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Abstract 

 A rotating bucket with a hole in the center of its bottom is used to model a low-pressure 
weather system in a rotating frame. As the water drains, it rotates at a rate faster than that of the 
frame as it approaches the center in order to conserve angular momentum.  As the fluid spins, the 
Coriolis force and centrifugal force balance out the pressure gradient to varying degrees.  To 
what extent each force acts against the pressure gradient is captured in the non-dimensional 
number called the Rossby number.  The Rossby number decreases with the size of the radius. 

1  Introduction  
 The purpose of this experiment is to demonstrate the effect of the rotation of fluids in a 
rotating system under the influence of a pressure gradient, with particular focus on the 
dependence of the Rossby number on radius from the axis of rotation.  When a pressure gradient 
is present, a fluid will move radially toward places of low pressure according to the pressure 
gradient.  However, in a rotating frame the fluid will swirl around the source of pressure and will 
not just travel radially.  This effect is due to the presence of the Coriolis force and the centrifugal 
force, which both work to balance the pressure gradient. 

 The Earth’s weather exists in a rotating frame.  The Earth rotates at a near constant 
rotational velocity and has a period of approximately 24 hours.  The effect of this rotation is the 
creation of what seems to be an “inertial” frame on the Earth in which stationary objects on the 
surface remain stationary in that frame (i.e. they have the same angular velocity).  The motion of 
weather systems can be primarily attributed to two factors: the presence of a pressure gradient 
and conservation of momentum.   

 The pressure gradient arises as a result of a temperature gradient from the equator to the 
poles.  The poles receive significantly less direct sunlight than the equator and radiate more heat,  
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Figure 1: Temperature gradient at 500 mb isobaric surface at 06 Z on 02/07/93.  

making them colder than the equator.  Cold air is denser than warm air by the ideal gas law, 
which states that PV=nRT; pressure times the volume equals the number of molecules times the 
ideal gas constant time the temperature.  So, for the same volume of air, a lower temperature 
implies a lower pressure.  This means that given two columns of air with a 1 square meter 
footprint and the same, that more cold air would be fit into the column than warm air, or that for 
the same amount of air in a column, the column with the warmer air would have to be far taller.  
The pressure at a particular altitude is determined by the amount of air above that position, thus, 
at higher altitudes, since the column of cold air is significantly shorter, the pressure is less.  This 
implies that the pressure at a particular altitude is on average less at the poles, creating a pressure 
gradient that increases as you move away from the equator.   

 Due to the pressure gradient, air parcels at the equator begin to be forced toward the 
poles.  Since every parcel in the air was initially rotating, albeit with the same period as the 
Earth, they have a certain angular momentum.  As the parcels of air move north, their distance 
from the axis, i.e. the radius of their rotation, becomes progressively smaller.  Due to the law of 
conservation of momentum, these parcels must conserve momentum; to achieve this, the air 
parcels rotate around the earth at faster and faster speeds. 

The rotation of individual weather systems is due to the balance between the Coriolis and 
centrifugal forces and the pressure gradient.  Both the Coriolis and centrifugal forces are what 
are sometimes called “pseudo-forces” because their effects are only noticeable while in a rotating 
frame.  Nevertheless, they are of paramount importance when considering weather systems on 
the earth.  The Coriolis force describes the cause of the apparent deflection of objects in the 
rotating frame when they are moving straight in the absolute frame.  The position of the object 
relative to the rotating frame will not only change according to the motion in the absolute frame 
of the object, but also the rotation of the rotating frame.  One way to visualize this phenomenon 
is to accelerate a ball straight on a rotating carousel and throwing a ball.  From your reference 
point, although the ball was accelerated directly away from the source, it does not appear to fly 
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straight.  Instead, it curves in the direction opposite the rotation of the carousel.  Much the same 
way, the Earth’s rotation apparently deflects air motion perpendicularly to the rotational axis.   

The centrifugal force explains the apparent outward acceleration of an object in rotation.  
To understand the centrifugal force better, consider a ball attached to a rope swinging in a circle.  
As the ball rotates, it is pulled inwards due to centripetal force as it attempts to move tangentially 
due to inertia, but in the frame of the ball, it feels as if it is constantly being pulled away from the 
center. 

2 Experiment 
2.1 Setup 

 A low-pressure system was created by taking a bucket with a whole in the center of its 
bottom.  The bucket was filled with water, which was allowed to drain when a plug was removed 
from the hole.  In order to simulate the rotation of the earth, the system was placed in a tank 
rotating at a constant angular velocity.  

2.2 Theory 

In low-pressure systems, both the Coriolis force and the centrifugal force work to 
counteract the pressure gradient.  The relationship that describes this balance is called the 
gradient wind balance.  In order to get this relationship, let us begin with the hydrostatic balance 
of the system, which states that the pressure at a certain height, call it z, must be able to support 
the fluid above it.  This statement is written 

                                             ,                                                   (1) 

where p is pressure, ρ is the density of the fluid, g is acceleration due to gravity, H, which is 
dependent on radius, is the height of the surface of the fluid, and z is a given height from the 
bottom of the tank.  While H and z vary, ρ and p are constant quantities.   

