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Abstract

The jet stream is a significant feature of the upper atmosphere gener-
ated by temperature gradients by a relation known as thermal wind. This
paper examines the jet stream and thermal wind in detail, deriving the
thermal wind from the geostrophic and ideal gas relations and explain-
ing its relationship to the jet stream. A laboratory experiment is also
presented to demonstrate the qualitative effects of the thermal wind in
physical terms.

1 Introduction

Wind is one of the most important aspects of the atmosphere. Like other
meteorological phenomena, wind has direct impacts on human life through its
ability to wreak havoc directly in the form of both strong straight-line winds
and tornadoes. In addition to this, wind also plays a more subtle role in which
it is no less important; it is the movement of air and the accompanying related
properties of a given air parcel, such as moisture, temperature and vertical
instability.

Although we can understand wind in terms of the circular movement of air
around high and low pressure systems through the twin concepts of geostrophic
and cyclostrophic flow, such an understanding fails to explain how these high
and low pressure systems form and move in the first place. Unless we have a
mechanism to understand this movement, our understanding of the wind is of
limited use.

We might be able to use wind to predict the location of high and low pressure
systems, or vice versa, but unless we understand how those systems move, and
where they are moving to, we cannot hope to even predict what the wind will
be tomorrow, let alone the weather. There is, however, one wind which, if
understood, might help us in our quest to make such predictive statements: the
jet stream.
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2 Phenomena: The Jet Stream

Perhaps the most striking feature of the atmosphere is the giant river of wind
in the middle latitudes. This wind, called the jet stream, is significant not only
for its size, but also for its role in forming and steering high and low pressure
systems in the mid-latitudes, effectively driving much of the weather that affects
North America, Europe, and East Asia through the inertial instability which
accompanies a strong jet. [3]

The extent of the jet stream is readily visible in the tight banding of isoheight
lines on any hemispherical pressure map taken above the 500mb level. Since,
according to the geostrophic relationship,

ug =
g

f
ẑ×∇z, (1)

it is possible to conclude that the tightly banded isoheights visible over the
oceans in Figure 1 correspond to regions of extremely high winds. A plot of the
wind vectors as wind barbs shows this assumption to be true (Figure 2).

The jet stream is not only striking for its narrow banding across only a few
degrees of latitude, but also for its vertical locality. The strong winds of the jet
stream are never observed at the surface of the Earth, but are entirely localized
to the higher levels of the atmosphere, as can be seen in a vertical cross-section
of the atmosphere taken along a line of longitude in Figure 3.

The presence of the jet stream raises many questions that, if answered, might
give a better understanding of middle-latitude weather systems. Why is the
jet stream so strong? Why is it tightly constrained to a band of only a few
degrees latitude? Why is it present only at higher altitudes? To understand
these questions, we must turn to the concept known as “thermal wind.”

3 The Theory: Thermal Wind

The movement of wind in the jet stream can largely be explained by a phe-
nomenon called thermal wind, which relates wind shear (the vertical difference
in wind speed) to horizontal temperature gradients. [3] To understand thermal
wind, however, one must first understand how the atmosphere behaves under
different temperatures on a global scale.

Air tends to expand when heated. According to the ideal gas law in its molar
form,

P = ρRspecificT, (2)
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Figure 1: Heights of the 500mb pressure surface in the Northern Hemisphere at
00:00 UTC on 15 March 2012. The height changes drastically across a narrow
band that runs approximately along 45◦N, implying a strong wind which winds
around the world.

3



4920

4920
4980

4980

4980
5040

5040

5040

5040

5040

5040

5100

5100

5100

5100

5100

5160

5160

5160

5160

5220

5220

5280

5280

5280

5340
5400
5460
5520

55205580
5640

5640

5700

5700

5760

5820

5820

5880

 120315/0000V000 500 MB HGHT

10

20

30

40

50

60

70

80

90

−130 −120 −110 −100 −90 −80 −70 −60 −50

Figure 2: Heights and observed winds on the 500mb pressure surface in the
Northern Hemisphere at 00:00 UTC on 15 March 2012. Winds are generally
weak except along for a strong west-to-east wind along a narrow band at ap-
proximately 45◦N latitude, where the height gradient is strong.
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Figure 3: Windspeed normal to a north-south cross-section from the north pole
to the equator along 170◦W at 00:00 UTC on 15 March 2012. Positive values
blow from west to east. The jet stream is localized high above the surface,
ranging up to 90m/s at the 250mb level.

