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The development of orally active small molecule inhibitors of the epidermal growth factor receptor
(EGFR) has led to new treatment options for non-small cell lung cancer (NSCLC). Patients with activating
mutations of the EGFR gene show sensitivity to, and clinical benefit from, treatment with EGFR tyrosine
kinase inhibitors (EGFR-TKls). First generation reversible ATP-competitive EGFR-TKls, gefitinib and erloti-
nib, are effective as first, second-line or maintenance therapy. Despite initial benefit, most patients
develop resistance within a year, 50–60% of cases being related to the appearance of a T790M gatekeeper
mutation. Newer, irreversible EGFR-TKls – afatinib and dacomitinib – covalently bind to and inhibit mul-
tiple receptors in the ErbB family (EGFR, HER2 and HER4). These agents have been mainly evaluated for
first-line treatment but also in the setting of acquired resistance to first-generation EGFR-TKls. Afatinib is
the first ErbB family blocker approved for patients with NSCLC with activating EGFR mutations; dacomit-
inib is in late stage clinical development. Mutant-selective EGFR inhibitors (AZD9291, CO-1686,
HM61713) that specifically target the T790M resistance mutation are in early development. The EGFR-
TKIs differ in their spectrum of target kinases, reversibility of binding to EGFR receptor, pharmacokinetics
and potential for drug–drug interactions, as discussed in this review. For the clinician, these differences
are relevant in the setting of polymedicated patients with NSCLC, as well as from the perspective of
innovative anticancer drug combination strategies.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

Identification of different driver mutations that define new
molecular subsets of non-small cell lung cancer (NSCLC) has been
critical in defining novel targeted therapeutic approaches [1].
One of the most well-known examples is epidermal growth factor
receptor (EGFR), a cell-surface receptor that is activated in more
than half of NSCLC patients [2]. The EGFR receptor belongs to the
ErbB family of transmembrane tyrosine kinase receptors, which
includes EGFR (also known as ErbB1 or HER1), ErbB2 (HER2 or
neu), ErbB3 (HER3) and ErbB4 (HER4) [3]. With the exception of
HER3, all have tyrosine kinase activity. The EGFR/ErbB family
tyrosine kinase receptors play an integral role in cell proliferation,
differentiation and apoptosis, and therefore represent a valid target
for preventing tumour growth and metastasis.

The development of small-molecule tyrosine kinase inhibitors
(TKls) that target EGFR has revolutionised the management of
NSCLC. The so-called ‘‘first generation’’ EGFR-TKIs, erlotinib and
gefitinib, compete reversibly with adenosine triphosphate (ATP)
for binding to the intracellular catalytic domain of EGFR tyrosine
kinase and thus inhibit EGFR autophosphorylation and down-
stream signalling [4]. Erlotinib and gefitinib are especially effective
in tumours with activating EGFR mutations, evident in 10–15% of
Caucasians and 40% of Asians with NSCLC [5]. In 90% of cases, these
mutations are exon 19 deletions or exon 21 L858R substitutions
[5].
Reversible EGFR-TKIs

Clinical trials have demonstrated that treatment with gefitinib
or erlotinib significantly improves progression-free survival (PFS)
and quality-of-life compared with chemotherapy as first-line
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therapy in advanced EGFR mutation-positive NSCLC [6–10]. Gefiti-
nib was approved in the US for third-line treatment of advanced
NSCLC in 2003; however, its marketing application for use in
new patients was withdrawn in 2005, after failure to show a ben-
efit on overall survival (OS) in the Iressa Survival Evaluation in
Lung Cancer (ISEL) trial [11]. In Europe, gefitinib was approved in
2009 for all lines of treatment in patients with advanced NSCLC
with EGFR mutations. Erlotinib was approved in 2004 (USA) and
2005 (Europe) for second- and third-line treatment of chemother-
apy-resistant, advanced NSCLC. In 2010 its use was expanded to
include maintenance therapy after platinum-based chemotherapy,
followed by approval in 2012 (Europe) and 2013 (USA) for use as
first-line treatment of NSCLC with EGFR activating mutations (exon
19 deletions or exon 21 L858R substitution) [12,13].

As erlotinib and gefitinib bind reversibly to the tyrosine kinase
domain of EGFR, they are susceptible to mutations that affect the
binding affinity of ATP or the kinase inhibitor itself. Thus, despite
excellent tumour response to initial targeted therapy, EGFR muta-
tion-positive patients eventually develop resistance to erlotinib or
gefitinib after 9–12 months of treatment [6–10]. One important
mechanism of acquired resistance is the T790M gatekeeper EGFR
mutation in exon 20, which is found in about 50–60% of patients
[14,15]. This mutation increases the affinity of the kinase for ATP,
and thus reduces the inhibitor efficacy [15–17]. In addition,
c-MET amplification, HER2 amplification, small cell transformation,
and PIK3CA mutations have been associated with the development
of EGFR-TKI resistance [14,15]. Consequently, an unmet need
exists for the development of novel targeted agents that are effec-
tive in this setting.

Irreversible ErbB family blockers

Agents that bind irreversibly to the EGFR receptor, and also tar-
get multiple ErbB-family members, including HER2 which plays a
key role in ErbB activation, also described as ‘‘second-generation
EGFR-TKIs’’, may overcome the acquired resistance observed with
erlotinib and gefitinib [18]. Irreversible EGFR-TKls, including afati-
nib, dacomitinib and neratinib, have demonstrated a higher affinity
for the ATP-binding domain and form an irreversible covalent bond
to the ATP-binding site, they also inhibit HER2, and some also inhi-
bit HER4 (see below).