 For azimuthal velocities where the azimuthal velocity and the velocity in the radial 
direction are of approximately equal magnitudes, the effects of the centrifugal force are the most 
important.  This is primarily true for smaller radii where the parcels of fluid are rotating in tight 
spirals.  At this point, the pressure gradient is balanced by the centrifugal force, 

                                                            ,                                                            (2) 

where Vθ is the azimuthal velocity in the absolute frame.  Using equation (1), equation (2) can be 
rewritten as   

      .                                        (3) 
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Now, let us put the expression in terms of velocities relative to the rotating frame instead of the 
absolute frame.  Given the velocity relative to the rotating frame is vθ, the velocity in the 
absolute frame is simply that velocity plus the velocity due to the rotation of the frame 

     ,                                                      (4) 

Ω being the rate of rotation of the frame.  Thus, 

                                            (5) 

Therefore,  

 .  (6) 

Simplifying by integration defining the a quantity h 

             .              (7) 

So, substituting h and then rearranging, 

   

€ 

vθ
2

r
+ 2Ωvθ = g∂h

∂r .  (8) 

This equation is known as the gradient wind balance.  The  term is, as explained previously, 

due to the centrifugal force while  is the pressure gradient and  is known as the 

Coriolis acceleration.  For small radii and higher velocities, the centrifugal force is more 
important in balancing the pressure gradient, but for larger radii and lower velocities the Coriolis 
term becomes more important.  In order to have a way to tell when which force becomes 
dominant, let us introduce a new term that is the ratio between the two to show their relative 
strength: 

               

€ 

R0 =
vθ
2Ωr     (9) 

This non-dimensional term is known as the Rossby number.  When R0 is less than 1, the Coriolis 
force is dominant while for R0 greater than 1 the centrifugal force is dominant.  So, for R0<<1, 
the expression is approximately 

   :   geostrophic balance   (10) 
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Alternatively, if R>>1, 

        :   cyclostrophic balance.                (11) 

 

2.3 Results 

 To model a fluid in a pressure gradient, water was put into a bucket and the allowed to be 
spun into solid body rotation.  After reaching a state of equilibrium, a plug at the bottom of the 
tank was pulled and the water allowed to drain, creating in effect a low pressure system centered 
at the hole.  The bucket was spun at three different rotational velocities: 10, 5, and 15 rpm.  
Paper dots were placed in the water and their position was tracked with a particle tracker.  With 
higher velocities, the particles would  go around more times. 

 

Figure 2: Track of particle in the bucket rotating at 5 rpm.  Measurements are in pixels. 

 

As the water drained, the particles near the inside had a very high velocity and made a full period 
many times in the time the bucket took to go around once.  However, near the edge of the bucket, 
the particles moved very slowly or almost not at all.  The dominant force at a particular radius 
can be found by finding the Rossby number at that radius.  To do so, data points were collected 
using the particle tracker.  A center was determined and using that center, radial particle 
positions were calculated using the Pythagorean Theorem 
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  .    (12)  

The angle to the point was then calculated by taking the arctangent of the x and y coordinates.  
With this information, the Rossby number could be computed for a particular position and hence 
a particular radius.  The formula used to calculate the Rossby number was derived by using the 
fact that  can be represented as the change in angle over the change in time.  The resulting 
formula is 

 .    (13)  

Using this formula, Rossby number near the hole are indeed found to be greater than those near 
the radius of the bucket.  This confirms expectations.  A graph plotted using MATLAB showing 
the Rossby number against the radius is found below.  The experimental results are compared 
with a theoretical result. 

 

Figure 3: The Rossby Number against radius.  The blue points are at 10 rpm, the red at 5 rpm, 
and the green at 15 rpm.  The black curve is the theoretical curve, using 250 pixels as the 
approximate radius of the bucket. 
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The theoretical value for the Rossby number as indicated by the solid line is found by using an 
approximation of the actual Rossby number that relies on the fact that the fluid conserves angular 
momentum.  Given that the azimuthal speed Vθ of a particle in the tank with referene to the 

absolute frame is given by 

              (14) 

where vθ is the azimuthal speed with respect to the tank and Ωr is the speed of the tank at a 
particular radius.  Angular 
momentum is represented by the 
expression 

        (15) 
where r1 is the radius of the bucket.  By combining equations (14) and (15), the expression 

        (16) 

is obtained, which can be inserted in equation (9) to give the approximation 
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where r1 is the radius of the low pressure system and r is a variable radius, which holds assuming 
momentum is conserved. 