5



Warm
(Equator)

Cold
(Pole)

Reference
Height

p- p+

Figure 4: The temperature gradient between the poles and the equator causes
differences in pressure heights due to the expansion of warmer air. The slope of
a pressure surface thus increases with height.

given a constant pressure P , the density of a gas, ρ, must decrease as the
temperature T increases (as defined by the specific gas constant, R). Thus,
since the mass of a column of air at the poles and equator are approximately
equal (as the pressure at the bottom of such a column is almost the same), the
warmer temperature of tropical air implies that the density of that column must
decrease, causing a corresponding increase in the height of that column of air.
The difference in the height of this column between the poles and the equator
creates a gradually increasing slope of pressure levels higher in the atmosphere
(Figure 4).

This increasing slope of pressure levels necessarily translates to an increasing
geostrophic wind speed with height when the Rossby number is much less than
one. Indeed, from the zonal geostrophic wind relation at constant pressure,

ug =
g

f
ẑ×∇z, (3)

it is possible to derive the relationship between horizontal temperature gradients
and wind known as the thermal wind equation. [4]
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3.1 Deriving the Geostrophic Wind Shear from Temper-
ature

In order to relate the temperature gradient to wind shear, it must be the case
that T may be introduced into Equation 3. The ideal gas equation, Equation 2
offers one way to do so thanks to its use of ρ, the density of the gas. As the
pressure at a given height may be determined by the hydrostatic equation,

∂p

∂z
= −ρg, (4)

in which ρ is the density of air, it is possible to take the reciprocal of this relation,
∂z
∂p and use it to introduce ρ into the geostrophic wind relation. This may be

done by substituting the value for ∂z
∂p after taking the derivative of Equation 3

with respect to p. This gives the following:

∂ug
∂p

=
g

f

∂

∂z
ẑ×∇z

= − 1

f
ẑ×∇1

ρ
, (5)

where the derivative is again, taken in pressure coordinates.

With the relationship of the molar ideal gas law, given in Equation 2, it is
possible to obtain this relationship in terms of temperature by substituting
1
ρ = RT

p into Equation 5, giving:

∂ug
∂p

= − 1

f
ẑ×∇RT

p
. (6)

Factoring out R and p (the latter as the derivative is taken at constant p) gives
the thermal wind relationship between a temperature gradient and the vertical
wind shear :

∂ug
∂p

= − R

fp
ẑ×∇T. (7)

3.2 The Polar Front and the Jet Stream

This thermal wind equation indicates that sharp horizontal temperature gra-
dients will create vertical wind shear. The practical result of this relationship
arises from the sharp temperature gradient that marks the boundary of cold
polar air and warm tropical air in the middle latitudes (Figure 5).
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Figure 5: Temperatures at the 500mb pressure surface in the Northern Hemi-
sphere at 00:00 UTC on 15 March 2012. A sharp temperature gradient is visible
between about 38◦N and 48◦N.

8



The existence of this temperature gradient seems surprising at first glance. Why
should such a sharp gradient exist? The answer lies in the relatively slow speed
of mixing in air. What little mixing of air occurs largely takes place in the
form of diffusion and conduction. This process is so slow as to be negligible. As
such, rather than observing mixing, there is usually a distinct boundary between
warm and cold air systems, called a frontal boundary.

The front between warm tropical air and cold polar air is called the polar front.
The relative strength of this frontal boundary necessarily leads to strong wind
shear and the jet stream. [4] Equipped with the Thermal Wind Equation, Equa-
tion 7, it is possible to calculate an approximation of the speed of the jet stream
and verify its relationship to the polar front and the thermal wind.

Before we can do so, however, one problem must be addressed. The atmosphere
is a compressible fluid. As such temperature varies with pressure and is not
conserved. This may be observed in Figure 6, where the temperature decreases
with height, as would be expected given the ideal gas law, Equation 2. This
complication makes it difficult to discuss the temperature of the atmosphere
without also discussing the pressure level at which it was measured.

To eliminate this issue, it is possible to construct a conserved measurement
based on the temperature that does not vary with pressure by instead measuring
the temperature an air parcel would have if taken adiabatically to a standard
reference pressure p0 of 1000 millibars. [3] This value, the potential temperature,
is useful in many contexts including that of the thermal wind because the nature
of atmosphere as a compressible fluid means that atmospheric science typically
works in pressure coordinates. As such, a conserved temperature equivalent is
necessary.

