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Abstract
This note attempts to provide a statistically more principled frame-

work to address the issues raised in the following paragraph:
“Systematic errors in comparing effective areas : Speaking hypotheti-

cally, if we label the instruments by numbers i = 1, . . . , N and each has an
attribute A that is used to measure the same j = 1, . . . , M astrophysical
sources, with intrinsic attribute Fj where Cij = AiFj are the instrumen-
tal measurements, then the question is: “Is there a way to decide how
(or whether) to change Ai when the values Cij/Ai do not agree with Fj

to within their statistical uncertainties si. In other words, each instru-
ment provides an estimator fj of Fj with statistical uncertainty sj but
|fj−Fj |/sj is often large, not distributed as a Gaussian with unit variance
(but can have zero mean if we define Fj =

∑
j
fjs

−2
j /

∑
j
s−2

j ). How to
estimate the systematic error on the Ai?”

Our key result is that if it is reasonable to assume multi-
plicative errors (i.e., in terms of percentage) on some initial
measurements/estimations ai for Ai and fj for Fj, then after ob-
serving cij (as a realization of Cij), we should update/adjust ai

and fj respectively via “power shrinkage”:

Âi = a
wb
i × (c̃i∙/F̂ )(1−wb), i = 1, . . . , N (1)

F̂j = f
wg

j × (c̃∙j/Â)(1−wg), j = 1, . . . , M. (2)

Here c̃i∙ and c̃∙j are respectively the geometric mean of {cij , j =
1, . . . , M} and {cij , i = 1, . . . , N}, wb and wg are respectively the
relative precisions of bi = log ai and gj = log fj, that is,

wb = τ−2
b /(τ−2

b + Mσ−2), wg = τ−2
g /(τ−2

g + Nσ−2), (3)

where τ2
b and τ2

g are respectively the variance of bi and gj, and

σ2 is the variance of yij ≡ log cij , and F̂ and Â are determined by
the “self-consistency”:

Â = ãwb × (c̃/F̂ )(1−wb), F̂ = f̃wg × (c̃/Â)(1−wg), (4)

where ã, f̃ , and c̃ are respectively the geometric means of ai’s,
fj’s, and c′ijs. Further more, the adjustment (1)-(2) are the
maximum likelihood estimator when bi, gj, and yij are Gaussian.
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1 Potential issues that led to the difficulty ...

There seem to be two issues here. First, there seems to be a mix of estimators
(calculated from data) and estimands (of interest), a mix that is known to
cause many problems, e.g., subtracting background noise at the observation level
(estimator) can lead to negative counts, whereas subtracting background at the
expectation level (estimand) cannot. Second, the estimation approach adopted
via computing ratio Cij/Ai is known to be very unstable, and there is a good
amount of information in the data that has been ignored because the estimation
seems to be carried out on the individual base, instead of simultaneously.

Below I will try to recast this problem as a linear regression, and then fit it
via maximum likelihood approach, which is known to produce the most efficient
estimator (asymptotically) when the model assumptions hold. The assumptions
I made may not be reasonable, so they should be checked, but I expect the
results to be more stable than the ratio estimators, even if these assumptions
turn out to be unreasonable. Obviously, my recast is based on my very limited
understanding of the actual physical process, and hence it may need to be revised
seriously.

2 Recasting as a linear regression problem

To avoid the confusion between what can be calculated from data (e.g., estima-
tors) and what are to be estimated (i.e., estimand), we will use lower cases to
represent the former, and upper cases for the latter. Hence we will rewrite Cij

as cij , which represents the actual measurement obtained by instrument i from
physical source j, and reserve Cij to represent the corresponding but unobserved
true value if there is no measurement error. Similarly, we will use Ai for the true
attribute that makes Cij = AiFj holds exactly, but ai to represent an estimator
of Ai. This will be consistent with the notation that fi is an estimator of Fi.

The key here is to notice that although Cij = AiFj holds by our definition,
there is no reason to expect that cij = aifj , or that cij/ai is a good estimate of
Fj . Indeed, the ratio estimator cij/ai tends to have very large variance because
the chance for ai to be close to zero is much larger than having both cij and ai

close to zero (which is needed to control the variance of the ratio cij/ai).
To avoid this problem, we start by noting a trivial fact that Cij = AiFj is

mathamtically equivalent to

log Cij = log Ai + log Fj . (5)

However, this relationship holds at the estimand level, not at the estima-
tor/observation level. Indeed, if we let yij = log cij , bi = log ai, gj = log fj , then
it is not even reasonable to put down the regression model as yij = bi + gj + εij ,
and to assume εij has mean zero and is independent of {bi, gj}. This is because
that these assumptions would imply—incorrectly– that the mean of yij is de-
termined by bi and gj , forgetting that they themselves are respectively (bad)
estimates of Bi = log Ai and Gj = log Fj , which determines the mean of yij .
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A statistically more sound way to proceed is as follows. Provided that it is
reasonable to assume that the (measurement) errors in x for X, where x can be
c, a, or f , are multiplicative (i.e., in terms of percentage), we may postulate the
following three regression models, where i = 1, . . . , N and j = 1, . . . ,M .