Afatinib is the first irreversible ErbB family blocker approved for
first-line treatment of metastatic NSCLC with EGFR mutations
[19,20]. The LUX-Lung clinical trial programme investigated afati-
nib in the settings of second- or third-line treatment of patients
with acquired resistance to gefitinib or erlotinib (LUX-Lung 1, 4
and 5) [21–23] as well as first-line treatment in patients with
EGFR-activating mutations (LUX-Lung 2, 3 and 6) [24–26]. The
phase IIb/III LUX-Lung 1 showed that treatment with afatinib pro-
longed PFS – but not OS – in patients refractory to both chemother-
apy and either erlotinib or gefitinib [21]. The phase III LUX-Lung 3
and 6 trials showed that PFS was significantly prolonged with afat-
inib versus pemetrexed plus cisplatin (LUX-Lung 3) or gemcitabine
plus cisplatin (LUX-Lung 6) in treatment naïve patients with
advanced lung adenocarcinoma and activating EGFR mutations
and improved tumour-related symptoms and global health status
[25,26]. LUX-Lung 3 [25] provided the basis for approval of afatinib
in the US, Taiwan and Europe in 2013, in the setting of first-line
treatment of metastatic NSCLC with EGFR-activating mutations
[19,20]. Preliminary results of a pooled analysis of these two trials
show a significant improvement in OS (27.3 to 24.3 months;
HR = 0.81, p = 0.037) with afatinib in patients with common EGFR
mutations (Del19/L858R) compared with standard chemotherapy
[27]. This was even more pronounced in patients whose tumours
harbour a deletion in exon 19 (33.3 versus 21.1 months in LUX-
Lung 3 [HR 0.54]; and 31.4 versus 18.4 months in LUX-Lung 6
[HR 0.64]). In addition, phase II trials have demonstrated benefit
with another irreversible EGFR-TKI, dacomitinib (PF-00299804),
in a number of settings including after failure of one or two chemo-
therapy regimens and failure on erlotinib [28,29] first-line treat-
ment of patients with EGFR-mutant tumours or known T790M
mutations [30] as well patients refractory to chemotherapy and
TKls [31]. Preliminary results for phase III trials comparing daco-
mitinib with erlotinib (ARCHER 1009) in advanced NSCLC previ-
ously treated with chemotherapy (second/third line); or with
placebo after failure of TKI and chemotherapy (BR.26) were
recently reported [32,33]. The ARCHER 1009 trial did not meet its
objective of significant improvement in PFS versus erlotinib; the
BR.26 trial also failed to show significant prolongation of OS versus
placebo. A further phase III trial versus gefitinib in treatment-naïve
patients with EGFR-mutation mutated tumours (ARCHER 1050,
NCT01774721) is ongoing with results expected in 2015. Addition-
ally, neratinib has been tested in patients with NSCLC and prior
response to first-generation EGFR-TKIs and in TKI-naïve patients
[34] but due to low response rates and dose-limiting diarrhoea,
monotherapy treatment evaluation was discontinued. Benefit with
the combination of neratinib and temsirolimus, an mTOR inhibitor,
has been seen in patients with solid tumours [35]. Consequently,
neratinib is now being evaluated in combination with weekly
temsirolimus in patients with HER2-mutant NSCLC [36]. In view
of the lack of benefit and future clinical development with nerati-
nib monotherapy, further discussion about this drug is not
included in this review.
Mutant-selective EGFR-TKIs

Newer, so called ‘‘third-generation’’ EGFR-TKIs targeting acti-
vating EGFR mutations and T790M but sparing wild-type EGFR
are also in development as first-line or following resistance to
treatment.

Three such compounds, AZD9291, CO-1686 and HM61713, are
oral, irreversible, selective inhibitors of both EGFR-activating and
resistance (T790M) mutations, while sparing wild-type EGFR
[37–40]. Ongoing phase I dose-escalation trials show significant
tumour shrinkage (by RECIST criteria) in patients with EGFR-
mutant NSCLC tumours (mainly harbouring T790M) and acquired
resistance to prior EGFR-TKI treatment [41–43]. Sparing of wild-
type EGFR present in normal skin and gut cells is thought to be
associated with an improved therapeutic index. An extensive
phase II/III development program with CO-1686 (TIGER I–V trials)
as second-line therapy for NSCLC patients with acquired resistance
to EGFR-directed therapy due to T790M mutations and as a first-
line treatment for EGFR-mutated tumours is planned from 2014.
Further development of AZD9291 and HM61713 is yet to be offi-
cially announced.

In contrast to platinum-based systemic chemotherapy, oral
EGFR-TKls offer potential for extended first-line therapy, given evi-
dence of good tolerability, and increased duration of PFS. Relevant
to considerations for their clinical use, are the pharmacokinetic
characteristics and potential for drug–drug interactions with the
first and second-generation EGFR-TKIs, which is the focus of this
review.
Profile of receptor activity

All of the EGFR-TKIs show a similar high affinity for the EGFR
receptor (see Supplementary Table 1); [44–47] afatinib and daco-
mitinib also show high affinity for HER2 and HER4 receptors. Afat-
inib also inhibits transphosphorylation of HER3, thereby blocking
signalling of all ErbB family members [45]. Compared with gefiti-
nib and erlotinib, afatinib has shown superior in vitro activity in
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cells expressing EGFR-activating mutations, anti-tumour activity in
a variety of cancer xenograft models, including EGFR-mutant cell
lines resistant to the currently available EGFR inhibitors or
expressing T790M, and antitumor activity in animal models
[45,46]. In preclinical studies, dacomitinib was shown to inhibit
several EGFR mutants, including the common activating mutations
and the T790M mutant, and was also effective in reducing the
growth of gefitinib-resistant NSCLC xenografts [47,48].

The mutant-selective EGFR-TKIs all show high selectivity for the
mutated EGFR receptors, both activating and T790M (Supplemen-
tary Table 1), but are less selective for wild-type EGFR [37–39]. In
vitro, all are effective at inhibiting the proliferation of NSCLC cell
lines expressing L858R EGFR or L858R/T790M EGFR, with less
activity against wild-type EGFR lines. Similarly, in vivo studies
demonstrate dose-dependent and significant tumour growth inhi-
bition in different EGFR-mutant cell line xenograft models
[37,38,40].

