10/8/23 23:35	10/9/23 23:26	30
Cygnus Loop Ful	10/9/23 23:40	10/10/23 17:02	30
PKS2155	10/16/23 13:43	10/18/23 22:23	84
Cyg X-2	10/31/23 10:48	10/31/23 23:42	24
3c273 Open filt	1/18/23 13:52	1/19/23 18:20	50
3c273 Be Filter	1/19/23 18:33	1/20/23 22:54	50