3.3 The Potential Temperature

Construction of the potential temperature θ may be done by considering the
change in heat in an adiabatic process (one in which there is no change in
entropy), where dU = 0. For such a process, the change in heat is defined, as
always, by the first law of thermodynamics,

δQ = dU + pdV = cvdT + pdV. (8)

where Q is the amount of energy added to the system and dU is the change
in internal energy in the system, related to the change in temperature and the
specific heat capacity at constant volume via the relation dU = cvdT .
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Figure 6: Cross-section of air temperature above 170◦W longitude from the
north pole to the equator as of 00:00 UTC on 15 March 2012. The temperature
gradient near the 45th parallel is visible, as is the tendancy of temperature to
decrease with height.
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Taking the derivative of ideal gas law pV = RT gives V dp+ pdV = RdT , which
may be rearranged to allow Equation 8 to be restated solely in terms of changes
in pressure and temperature, as follows:

δQ = cvdT +RdT − V dp. (9)

The specific heat capacity at constant pressure, cp, may be defined for an ideal
gas in terms of the specific heat capacity at constant pressure via the relation
cp = cv +R. Thus, Equation 9 may be simplified to

δQ = cpdT − V dp, (10)

which is 0 in an adiabatic system. As V itself may be redefined in terms of p and
T using the ideal gas law pV = RT , it is possible to rearrange the relationship
to obtain a pair of differential equations relating the change in temperature of
a parcel of air to a corresponding change in pressure,

V dp = cpdT

RT
dp

p
= cpdT

dp

p
=
cp
R

dT

T
. (11)

This equation may be integrated to give us an equation which may be solved to
give a value of the potential temperature, T0 = θ at standard pressure p0:

ln p1 − ln p0 =
cp
R

(lnT1 − lnT0)

R

cp
ln
p1

p0
= ln

T1

T0(
p1

p0

) R
cp

=
T1

T0

θ = T

(
p0

p

) R
cp

. (12)
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Table 1: Hand-calculated wind shears from the thermal wind based on Figure 7
Location dθ Expected Shear

45◦N, 500mb 310K−292.5K
550km = 3.18× 10−5K/m -0.206 m/s

mb

65◦N, 600mb 280K−285K
550km = −9.09× 10−6K/m 0.0516 m/s

mb

45◦N, 300mb 333K−327K
550km = 1.09× 10−5K/m 0.102 m/s

mb

It is then a simple matter to redefine the thermal wind relation in terms of the
potential temperature by simply rearranging Equation 12 to give T in terms of
θ and substituting the value in for T . After factoring out constant p, we obtain

∂ug
∂p

= − R

fp

(
p

p0

) R
cp

ẑ×∇θ. (13)

3.4 The Polar Front, the Jet Stream, and Potential Tem-
perature

As mentioned in Section 3.2, it is possible to actually demonstrate this relation-
ship between the (potential) temperature and the wind shear of the jet stream
by calculating the wind shear by hand and comparing it with the real jet stream.
In Figure 7, the cross-section previously depicted in Figure 6 is depicted with
contour lines corresponding to potential temperature instead of actual tempera-
ture. Here, potential temperature increases with height, rather than decreasing
like the air temperature.

Figure 7 also depicts the normal wind (i.e. the jet stream). It is possible to
compare the numerical values of the jet stream speeds with what would be
expected from Equation 13 by taking the horizontal change of theta at a single
pressure level and comparing it to the rate of change of the normal wind (wind
shear) across that pressure level.

The results of these calculations are given in Table 1 and may be compared
with the observed shear values given in Table 2. In all cases, the expected
wind shear calculated from the thermal wind proves to be relatively close to
the actual values of wind shear. Note that the particular cross-section has been
chosen such that the jet stream is effectively normal to the cross-section. Were
it not normal, the observed “normal” wind speed would be less than the actual
wind speed and would have a wind shear observed to be less than expected.

As the jet stream is a consistent phenomena, it may also be observed on clima-
tological timescales. It is possible to show that the thermal wind relationship
holds for the jet stream on even these timescales, comparing the wind shear and
temperature gradients using MATLAB. Figure 8 depicts the long-term climato-
logical average of θ at the 500mb level in January in the Northern Hemisphere.
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Figure 7: Cross-section of potential temperature and normal wind above 170◦W
longitude from the north pole to the equator as of 00:00 UTC on 15 March 2012.
The strongest winds are observed above regions of strong slope in the poten-
tial temperature. In comparison with the actual air temperature in Figure 6,
temperature is very stratified at higher altitudes, and potential temperature is
observed to increase with height. Cold air is visible as a “mound” near the
north pole.