In summary, compared with erlotinib and gefitinib, afatinib and
dacomitinib offer a wider spectrum of inhibitory activity including
HER2 and HER4 receptors, as well as gefitinib- or erlotinib resistant
NSCLC xenografts. Although the in vitro activity profile of afatinib
and dacomitinib suggests potential in the setting of T790M-depen-
dent acquired resistance, there is limited benefit clinically [21,28].
This could be due to dose-limiting toxicities associated with wild-
type EGFR inhibition, such that they cannot be adequately dosed to
inhibit the T790M drug-resistant mutation [49]. Here, mutant-
selective EGFR-TKIs or dual targeting of EGFR (e.g. combining afat-
inib and cetuximab) show most promise in this setting.

Pharmacokinetic properties

Absorption and bioavailability

Oral absorption of the EGFR-TKIs is slow to moderate with sub-
stantial inter- and intra-individual variability in the extent of gas-
trointestinal tract absorption. Peak plasma levels of gefitinib are
achieved �3–7 h after dosing in healthy subjects and in patients
with solid tumours (Table 1) [50]. Oral bioavailability of a single
Table 1
Pharmacokinetic parameters for EGFR tyrosine kinase inhibitors administered at the recom

Parameter Reversible EGFR-TKIs

Gefitinib Erlotinib

Usual starting dose (mg/day) 250 150
tmax (h) 3–7 [51,120] 4 [12]
Vd/F (L) 1700 [51] 232 [65]
Protein binding (%) �90 [68,122] �95 [62]
t1/2 (h) 48–72 [51] 36 [62]
F absolute (%) �60 [51] �76 [123]
CL/F (L/h) 46 [122] 4.5 [62]
Metabolism Extensive [61,67] Extensive [69]
Renal excretion 4% [61] �9% [69]
Accumulation 1.5 to �4-fold [120] 1.5 to 5.4-fold
Gastric pH effect Reduces absorption [52] Reduces absorp
Food effect Not relevant [50] AUC "34–66%e

Age effect None reported [125] None reported
Weight effect None reported [125] None reported
Gender effect None reported [125] None reported
Race Effect None reported [68] None reported
Potential drug interactions CYP enzymes CYP enzymes

AUC, area under curve plasma concentration curve; CL/F, apparent total oral clearance; C
F, bioavailability (systemic availability of the administered dose); P-gp, P-glycoprotei
distribution.

a Data for AZD9291, CO-1686 and HM61713 are not included in the table as no infor
b Based on patients receiving dacomitinib 45 mg once-daily.
c Based on patients receiving afatinib 40 once-daily.
d The mean relative bioavailability of a 20 mg oral dose was 92% when compared wit
e Take without food.
f CYP2D6 substrates include tricyclic antidepressants, selective serotonin reuptake in
250 mg gefitinib dose is �60% [51]. This is independent of dose
and unaffected by food [51]. However, due to limited solubility
at high pH [52] co-administration of treatments that increase gas-
tric pH such as histamine H2-receptor antagonists and proton
pump inhibitors can decrease absorption and bioavailability
(Table 2). High doses of short-acting antacids may have a similar
effect if taken regularly around the time of the gefitinib dose [52].

Erlotinib shows similar absorption characteristics to those of
gefitinib [12,53]. However, as food increases bioavailability (from
60% to almost 100%), erlotinib should be taken at least 1 h before
or 2 h after eating [12,53]. Like gefitinib, the solubility of erlotinib
is pH-dependent and is subject to reduced absorption with acid-
reducing agents (Table 2) [12].

Afatinib achieves peak plasma concentrations �2–5 h after oral
dosing in patients with solid tumours [54]. The absolute bioavail-
ability of afatinib is not known [19]. Food has a moderate effect
on afatinib exposure [55] and therefore patients should take afati-
nib at least 1 h before or 2–3 h after a meal [19,20]. Consistent with
other approved oral EGFR-TKIs, there is substantial inter-patient
variability in plasma concentrations [54]. Increases in maximum
plasma concentration (Cmax) and exposure (area under the plasma
concentration–time curve [AUC]) values over the therapeutic range
of 20–50 mg [54] are non-linear, potentially due to changes in the
bioavailability of afatinib as a result of saturation of efflux trans-
porters in the gut (see drug–drug interactions) [54]. Afatinib is
highly soluble throughout the physiological pH range 1–7.5 [56]
and therefore any interactions with acid-reducing drugs are not
expected.

Dacomitinib has an oral bioavailability of 80% following a 45 mg
dose and exhibits linear kinetics following single or multiple doses
[57,58]. Food has only a mild effect on exposure but concomitant
administration with acid suppressants should be avoided wherever
possible [59]. As for the other EGFR-TKIs, inter-individual variabil-
ity is high (coefficient of variation up to 50%), due in part to the low
solubility of dacomitinib (BCS Class II compound with pH-depen-
dent solubility) [59].

In summary, gefitinib, erlotinib, afatinib and dacomitinib all
show extensive inter-individual variability in drug absorption.
mended doses in healthy adults or patients with solid tumours.a

Irreversible ErbB family blockers

Afatinib Dacomitinib

40 45
2–5 [54] �6b [58,121]
2870c [54] 2600b [58]
�95 [64] 97–98 [63]
37 [54] 72b [58]
Not knownd [54] 80 [57]
1070–1390b [54] 26 [121]
Minimal [66] Extensive [63]
<5% [66] 3% [63]

[89] 2 to 3-fold [54] �6-fold [58,121]
tion [12] Not known [56] Reduces absorption [59]
[124] AUC ;39%e [55] Not relevant [59]
[62] None reported [74] Not known
[62] None reported [74] Not known
[62] None reported [74] Not known
[89] None reported [74] Not known

P-gp transporters [85] Potent CYP2D6 substratesf [97]

max, maximum observed plasma concentration; CYP, cytochrome P-450 isoenzymes;
n; t1/2, terminal half-life; tmax, time to reach the Cmax; Vd/F, apparent volume of

mation has been reported for most of the parameters.

h an oral solution.

hibitors, opioids, anti-arrhythmics, antipsychotics, and some beta-blockers.