 As can be seen, the data points follow the general trend of the theoretical curve, however 
they do not follow it exactly.  The fact that the data points do not follow the theoretical curve 
more closely can be explained by the choice of r1.  The radius of the system was chosen to be the 
radius of the bucket, although it is difficult to determine if this was exactly the case.  It is 
possible that the radius of the low pressure system was smaller than the radius of the bucket, 
which would explain while the expected value of the Rossby number is generally larger than 
what is observed.  That is, near the radius of the bucket the particles were hardly moving.  
Nevertheless, the data do seem to indicate that the expectation that the Rossby number should 
decrease as radius increases is correct. 

 

3 Real-World Comparisons 
 Experimental results are only useful in their ability to act as an analog to real-world 
situations.  The relevance of the experimental results is in comparison to the flow of air in low- 
pressure regions on the Earth.  Thus, the purpose of this section will be to draw comparisons 
between the experimental results and an actual storm.  The storm data used were collected from 
hurricane Jeanne on September 22, 2009 as it approached the east coast of Florida. 

 Hurricanes are low-pressure systems, like the one created in the tank experiment 
described above, so similar results and a similar theory are expected.  The same way the water in 
the bucket swirled around the bucket toward the drain at the center, the air in a low-pressure 

€ 

Vθ = vθ + Ωr

€ 

Vθ r = const. = Ωr1
2
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system swirls around the source of low pressure.  This phenomenon can clearly be seen in the 
diagram below; the air rotates around, flowing inward toward the source of the system. 

 

Figure 4: The direction of airflow in Hurricane Jeanne. 9/22/2004 

 

The system behaves much the same way as the tank experiment.  A direct analogy can be drawn 
between equation (8) and what is observed in the hurricane.  By modifying equation (8),  

 

.                    (18) 

It is important to notice that instead of 2Ω, on the earth the equation includes 2Ωsinφ, where φ 
is in degrees of latitude.  So, the system will be in cyclostrophic balance when vθ

2 balances the 
pressure gradient, and geostrophic balance when the fvθ term balances the pressure gradient.  
Cyclostrophic balance occurs at small radii when the velocity is high, as when the particles 
approached the drain in the tank experiment.  Geostrophic balance occurs at larger radii and 
higher velocities.   
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+ fvθ = g

∂h
∂r
, f = 2Ωsinϕ
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 MATLAB was used to plot contours of the wind speed of the storm, which can be seen 
below.

 

Figure 5: Contour plot of wind speed in hurricane Jeanne. 9/22/2004 

 

 The same way the equation for the balance of forces needs to be altered to generalize to 
the earth, the equation for the Rossby number (9) also needs to be changed.  The new equation 
for the Rossby number is  

                                              

€ 

R0 =
vθ

2Ωsinϕr  .                                            (19) 

Using the wind speeds along increasing radii to the north and south of the eye of the storm, the 
Rossby number was plotted for various radii using equation (19).  A theoretical curve was fitted 
to this graph by taking the radius of the storm to be about 12 meters per second, or about 200,000 
meters from the eye.  This value for the radius of the storm was chosen after testing different 
values for the radius in the calculation of the Rossby number and picking the one that most 
closely fit the data points.  At this radius of the storm, wind speeds were small enough that it is 
feasible that they are not caused as a direct result of the low-pressure system.  The wind speeds 
along the north-south diameter along with the fitted theoretical curve can be seen below. 
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Figure 6: The Rossby number against radius measured in meters. 

 

While the storm better demonstrates the dependence of the Rossby number on radius than the 
experiment, it still confirms the implications drawn from the experimental results.  From the 
graph above, it is clear that as larger radii in the storm are considered, the Rossby number 
decreases according to approximately an inverse square function. 

 Hurricane Jeanne obeys the gradient wind equation (8), so we can use our results for the 
Rossby number to draw conclusions about the force balance.  Looking at figure 5, it is clear that 
as smaller radii, R0 >>0.  Likewise, is evident that at large radii, R0 is very small.  The point at 
which both forces about equally balance out the pressure gradient, i.e, , is when the radius 
is about 2.25 degrees of latitude, or 247,500 meters from the center of the storm. 
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4 Conclusion 
 The Rossby number is an efficient way of determining which force is predominant at a 
particular radius in a rotating system.  Using the Rossby number in combination with the 
gradient wind balance equation gives a relatively accurate description of the force balance at that 
point.  When the Rossby number is very small, the Coriolis for is dominant and the system is in 
cyclostrophic balance, but when the Rossby number is very large the centrifugal force is 
dominant and the system is in geostrophic balance.  Large Rossby numbers are found at small 
radii where velocities are high and the centrifugal force balances the pressure gradient.  Small 
Rossby numbers are found at large radii where velocities are small.  An accurate analogy to a 
low-pressure system in the atmosphere is water draining out of a bucket with a hole in its bottom 
in a rotating tank. 
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