Table 2: Hand-calculated wind shears from the thermal wind compared to ob-
served values in Figure 7. The values compare reasonably well.

Location Expected Shear Observed Shear

45◦N, 500mb -0.206 m/s
mb

30m/s−65m/s
200mb = −0.175m/s

mb

65◦N, 600mb 0.0516 m/s
mb

−12m/s−(−15)m/s
200mb = 0.015m/s

mb

45◦N, 300mb 0.102 m/s
mb

85m/s−90m/s
200mb = −0.025m/s

mb
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Figures 9 and 10 depict the longitudinal wind at the 600mb and 400mb levels
over the same region and time period.

By using MATLAB to perform the same calculations performed by hand in
Table 1, it is possible to obtain several plots demonstrating that the change
in potential temperature from south to north at the 500mb level accurately
predicts the average wind shear calculated from the 400 and 600mb winds.

In Figure 11, for example, the slope of the potential temperature along the
500mb surface between 110◦E and 150◦E may be observed, which is marked by
a notable decrease in the potential temperature between 30◦N and 60◦N. The
gradient of this, used in the thermal wind equation, is given in Figure 12.

The gradient can be used to calculate the expected wind shear through the use
of the thermal wind relation, giving the expected wind shear profile on the left
side of Figure 13. It is also possible to calculate the wind shear directly from the
600mb and 400mb winds and averaging the shear between 110◦E and 150◦E,
given on the right side of the same figure.

It is evident that the thermal wind relation is strongly supported by the similar
profiles of the two methods of calculating wind shear. Calculation of the residual
of the difference between the two methods (Figure 14) reveals that the potential
temperature is a remarkably accurate indicator of the wind shear, with residual
errors of no more than 0.01 m/s/mb at points where the actual shear is 0.08
m/s/mb. The greatest error is observed near the equator, where the value of f
used in calculating the thermal wind equation is extremely small.

3.5 Synoptic Fronts and Thermal Wind

Besides the polar front, other fronts exist in the middle latitudes, including those
frontal boundaries which accompany high and low pressure systems. These
synoptic fronts exhibit many of the features of the polar front, albeit on smaller
scales, and it is possible to compare the results of the thermal wind equation
along the polar front with these synoptic fronts.

Many synoptic fronts are not zonal like the polar front; synoptic fronts generally
separate distinct pressure systems, which may have broken off from the larger
polar or tropical air masses due to the meandering nature of the jet stream. In
such a case, synoptic fronts may have a north-south alignment rather than an
east-west alignment like that of the polar front.

One such front was that responsible for the April 3, 2012, outbreak of tornadoes
in the Dallas-Fort Worth region. On April 3rd, two cold fronts in close succes-
sion separated a cut-off low of cooler air (featuring surface temperatures in the
40s and 50s) from the warmer sub-tropical air near the Gulf of Mexico which
featured surface temperatures in the 70s and 80s (See Figure 15).

A cross-section of the normal winds and potential temperature along the 35th
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Figure 8: Monthly long-term mean potential temperature at the 500mb level in
January in the Northern Hemisphere. The climatological data covers the years
1968 through 1996. Here, sharp potential temperature gradients are observable,
especially over the oceans.
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Figure 9: Monthly long-term mean zonal wind speed at the 600mb level in
January in the Northern Hemisphere. The climatological data covers the years
1968 through 1996. Winds are greatest near the regions of greatest potential
temperature gradient.
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Figure 10: Monthly long-term mean zonal wind speed at the 400mb level in
January in the Northern Hemisphere. The climatological data covers the years
1968 through 1996. Winds are greatest near the regions of greatest potential
temperature gradient.
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Figure 11: Cross-section of the long-term mean potential temperature at the
500mb level in January in the Northern Hemisphere, averaged between 110◦E
and 150◦E. The climatological data covers the years 1968 through 1996. Poten-
tial temperature decreases significantly between 30◦N and 60◦N, representing
the polar front.
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Figure 12: Cross-section of the gradient of the long-term mean potential temper-
ature at the 500mb level in January in the Northern Hemisphere, averaged be-
tween 110◦E and 150◦E. The climatological data covers the years 1968 through
1996. Potential temperature decreases significantly between 30◦N and 60◦N,
representing the polar front.
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Figure 13: Cross-section of the expected wind shear calculated using the poten-
tial temperature gradient (left) and the observed wind shear as calculated from
the 600mb and 400mb wind speeds (right) at the 500mb level in January in the
Northern Hemisphere, averaged between 110◦E and 150◦E. The climatological
data covers the years 1968 through 1996. Shear is strongest between 30◦N and
60◦N, along the polar front.
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Figure 14: Cross-section of the residual difference between the wind shear as
calculated using the potential temperature, and that calculated directly from
the wind speeds of the 600mb and 400mb levels, based upon of the long-term
mean potential temperature at the 500mb level in January in the Northern
Hemisphere, averaged between 110◦E and 150◦E. The climatological data covers
the years 1968 through 1996. The residual error is at most only 0.1 m/s/mb,
and is generally less than 1/8th of the actual value.
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Figure 15: Surface conditions and surface frontal boundaries as of 21:45 UTC
on April 3, 2012 shortly after the outbreak of tornadoes in the Dallas-Fort
Worth area ended. [1] The frontal boundary responsible sits slightly behind the
radar-observable precipitation.
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parallel across which the frontal boundary moved (Figure 16) reveals not only
the mass of cold air behind the frontal boundary at around 100◦W, but also ex-
hibits relatively strong vertical shear above the boundary as might be expected.