Table 2
Impact of acid-reducing agents on the absorption of the oral EGFR tyrosine kinase inhibitors in healthy subjects.

Drug (dose) Acid-reducing agent and regimen Mean change Dosing implications References

AUC Cmax

Gefitinib (250 mg) Ranitidine (450 mg, 13 h and 1 h before
gefitinib)

; 44% ; 70% Co-administration with H2 receptor
antagonists may reduce efficacy. Antacids if
taken regularly close to administration of
gefitinib may have a similar effect

[52]

Erlotinib (150 mg) Omeprazole (40 mg) daily for 7 days ; 46% ; 61% Avoid co-administration with proton pump
inhibitors

[12]

Ranitidine (300 mg daily for 5 days);
erlotinib was given as a single dose after
the ranitidine dose on the third day

; 33% ; 54% Co-administration with H2 receptor
antagonists may reduce efficacy. If required,
erlotinib must be taken at least 2 h before or
10 h after ranitidine dosing

Ranitidine (150 mg twice daily for 5 days);
erlotinib 150 mg was given 2 h before and
10 h after ranitidine on the third day

; 15% ; 17% The effect of antacids on erlotinib absorption
has not been investigated. If use of antacids is
considered necessary, administer at least 4 h
before or 2 h after erlotinib

Afatinib Not reported Highly soluble at pH > 5 so unlikely to show
any interaction

[56]

Dacomitinib Rabeprazole given with dacomitinib ;29% ;50% Avoid co-administration with proton pump
inhibitors

[59]

AUC, area under the plasma concentration curve; Cmax, maximum observed plasma concentration.
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Gefitinib, erlotinib and dacomitinib exhibit pH-dependent solubil-
ity influencing absorption (Table 2). Gefitinib, erlotinib and afatinib
should be taken while fasting; data for dacomitinib indicate that
food intake has no effect on bioavailability.

Limited pharmacokinetic data has been reported for the mutant
selective EGFR-TKIs. CO-1686 was initially administered as free
base formulation but is now administered as hydrobromide salt
showing improved absorption and reduced pharmacokinetic vari-
ability [60]. The available evidence shows dose-proportional
increases in exposure, with a plasma half-life of 4–5 h (CO-1686)
[60] 8–11 h (HM61713) [40] and �50 h (AZD9291) [37].

Distribution

The EGFR-TKIs are characterised by extensive tissue distribu-
tion and moderate to high plasma protein binding, ranging from
�90% for gefitinib to 97–98% for dacomitinib (Table 1) [61–64].
Consequently, the volume of distribution is high (generally
P1700 L), resulting in a prolonged terminal half-life (2–3 days)
in cancer patients [51,54,58] although half-life is shorter for erloti-
nib (36 h) [65] and afatinib (37 h) [54]. Steady-state plasma levels
of afatinib are achieved within 8 days of once-daily dosing with no
evidence of fluctuation in subsequent cycles. The elevated whole
blood to plasma ratio is indicative of moderate distribution of afat-
inib into red blood cells [66]. Dacomitinib shows a similar distribu-
tion between red blood cells and plasma [63]. There is evidence of
mild accumulation with dacomitinib after multiple dosing, as
expected with a long half-life (72 h) [58].
Table 3
Enzymes involved in the metabolism of oral EGFR tyrosine kinase inhibitors.

Drug Metabolised by CYP enzymes May

3A4 3A5 2D6 1A1 1A2 1B1 2C8 2C9

Gefitinib +++ ++ +++ ++ + – CYP
Erlotinib +++ +++ + + ++ + + + CYP
Afatinib – – – – – – – – –
Dacomitinib ++ ++ + CYP

BCRP, breast cancer-resistant protein; CYP, cytochrome P450; UGT, uridine diphosphate
+++, major metabolic route; ++, other significant metabolic route; +, minor metabolic ro
Induction/inhibition activity: w: Weak; m: Moderate; s: Strong.
Table layout adapted from Shah and colleagues (2013) [126].

a May inhibit/induce the metabolism of drugs that are substrates for the following en
Metabolism

In contrast to afatinib, gefitinib, erlotinib and dacomitinib
undergo extensive hepatic metabolism predominantly by cyto-
chrome P450 (CYP)-dependent enzymes (Table 3). Gefitinib is
metabolised by CYP3A4 and to a lesser extent by CYP2D6 and
CYP3A5 [67] and is excreted as both parent compound and metab-
olites, mostly O-desmethyl gefitinib, which is considered to be
inactive [61,67,68]. Erlotinib is metabolised by CYP3A4/3A5 and,
to a lesser extent by the CYP1A1/1A2 isoenzymes, to the active
metabolite desmethyl erlotinib, which subsequently undergoes
oxidation and glucuronidation [69,70]. Extra-hepatic metabolism
by CYP3A4 in the intestine, CYP1A1 in the lung, and CYP1B1 in
tumour tissue also potentially contribute to the metabolic clear-
ance of erlotinib. Erlotinib and its active desmethyl metabolite
are considered to be equipotent in inhibiting EGFR tyrosine kinase
activity. The metabolism of the new mutant-selective EGFR-TKIs
has not been reported.

Cigarette smoking is well known to induce key CYP enzymes [71]
and this in turn may impact both the pharmacokinetics and pharma-
codynamics of therapeutic agents that are metabolised by these
enzymes. In the current context, studies have shown that induction
of CYP1A1/1A2 in smokers results in increased erlotinib metabolism
and clearance and subsequent reduction in exposure after a stan-
dard therapeutic dose (see drug–drug interactions) [72]. In patients
with solid tumours, erlotinib plasma clearance was 24% higher in
current smokers than that in former smokers or those who never
smoked [62]. In healthy volunteers, current smokers had increased
inhibita May inducea

2C19 (w) CYP2D6 (w) UGT1A9 BRCP
3A4 (m) CYP2C8 (m) CYP1A1 (s) UGT1A1 (s) CYP1A1 CYP1A2

– – –
2D6 (s)

-glucuronosyltransferase.
ute; –, no interaction.

zymes.