yij = Bi + Gj + eij ; (6)

bi = Bi + εi; (7)

gi = Gj + δj . (8)

Here it is reasonable to assume all error terms {eij , εi, δj} have mean zero and are
independent of each other, but they may not have the same variances. However,
if we believe (5) is a good model (with the correctly specified Ai and Fj), then
it will be reasonable to assume that all eij have the same variance σ2, that
is, Var(yij) = σ2 for all pairs of (i, j). For εi and δj , we can permit them to
have instrumental or source specific variance, as long as these variances can
be considered known. But for notation simplicity, we will assume Var(ε) = τ2

b

and Var(δ) = τ2
g ; this assumption also makes it possible/easier to estimate the

variances from the data. But we will proceed by first assuming all the variances
as known, and then discuss extended solution when the variance themselves
need to be estimated from the data.

3 Fitting the Linear Regression

The regression model given by (6)-(8) is a special case of multivariate linear
regression with a particular design matrix, and hence it can be fitted as such.
However, it is more straightforward, and instructive, to fit it via maximum
likelihood estimation (MLE) method by assuming all errors are independent
Gaussians, because it is easy to write down the log likelihood function and then
maximize it by setting its relevant partial derivatives (i.e., the score function) to
zero. We can then also obtain the variance of our estimators by calculating the
Fisher information via taking the corresponding second-order partial derivatives.
Derivations will be given in the Appendix. Note the estimators given below will
be valid (e.g., consistent, but not necessarily efficient) even when the Gaussian
assumption is unreasonable, though in such cases the variance of the estimator
requires a more complicated “sandwich” formula, which involves both the Fisher
information and the variance of the score function.

To express the MLE in an intuitive way, we first note that for each Bi, there
are two pieces of information in the data for estimating it. The direct infor-
mation comes from bi, which has precision τ−2

b , the reciprocal of the variance.
The indirect information comes from (6), because eij has mean zero, we would
expect that ȳi∙ − Ḡ, where the average is taken over j = 1, . . . ,M, would be a
good estimator of Bi with precision Mσ−2, if Ḡ =

∑M
j=1 Gj/M is known. The

MLE formalizes this intuition by weighting these two estimates proportional
to their precisions, and it resolves the issue of unknown Ḡ via simultaneously
estimating all Bi’s and Gj ’s while keeping all the intuitive expressions.
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Specifically, let wb = τ−2
b /(τ−2

b +Mσ−2), which is the percentage of precision
in the direct information relative to the total precision available for estimating
Bi; and similarly wg = τ−2

g /(τ−2
g + Nσ−2), the percentage of precision in the

direct information for estimating Gj . Then the MLE for Bi and Gj are given
respectively by

B̂i = wbbi + (1 − wb)(ȳi∙ − Ĝ), i = 1, . . . , N, (9)

Ĝj = wggj + (1 − wg)(ȳ∙j − B̂), j = 1, . . . ,M ; (10)

where

B̂ =
wbb̄ + (1 − wb)wg(ȳ − ḡ)

wb + (1 − wb)wg
, (11)

Ĝ =
wg ḡ + (1 − wg)wb(ȳ − b̄)

wg + (1 − wg)wb
, (12)

and b̄, ḡ, and ȳ are respectively the averages of bi’s gj ’s and yij ’s.
Consequently., since bi = log ai, and ȳi∙ = log c̃i∙ we see the adjustment from

ai to Âi = eB̂i is given by

Âi = awb
i × (c̃i∙/F̂ )(1−wb), i = 1, . . . , N, (13)

where F̂ = eĜ. That is, when we make the adjustment, we will shrink the power
of the original ai from 1 to wi < 1, as well as multiply by a factor that is larger
than one when c̃i∙ > F̂ and smaller than one when c̃i∙ < F̂ . Similarly, we adjust
fj to F̂j via

F̂j = f
wg

j × (c̃∙j/Â)(1−wg), j = 1, . . . ,M, (14)

where Â = eB̂ . It is worth to compare c̃∙j/Â with the original cij/ai, the former
not only use more information in the data, it is much more stable since the
Â is virtually guaranteed to be away from zero. Note it is easy to verify that
(11)-(12) are equivalent to (4).

We note that if the variances are unknown, then they can be estimated
from the data as well by simultaneously solving (10)-(12), which involve σ̂2, τ̂2

b ,
τ̂2
g because they are needed for computing wb and wg, and the following three

equations, which involve B̂i and Ĝj :

σ̂2 =
1

MN

N∑

i=1

M∑

j=1

(yij − B̂i − Ĝj)
2 (15)

τ̂2
b =

1
M

M∑

j=1

(bi − B̂i)
2, (16)

τ̂2
g =

1
N

N∑

i=1

(gj − Ĝj)
2, (17)

The solution {B̂i, Ĝj} and {σ̂2, τ2
b , τ2

g } are then our MLE. If there are any miss-
ing values, we can use the EM algorithms, as long as the reasons of missing are
known.
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