What is interesting about this observation is its relevance to the outbreak of
tornadoes itself. Although the squall line itself moved from west to east, it may
be observed that the individual supercells (and the tornadoes that accompa-
nied them) moved from south-south-west to north-north-east (Figure 17), more
closely following the path of the upper-level thermal wind than the movement
of the front!

3.6 The Slope of Potential Temperature and the Margules
Formula

Careful observation of Figure 7 reveals a sharply defined slope in the potential
temperature contours below the jet stream. This makes intuitive sense; after
all, a horizontal potential temperature gradient must have a vertical component
as well as air is continuous. It is just this continuity, however, which permits
the derivation of this slope from the temperature gradient itself using a relation
known as the Margules Formula. [5]

The Margules Formula may be derived from the thermal wind equation by con-
sidering the difference in wind speeds above and below a discrete boundary layer
separating two temperature regimes. If Equation 13 is evaluated at two distinct
points within a north-south cross-section (i.e. examining the x-component, as
the normal wind is considered), the following relationship is obtained:

u1 − u2

p1 − p2
=

R

fp

(
p

p0

) R
cp θ1 − θ2

y1 − y2
. (14)

We may rearrange this relationship to obtain an equation for the discrete change
in velocity in terms of the slope ∆p

∆y = tan γ, where γ is the angle of the slope:

u1 − u2 =
R

fp

(
p

p0

) R
cp

(θ1 − θ2)
∆p

∆y

=
R

fp

(
p

p0

) R
cp

(θ1 − θ2) tan γ. (15)

It is thus possible to derive the expected angle of the interface between two
potential temperature surfaces from the wind shear and temperature gradient
at a given point.
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Figure 16: Cross-section of potential temperature and normal wind above 35◦N
latitude from 110◦W to 90◦W as of 18:00 UTC on 3 April 2012. A decrease in
potential temperature may be observed corresponding with the cold front near
100◦W. Thermal wind shear may also be observed to be greatest at the frontal
boundary.
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Figure 17: Radar observations of the Dallas-Fort Worth tornado outbreak taken
20 minutes apart at 19:08 and 19:31 UTC, April 3, 2012. [2] Supercells along the
squall line responsible for the Dallas-Fort Worth tornado outbreak were observed
to move from south-south-west to north-north-east, following the thermal wind
rather than the movement of the boundary itself.
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Table 3: Hand-calculated slopes of θ contours calculated using the Margules
Formula, calculated from values in Figure 7.

Location Observed 5◦ ∆u Observed 5◦ ∆θ Expected Slope ( ∆p
∆y )

45◦N, 500mb 55− 25 = 30m/s 17.5K 2.65× 10−4mb
m

65◦N, 600mb −10− (−12.5) = 2.5m/s -5K −2842mb
m

45◦N, 300mb 90− 55 = 35m/s 6K 6.25× 10−4 mb
m

Table 4: Hand-calculated slopes of θ contours compared to observed values in
Figure 7. The values compare reasonably well near the jet stream, but are less
accurate at more stable locations.