Table 4
Clinical implications of effects of co-administered drugs on exposure of EGFR tyrosine kinase inhibitors.

Enzyme or transporter
involved

Drugs Impact on
exposure

Dosing recommendations

H2-receptor Ranitidine ; Gefitinib � H2-antagonists may reduce exposure and plasma concentrations of gef-
itinib and, therefore, may reduce efficacy
� Antacids if taken regularly close to administration of gefitinib may have

a similar effect
; Erlotinib � If H2-antagonists are considered, erlotinib must be taken at least 2 h

before or 10 h after ranitidine dosing
� Antacids should be taken at least 4 h before or 2 h after the daily dose of

erlotinib

Proton pump Omeprazole ; Gefitinib � Proton-pump inhibitors may reduce exposure and hence efficacy
; Erlotinib � Combination of erlotinib and proton pump inhibitors should be avoided

CYP3A4 Potent inhibitor (azole antifungals,
protease inhibitors, clarithromycin,
telithromycin)

" Gefitinib
" Erlotinib

� Use with caution when combined with a potent CYP3A4 inhibitor due
to the potential for increased plasma concentrations and hence adverse
reactions. Dose reduction may be required
� Patients with CYP2D6 poor metaboliser genotype are at greater risk

Potent inducer (e.g. phenytoin,
carbamazepine, rifampicin, barbiturates
or herbal preparations containing St.
John’s wort/Hypericum perforatum)

; Gefitinib � Avoid co-administration with a potent CYP3A4 inducer due to the
potential for decreased plasma concentrations and hence reduced
efficacy

; Erlotinib � For patients on erlotinib requiring concomitant treatment with a potent
CYP3A4 inducer such as rifampicin an increase in dose to 300 mg
should be considered while safety (renal and liver function and serum
electrolytes) is closely monitored. If well tolerated for more than
2 weeks, a further increase to 450 mg could be considered with close
safety monitoring

CYP1A1/1A2 Cigarette smoking ; Erlotinib � Advise patients to stop smoking
� If continue to smoke, dose can be increased in 50 mg increments to a

maximum of 300 mg

CYP1A2 Potent inhibitor (ciprofloxacin,
fluvoxamine)

" Erlotinib � Use with caution. If adverse reactions related to erlotinib are observed,
the dose of erlotinib may be reduced

P-gp Strong inhibitor (e.g. ritonavir,
cyclosporine A, ketoconazole,
itraconazole, erythromycin, verapamil,
quinidine, tacrolimus, nelfinavir,
saquinavir, and amiodarone)

" Afatinib � Ritonavir can increase exposure if given 1 h before afatinib; no change
in afatinib exposure is administered simultaneously with or 6 h after
afatinib
� Concomitant with other P-gp inhibitors can increase exposure
� Recommended to administer strong P-gp inhibitors using staggered

dosing, preferably 6 h (for P-gp inhibitors dosed twice-daily) or 12 h
(for P-gp inhibitors dosed once-daily) apart from afatinib

Inducer (e.g. rifampicin, carbamazepine,
phenytoin, phenobarbital, and St. John’s
wort)

; Afatinib � Concomitant treatment with strong P-gp inducers with afatinib may
decrease exposure to afatinib

BCRP, breast cancer-resistant protein; CYP, cytochrome P450; P-gp, P-glycoprotein; UGT, uridine diphosphate-glucuronosyltransferase.
Table compiled from data contained in regulatory documents [12,13,19,20,68].
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erlotinib clearance compared with former smokers or non-smokers
[72] with exposure (AUC) about 30–50% lower.

Of the irreversible ErbB family blockers, dacomitinib undergoes
oxidative and glutathione-mediated conjugative metabolism
involving CYP2D6 and CYP3A4, resulting in the active metabolite
O-desmethyl dacomitinib which has similar in vitro activity to
the parent compound [63]. In contrast, afatinib undergoes minimal
biotransformation and oxidative CYP-mediated metabolism is of
negligible importance [66]. Instead, metabolism is mainly gov-
erned by non-enzyme catalysed Michael adduct formation to pro-
teins and nucleophilic small molecules [66].

Thus, with the exception of afatinib, there is important poten-
tial for interaction with other agents that are metabolised by, or
are inhibitors or inducers of the CYP-related enzymes, as discussed
later. The impact of smoking is also relevant and discussed further
in drug–drug interactions. CYP-related enzyme interactions have
not been reported for the mutant-selective EGFR-TKIs.

Excretion

All of the EGFR-TKIs discussed here undergo faecal excretion.
For gefitinib, 86% of unchanged drug and metabolites is excreted
in the faeces, with a minor proportion excreted in the bile [61]. Uri-
nary recovery of unchanged drug accounts for <0.5% of the oral
doses [50,73]. Similarly, less than 10% of the erlotinib dose is recov-
ered in the urine, with <1% excreted as parent drug [69]. The irre-
versible ErbB family blockers show a similar excretion profile, with
faecal excretion of the unchanged parent drug accounting for 85%
(afatinib) and 79% (dacomitinib) of the dose [63,66]. Renal elimina-
tion is responsible for <5% of the administered dose [63,66].

Special populations

Patient age, body weight, gender or ethnicity does not have a
clinically relevant effect on clearance/exposure of gefitinib, erloti-
nib or afatinib [12,62,68,74]. Mild and moderate hepatic impair-
ment do not appear to have a major impact on exposure to the
EGFR-TKIs and therefore dose adjustment is not routinely required
[64,75,76]. There are limited data for patients with severe hepatic
impairment. Evidence suggests that the underlying aetiology of
hepatic impairment may be relevant. In one study, patients with
moderate to severe hepatic impairment due to cirrhosis or hepati-
tis had increased gefitinib exposure and reduced clearance,
whereas in patients with hepatic metastases, there was no signifi-
cant impact on gefitinib exposure [73].

As only a minor proportion of the dose is excreted in the urine,
no prospective dose adjustment is required in patients with
mild or moderate renal impairment (creatinine clearance [CrCl]
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30–90 mL/min). In general, treatment of patients with severely
impaired renal function (CrCl < 30 mL/min) is not recommended.
As a general recommendation, patients with moderate to severe
renal impairment (CrCl 30–50 mL/min) or severe hepatic impair-
ment should be closely monitored and dosage adjusted in the
event of poor tolerability [12,19,68].

Drug–drug interactions

Potential interactions to be considered for individual EGFR-TKIs
include interactions with drug transporters, CYP enzymes (e.g.
inhibitors, inducers or substrates) and acid-reducing drugs (e.g.
H2-receptor antagonists and proton pump inhibitors) (Table 4).

Interactions with drug transporters

The ATP-binding cassette (ABC) drug transporter P-glycoprotein
1 (P-gp, also known as multidrug resistance protein 1 [MDR1] or
ABC sub-family B member 1 [ABCB1]), breast cancer resistance
protein (BCRP, also known as ABC sub-family G member 2
[ABCG2]), and multidrug resistance protein 2 (MRP2, also known
as ABC sub-family C member 2 [ABCC2]) are recognised for their
potential for drug–drug interactions [77–79]. The role of the
uptake solute carrier (SLC) transporters (e.g. organic anion trans-
porter [OAT], organic anion transporting polypeptide [OATP] and
organic cation transporter [OCT]), in transporter-mediated drug
interactions with EGFR-TKIs is less well defined [80,81].

In vitro studies show that gefitinib is a substrate of P-gp and
inhibits the transporter protein BCRP [52,82] and erlotinib is both
a substrate for and inhibitor of P-gp and BCRP [83,84] although the
clinical relevance of these findings is not well defined. For gefitinib,
available data do not suggest any clinically relevant consequences.
With erlotinib, caution is advised in patients also receiving inhibi-
tors of P-gp, such as verapamil or cyclosporine [13]. No data are
available for interactions with the SLC transporters.

Afatinib is a substrate and inhibitor of P-gp and BRCP [85]. In
healthy subjects, administration of ritonavir, a potent inhibitor of
P-gp, given concomitantly or 6 h after afatinib (40 mg) had no clin-
ically relevant effect on the pharmacokinetics of afatinib [85].
However, another study showed that administration of ritonavir
1 h before afatinib (20 mg) increased exposure by �50% [85]. In
contrast, co-administration of rifampicin, a potent P-gp inducer,
and afatinib resulted in modest reduction (�by about one-third)
in afatinib exposure in healthy subjects [85]. If P-gp inhibitors need
to be taken concomitantly, the EU summary of product character-
istics recommends that they should be administered using a stag-
gered dosing regimen, i.e. taken with as larger as possible interval
from the afatinib dose. This means preferably 6 h (for P-gp inhibi-
tors dosed twice-daily) or 12 h (for P-gp inhibitors dosed
once-daily) apart from afatinib [20]. The US prescribing informa-
tion recommends that clinicians can also consider a 10 mg
decrease in the daily afatinib dose in patients concomitantly
receiving a P-gp inhibitor, or an increase by 10 mg in patients
concomitantly receiving a P-gp inducer [19]. The available clinical
data indicate that it is unlikely that afatinib treatment results in
changes in the plasma concentration of other P-gp substrates
[20]. No data are available for dacomitinib.

Finally, while multiple in vitro studies have investigated possi-
ble interactions between these TKls and other drug transporters,
currently the clinical significance of polymorphic transporters
and interactions between drugs on transporters are poorly defined.

Interactions with drugs metabolised by CYP enzymes

Most pharmacokinetic interactions involve the metabolism of
EGFR-TKIs, especially those metabolised by CYP enzymes. Potent
inhibitors and inducers of CYP activity can modify the exposure
(AUC and Cmax) of the individual EGFR-TKI involved. Further,
EGFR-TKIs that are CYP substrates can modify the metabolism of
other medications.

Gefitinib is metabolised primarily by CYP3A4, and to a lesser
extent by CYP3A5, CYP1A2 and CYP2D6 [67] suggesting that inhi-
bition or induction of these isoenzymes has the potential to impact
gefitinib exposure. This is most relevant for CYP3A4 as this is the
dominant CYP isoform in the gastrointestinal tract and shares
many substrates and inhibitors with ABC transporters [86]. Co-
administration of itraconazole, a potent CYP3A4 inhibitor, may
increase gefitinib exposure by up to 80%, whereas rifampicin, a
potent CYP3A4 inducer, may decrease exposure by up to 83%; phe-
nytoin, a less potent CYP3A4 inducer had a much smaller effect
[87,88]. Thus, patients receiving gefitinib with potent inhibitors
of CYP3A4 activity must be monitored carefully due to the poten-
tial for toxicity; conversely, those receiving a concomitant CYP3A4
inducer should be monitored for potential reduced efficacy
(Table 4). Dose adjustments of the drug may be necessary.

In vitro studies show that gefitinib is only a weak inhibitor of
CYP2D6 activity [87]. There are no data on concomitant treatment
with CYP2D6 inhibitors. Co-administration of gefitinib with meto-
prolol (a CYP2D6 substrate) resulted in a 35% increase in metopro-
lol exposure, but this change was neither statistically significant
nor clinically relevant [87]. However, co-administration with other
CYP2D6 substrates with a narrow therapeutic index may require
dose modification.