Location Expected Slope ( ∆p
∆y ) Observed Slope

45◦N, 500mb 2.65× 10−4mb
m

350−275mb
550km = 1.36× 10−4 mb

m

65◦N, 600mb −2842mb
m

530−625mb
550km = −1.72× 10−4 mb

m

45◦N, 300mb 6.25× 10−4 mb
m

630−400mb
550km = 4.18× 10−4 mb

m

It is possible to check the validity of the Margules Formula for each of the three
locations in Tables 1 and 2 by calculating the expected slope at each point from
the observed shear and observed dθ and compare this with the slopes of the θ
contour lines near each point. These values are calculated and given in Table 3
and compared to the observed values in Table 4, which shows that Margules’
formula holds reasonable well near the jet stream.

Points further from the jet stream seem less reliable, but this could be due to the
higher latitude and (more importantly) much lesser wind shears involved. The
smaller changes in u and θ at the 65◦N point mean that additional accuracy is
needed in order to obtain an accurate slope. Furthermore, the Margules Formula
assumes that geostrophic flow predominates. Although the correspondence of
the thermal wind equation would seem to indicate that it does, it is possible
that the Margules Formula is more sensitive to changes in the Rossby number
than the thermal wind equation.

4 An Experiment: Thermal Wind Along Salin-
ity Boundaries

The thermal wind phenomenon may also be tested experimentally through the
use of a rotating tank containing salt water and fresh water. The salt water,
being denser than the fresh water, serves as a proxy for cold air in the rotating
frame and may form a cone shape. This cone can then be used to test the
Margules Formula, and by extension, the concept of thermal wind.

In such an experiment, it is important to consider the difference between com-
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pressible fluids like the atmosphere and incompressible fluids such as the water
in this experiment. Thus, it is critical that the thermal wind equation be pre-
sented and worked with in height coordinates rather than pressure coordinates.
Furthermore, density is measured directly rather than working with temperature
as a proxy.

Thus, instead of taking the derivative of the geostrophic wind in constant pres-
sure coordinates, Equation 3, with respect to pressure, we will take the derivative
of the geostrophic wind in constant height coordinates,

ug =
1

ρf
ẑ×∇p, (16)

and substitute the hydrostatic equation, Equation 4, directly, giving:

∂ug
∂z

= − g

ρ0f
ẑ×∇ρ. (17)

Note that an additional ρ value has been introduced, such that the original ρ
has been substituted by a value ρ0 representing a constant reference density
from which the density of any one fluid parcel, ρ varies by only a small amount,
ρ = ρ0 + dρ, dρρ0 � 1.

It is possible to re-derive the Margules Formula from this alternate representa-
tion as well, simply by following the steps we made to work with the thermal
wind equation discretely in Section 3.6. Thus, we consider a quantifiable dis-
crete boundary of density within the fluid by examining two points, n1 and n2,
where the density is ρ1 at n1 and ρ2 at n2:

u1 − u2

z1 − z2
= − g

ρ0f

ρ1 − ρ2

x1 − x2
. (18)

We may rearrange this relationship to obtain an equation for the discrete change
in velocity in terms of the slope ∆z

∆x = tan γ, where γ is the angle of the slope:

u1 − u2 = − g

ρ0f
(ρ1 − ρ2)

∆z

∆x

= − g

ρ0f
(ρ1 − ρ2) tan γ. (19)

4.1 The Experimental Setup

Given that it is possible to achieve meaningful density differences using water of
different salinity, it would be possible to determine the validity of the Margules
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Figure 18: The experimental setup. On the left, salty water is placed in a
canister separated from the remainder of the tank through the use of Vaseline
to seal the bottom of the canister. On the right, the canister is removed, leaving
the salty water to reach equilibrium by forming a cone in the rotating frame.

Formula and thermal wind by constructing an experiment featuring a rotating
tank in which water of two different salinities (and thus two different densi-
ties) would be placed. In principle, the water of greater density would form a
cone near the center of the rotation, much like the potential temperature cone
observed over the north pole in Figure 7.

In order to prevent thorough mixing of the water, this may be achieved by
placing a canister with no bottom in the center of a rotating tank, taking care
to seal the bottom of the canister against water intrusion through the use of
Vaseline. The outer region of the rotating tank may then be filled with less
dense fresh water, while colored salt water may be prepared and placed in the
center canister once solid-body rotation is observed with the fresh water (left
side of Figure 18).

The achievement of solid-body rotation may be determined through use of a
camera which co-rotates with the rotating tank. When solid-body rotation is
achieved, water in the tank (specifically, a paper dot placed on the water in the
tank), as viewed from the camera, would appear to no longer be rotating.