Erlotinib is a potent inhibitor of CYP1A1, and a moderate inhibi-
tor of CYP3A4 and CYP2C8, as well as a strong inhibitor of glucuron-
idation by UGT1A1 in vitro [89]. Thus, there is potential for
interactions with potent inhibitors and inducers of CYP3A4 activity.
In clinical studies, inhibition of CYP3A4 by ketoconazole increased
erlotinib exposure by 86%; [90] conversely, induction of CYP3A4
by co-treatment with rifampicin decreased exposure by >50% [91].
Furthermore, co-administration with ciprofloxacin, which inhibits
both CYP3A4 and CYP1A2 may increase erlotinib exposure by up
to 39%, suggesting the need for caution when ciprofloxacin or other
potent CYP1A2 inhibitors (e.g. fluvoxamine) are co-administered
[12]. Cigarette smoke induces CYPA1 and CYP1A2 and may decrease
erlotinib exposure by 50–60% [12,90]. Erlotinib does not appear to
affect the pharmacokinetics of the CYP3A4/2C8 substrate paclitaxel
[92]. Haemorrhage and elevated international normalised ratio
(INR) levels have been reported in patients taking warfarin, a
CYP3A4 substrate [12,93]. Case reports also suggest caution with
coadministration with CYP3A4 or CYP2C8 substrates such as simva-
statin and phenytoin [94,95]. The physiological relevance of the
strong inhibition of CYP1A1 is unknown due to the very limited
expression of CYP1A1 in human tissues [96].

In contrast, in vitro studies have shown that afatinib is not an
inhibitor or an inducer of CYP450 enzymes [19] and therefore is
unlikely to affect the metabolism of drugs that are substrates of
CYP-related enzymes.

Dacomitinib is a substrate and potent inhibitor of CYP2D6
in vitro [97]. Potent inhibition of CYP2D6 by paroxetine in healthy
volunteers who were predominantly extensive CYP2D6 metabolis-
ers increased dacomitinib exposure by 37% [98]. Dacomitinib expo-
sure in poor CYP2D6 metabolisers was not studied but is likely to
be similar or at most 10% higher [98]. The modest effect on daco-
mitinib exposure is unlikely to be clinically relevant, suggesting
that dose adjustment of dacomitinib when coadministered with a
CYP2D6 inhibitor may not be required [98]. Co-administration of
dacomitinib with dextromethorphan (a CYP2D6 substrate) signifi-
cantly increased dextromethorphan exposure (900% higher) in
extensive CYP2D6 metabolisers, with no change in dacomitinib
exposure [97]. This highlights the effect of dacomitinib as a strong
CYP2D6 inhibitor. Thus, co-administration with drugs which are
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highly dependent on CYP2D6 metabolism may require dose adjust-
ment or substitution with an alternative medication.

Interactions with acid-reducing agents

As discussed above, concomitant use of H2-receptor antagonists
and proton pump inhibitors can substantially reduce the plasma
levels of gefitinib, erlotinib or dacomitinib. Given that cancer
patients frequently take acid-reducing treatments to counter
symptoms of gastro-oesophageal reflux disease, this interaction
is clinically relevant. However, a retrospective analysis of the
BR.21 trial in patients with advanced NSCLC [99] demonstrated
that co-administration of gastric acid suppressive medications
and erlotinib (n = 190) did not have a significant impact on median
plasma drug levels, clinical outcome (PFS or OS) or adverse events
[100]. A further single-centre analysis showed that gastric secre-
tion inhibitors did not influence the efficacy of gefitinib in patients
with NSCLC (n = 100) [101] or those harboring EGFR activating
mutations (n = 43) [102].

Smoking

As discussed, cigarette smoking reduces erlotinib exposure. In
the BR.21 trial, current smokers had lower complete or partial
response to erlotinib compared with never smokers (3.9 versus
24.7%; p < 0.001) [99] and experienced less toxicity [99]. Steady-
state trough plasma concentrations were �2-fold lower than in
former smokers or patients who had never smoked [103]. Com-
pared with NSCLC patients who had never smoked, current smok-
ers showed a dose-proportional increase in erlotinib exposure at
steady-state, as well as a doubling of maximum tolerated dose
(from 150 mg/day to 300 mg/day) [104]. Steady-state plasma con-
centrations and the incidence of rash and diarrhoea in smokers at
300 mg/day were similar to those in never-smokers receiving
150 mg/day [104]. Based on these data, an increased dose of erloti-
nib (up to 300 mg) can be considered in patients who smoke
[72,104]. However, so far there is no evidence to suggest that a
dose of 300 mg/day erlotinib in smokers is associated with any sig-
nificant improvement in PFS compared with the 150 mg/day dose
[105]. Thus, the selection and dosing of erlotinib for patients who
continue to smoke remains a clinical challenge. Smoking history
has no significant effect on exposure to the other agents discussed
here [68,74].
Pharmacogenetic effects

Genetic polymorphisms in the enzymes and transporters
involved in the pharmacokinetics of gefitinib (CYP2D6) and erloti-
nib (CYP3A4, CYP3A5 and ABCG2) may potentially influence expo-
sure, although data are limited. In one study, gefitinib exposure
was �2-fold higher in subjects with CYP2D6 poor metaboliser
genotype compared with the extensive metaboliser genotype
[106]. No specific dose adjustment is recommended in patients
known to be CYP2D6 poor metabolisers, although such patients
should be closely monitored for adverse events [68]. Conversely,
for patients with CYP2D6 poor metaboliser genotype, treatment
with a potent CYP3A4 inhibitor has the potential for increased gef-
itinib exposure, and therefore patients should be closely monitored
at initiation of CYP3A4 inhibitor treatment [68].

In another study, erlotinib exposure was shown to be higher in
subjects with variants in the promoter region of the ABCG2 gene,
conferring lower ABCG2 activity although the limited sample size
did not permit meaningful conclusions [107]. A modest increase
in dacomitinib exposure has been observed in healthy volunteers
who were extensive CYP2D6 metabolisers [97]. Dacomitinib
exposure in poor CYP2D6 metabolisers would be expected to be
similar or at most 10% higher [98]. Exploratory analyses looking
at genetic P-gp polymorphisms for afatinib do not suggest any
effects on exposure [85].