Once this is accomplished, water within the canister is evacuated to a reasonable
extent and is replaced with water having a higher salinity (and thus a higher
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Table 5: Measurements of water density in the rotating tank experiment.
Measurement Mass Volume Density

Fresh Water 100.6± 0.05g 100± 0.25mL 1006± 3 kg
m3

Salt Water 116.8± 0.05g 99.7± 0.25mL 1171.5± 3.5 kg
m3

Salt Water (in canister) 62.4± 0.05g 55.8± 0.25mL 1118± 6 kg
m3

density). Finally, the canister may be removed by simply pulling it upwards.
As the canister lacks a bottom, the denser salty water will now find equilibrium
with the lighter fresh water rising above it, creating a cone shaped structure
(right side of Figure 18).

This cone should exhibit thermal wind appropriate to the density difference of
the salt water and fresh water. This could be measured by tracking particles
placed on the top of the water using particle-tracking software and the co-
rotating camera, as the thermal wind is observed relative to the rotating frame.
The particle speeds observed should be related to the slope of the cone via the
density-based version of the Margules Formula and the density of the fluid inside
the cone and that outside the cone.

4.2 Experimental Observations

My partner, Allison Schneider, and I performed this experiment once in a ro-
tating tank rotating at 2545 ± 10 milli-eff (i.e. f = 2ω = 2.545 ± 10 rad

s ). We
additionally measured the mass a volume of both the fresh and salty water
used in the tank prior to the beginning of the experiment. In addition, as we
were unable to completely evacuate the innermost cylinder, we took an addi-
tional measurement of the inner-cylinder’s mass before removing the canister.
The mass was measured by way of an electronic scale which had been zeroed
based on the dry mass of a graduated cylinder for measuring volume. These
measurements are given in Table 5.

Upon raising the canister and releasing the salty water, a cone was indeed
observed, and a dip in the surface of the water appeared over the center of the
cone. This dip corresponds to the lower overall height of a cylinder of the denser
fluid which has, at its bottom, a pressure equal to that of the less dense fluid
on the outside of the cone. A rough observation of the depth of the dimple
was about 1cm in a tank that was about 20cm deep. Thus, the height of the
water at the center of the cone was about 5% lower than the height of the water
elsewhere in the tank. Given the hydrostatic relation p = ρgh, this corresponds
well with the observed density of the salt water being between 10-20% greater
than the density of the surrounding fresh water.

Dots were placed on the surface of the water above the cone, and a thermal
wind-like movement was observed to move counter-clockwise around the center
of the cone in the rotating frame, as depicted by the tracks in Figure 19. From
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Figure 19: The set of tracks formed by particles which moved around the cone
of denser, salty water in the rotating frame. These tracks have been normalized
from video in which coordinates were measured from the top-left corner of the
frame, and are depicted in polar coordinates. Radius is measured in pixel units
relative to the size of the camera’s viewing angle. There are approximately 10
pixels to the cm in the recorded video. Several points were cleaned and removed
from the tracks as noise.

these measurements, it was possible to derive angular velocities for the dots
by first calculating an approximate angular velocity by averaging the angular
velocity between a point and its previous point, and the angular velocity between
a point and its following point. These values could then be multiplied by an
an estimate of the radius in order to obtain angular velocities. As the exact
radii were not known with certainty (due to an estimate of the ratio of pixels to
centimeters), error was introduced into the observed estimated velocities, given
in Figure 20.

4.3 Analysis of the Tracks

If the velocity of the liquid is assumed to be 0 at the bottom of the tank, it
is then possible to use the provided densities to estimate the angle of the cone
according to the density formulation of Margules Formula, Equation 19. This
includes additional error introduced by the error in the measurement of the two
densities, resulting in a plot with significant error bars (Figure 21). However,
about two-thirds of this error stems from the initial error in the ratio of pixels
to centimeters. Error bars are much improved if no error is assumed in this
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Figure 20: The observed velocities of particles which moved around the cone
of denser, salty water, plotted relative to their radius. Velocities are relative
to the rotating frame. Radius is measured in pixel units relative to the size of
the camera’s viewing angle. There are approximately 10 ± 2 pixels to the cm
in the recorded video, the error of which translates into error in the estimated
velocities. Points with negative or extremely high velocities have been cropped
from the output as noise.
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Figure 21: Estimated angle of the side of the cone of denser salty water derived
from the velocities in Figure 20 and using the densities given in Table 5. Al-
though the error bars are significant, it is still possible to see that the angle is
greatest at the points of greatest velocity, where angle decreases towards the
outside of the cone.

measurement (Figure 22).

We may compare these predicted angles with the actual angle of the cone, based
on several pictures we took of the cone during our experiment. Unfortunately,
due to a lack of clear metrics and few clear images, measuring the angle of the
cone is the most error-prone part of this experiment, as can be seen in the two
figures, Figure 23 and Figure 24.

In both images, the angle is observed to be nearly four times the greatest angle
estimated from the particle velocities. Even when errors in radial estimation are
included, the angle is still off by a factor of two. This discrepancy suggests that
there exists some unaccounted for error in these results. Although the angle
of the photograph in Figure 23 might suggest that the error might arise from
refraction from the water-air transition, the fact that Figure 24, which is taken
almost edge-on, has nearly the same profile suggests that this is not a reasonable
argument.

A more plausible contributing factor is based on our assumption that the bottom
of the liquid is stationary. Although not quantified in our experiment, this
assumption is not completely true. There is actually a slight counter-clockwise
flow near the bottom of the tank, due in part to the mixing and settling of
the salty water due to gravity. As this movement is opposite that observed on
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Figure 22: Estimated angle of the side of the cone of denser salty water derived
from the velocities in Figure 20 and using the densities given in Table 5, and
assuming no error in the estimated velocities.

the surface (which is counter-clockwise), the amount of shear is actually greater
than the observed surface movement would otherwise imply. However, cursory
visual estimates of the bottom-flow suggest that it comparatively slow, on the
order of millimeters per second. Thus, the bottom flow is relatively insignificant
compared to the velocities on the order of 10 cm/s observed at the surface. Thus,
another explanation is warranted.

A more plausible argument for this discrepancy may lie in another assump-
tion we have made about thermal wind. In constructing the the thermal wind
equation, we assumed that geostrophic motion held. Thus, the thermal wind
equation itself should only hold for movement in which the Rossby number
Ro � 1. If the movement of the particles was observed to obey gradient wind
or cyclostrophic flow (i.e. Ro ' 1), the assumptions underpinning the applica-
tion of the thermal wind equation would no longer hold, as the observed speed
would be less than the geostrophic speed due to the influence of cyclostrophic
motion. A simple analysis of the Rossby number at each radius (Figure 25), cal-
culated as Ro = ω

f reveals that this is the case near the point of greatest slope
and greatest velocity, potentially explaining the discrepancy in our observed
velocities.
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Figure 23: A photo of the cone observed in the experiment and, although not
entirely clear, the estimated boundary of the cone. The angle of the cone at its
steepest point is about 60◦, or about 1.05 radians.
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Figure 24: A photo of the cone observed in the experiment as observed from
another angle and, although not entirely clear, the estimated boundary of the
cone. The angle of the cone at its steepest point is about 60◦, or about 1.05
radians.
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Figure 25: Rossby numbers of points as derived from angular velocity at each
point and the rotational rate of the tank (f = 2ω = 2.545). Rossby number is
on the order of one near the point of greatest slope, suggesting that the thermal
wind equation does not hold at that point.

5 Conclusions

Despite the failure of the thermal wind equation to hold at the point of greatest
slope in the lab experiment, the creation of a visible vortex and a surface flow in
the rotating frame supports the theory of thermal wind in a qualitative sense.
In a quantitative sense, however, the thermal wind equation appears to be
more readily demonstrated through global meteorological and climatological
data, where geostrophic flow is more easily assumed. Indeed, some of the most
compelling evidence in support of the thermal wind lies in the existence of the jet
stream and its behavior which is closely predicted by the thermal wind equation.

As the jet stream plays a significant role in global weather patterns in the
middle-latitudes, an understanding of the thermal wind proves critical to an
improved understanding of the mechanics underpinning global-scale meteorol-
ogy. However, the relevance of thermal wind suggests that understanding of a
more fundamental component is needed to fully grasp the mechanics of meteo-
rological phenomena: that of temperature.

Temperature clearly plays a role in the creation of weather phenomena, if only
for its relation to the jet stream and its relationship to the movement of indi-
vidual storms in a squall line. Even so, knowledge of the thermal wind does
not reveal how the temperature gradients form in the atmosphere. How does
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temperature evolve over time? Does temperature have any other effects in day-
to-day meterological phenomena? Only with answers to these questions can we
gain a better understanding of how the jet stream and thermal wind directly
impact our lives.
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