Tolerability profile

The adverse event profile of gefitinib, erlotinib, afatinib and
dacomitinib is consistent with inhibition of wild-type-EGFR
expressed predominantly on epithelial cells (e.g. skin and gastroin-
testinal tract), with diarrhoea and acneiform-like skin rash the
most commonly observed treatment-related adverse events
[108,109]. Less common drug-related EGFR-mediated adverse
events include stomatitis, paronychia, dry skin, cheilitis, conjuncti-
vitis and dry eyes [12,19,68]. Interstitial lung disease-like events
have been reported in 1.1–1.5% of patients [12,19,68]. Symptom-
atic adverse reactions are generally managed by treatment inter-
ruption, dose reductions or rarely treatment discontinuation.
Further aspects concerning the tolerability profile of these com-
pounds are reviewed elsewhere [108,110,111].

Retrospective studies with erlotinib and afatinib suggest that
the severity of rash or diarrhoea correlates with exposure
[54,62,112–114]. Additional studies, particularly with erlotinib,
have correlated skin rash onset with improved clinical outcome
in patients with NSCLC [114,115]. There is less evidence to support
the use of rash as a surrogate marker of EGFR inhibition and clinical
benefit with gefitinib [116]. For erlotinib, the cut-off value for
development of toxicity may be similar to therapeutic concentra-
tions since erlotinib is dosed at its maximum tolerated dose, with
a small therapeutic window [116,117].

Phase I studies with AZD9291, CO-1686 and HM61713 have so
far shown low levels of dose-related diarrhoea and rash typically
observed with gefitinib, erlotinib, afatinib and dacomitinib
[41–43]. Asymptomatic hyperglycemia is the main dose-limiting
toxicity reported with CO-1686 and interstitial lung disease has
been observed with AZD9291 treatment [41,42]. Further details
about the adverse event profile of these drugs will become
apparent following the completion of phase III trials.

Recommended dosing

The recommended oral daily starting doses are 150 mg for erl-
otinib, 250 mg for gefitinib and 40 mg for afatinib. Gefitinib can be
taken with or without food, whereas both erlotinib and afatinib
should be dosed at least 1 h before or 2–3 h after ingestion of food.
As discussed, in the event of potential drug–drug interaction, dose
adjustment may be needed to avoid toxicity. Treatment should
continue until disease progression or unacceptable toxicity. In
phase III clinical trials, dacomitinib has been investigated at the
maximum tolerated dose of 45 mg daily [32,33].

Clinical considerations

Gefitinib, erlotinib and afatinib are currently approved for the
treatment of NSCLC. Afatinib is the first of the irreversible ErbB
family blockers, offering a potentially beneficial novel approach
with regard to resistance emergence even if no data clinically sup-
porting this is currently available. From the clinical practice per-
spective, differences in the pharmacokinetics of these agents are
relevant as they may impact the potential for drug–drug interac-
tion, and thus the efficacy, optimum dose and tolerability of treat-
ment (Table 4).

A key difference between afatinib and the reversible EGFR-TKIs
is the extent to which they are metabolised by CYP-dependent
enzymes. As discussed, both gefitinib and erlotinib undergo
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extensive CYP-related metabolism, and thus, co-administration
with a potent CYP3A4 inhibitor may substantially increase plasma
levels of the EGFR-TKI. Conversely, co-administration with a potent
CYP3A4 inducer may increase metabolism and decrease plasma
levels, and consequently reduce efficacy. Clinicians should be cau-
tious in treating patients with CYP3A4 inducers, and wherever pos-
sible avoid co-administration. Such considerations are not relevant
for afatinib. As plasma concentrations of erlotinib are reduced in
smokers, current smokers are advised to stop smoking. In those
patients who continue to smoke, the erlotinib dose can be
increased to a maximum of 300 mg per day [12]. Such consider-
ations are not relevant for gefitinib and afatinib.

In addition, the potential for interactions with drug transport-
ers, in particular P-gp, merits consideration. Gefitinib, erlotinib,
and afatinib are substrates for this transporter in vitro [52,83,85]
although in vivo the potential for interaction varies. Thus, while
available clinical data suggest that this effect is probably not prob-
lematic for gefitinib or erlotinib, it is a potential drug–drug interac-
tion for afatinib. Clinicians should be aware of the potential need
for staggered administration or dose adjustment if afatinib is co-
administered with a P-gp inhibitor or inducer.

Drug absorption interactions between the EGFR-TKIs and acid-
reducing agents such as H2-receptor antagonists, proton-pump
inhibitors and antacids are also clinically important. As discussed,
both gefitinib and erlotinib exhibit pH-dependent solubility, and
therefore exposure is significantly decreased when co-adminis-
tered with H2-receptor antagonists or proton-pump inhibitors.
Given that cancer patients routinely use acid-reducing agents,
including over-the counter agents that may transiently increase
gastric pH, for palliation of gastro-oesophageal reflux, dyspepsia,
gastritis or mucositis due to their disease and/or treatment
[118,119] these differences between gefitinib, erlotinib and afati-
nib are important clinically.

Conclusions

In summary, the EGFR-TKIs offer a targeted therapeutic
approach to the management of NSCLC. Review of the pharmacoki-
netics of gefitinib, erlotinib, afatinib and dacomitinib highlight dif-
ferences in absorption and/or metabolism which influence their
potential for drug–drug interactions, highly relevant in the setting
of polymedicated cancer patients. In routine clinical practice, afat-
inib may offer a number of theoretical advantages, notably lack of
CYP-related interaction potential as well as with acid-reducing
agents (H2-receptor antagonists, proton-pump inhibitors and
antacids). Definitive statistical analysis of the pooled afatinib
LUX-Lung 3 and -6 survival data and the related publication are
awaited. Future mutant selective EGFR-TKIs, such as CO-1686,
AZD9291 and HM61713, may offer potential benefit to patients,
thereby preventing the onset of resistance seen with gefitinib
and erlotinib, thereafter improving patient PFS.
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