Weather \& Climate
 Laboratory
 Report 2

FRONTS

Bill McKenna
wdmc@mit

Calculation Set 1:
Experiments in the Tank

Dense fluid forms a stable dome along tank's bottom. Steepest angle of the fluid interface can be visually approximated.

Less dense fluid spins cyclonically with the tank. More dense fluid exhibits weaker anticyclonic currents.

Particle	Rot. radius	Period	Velocity
Blue	2.96 cm	1.3 sec	$14.3 \mathrm{~cm} / \mathrm{sec}$
Green	4.03 cm	1.5 sec	$16.9 \mathrm{~cm} / \mathrm{sec}$
Orange	9.5 cm	2.5 sec	$23.6 \mathrm{~cm} / \mathrm{sec}$
Red	13.4 cm	5.2 sec	$16.4 \mathrm{~cm} / \mathrm{sec}$
	24.2 cm	25 sec	$6.08 \mathrm{~cm} / \mathrm{sec}$

Upper fluid's current speed peaks in the middle radii, corresponding with the steepest slope (largest gradient) of the frontal surface between differing fluid densities.

Margules' formula offers a connection between this angle, the rotation rate of the system, fluid densities, and current velocities.

$$
v_{2}-v_{1}=\frac{g^{\prime} \tan \gamma}{f}
$$

$$
g^{\prime}=g \frac{\left(\rho_{2}-\rho_{1}\right)}{\rho_{2}} \quad f=2 \Omega
$$

The values set or obtained for our experiment are as follows.
$\mathrm{v}_{2}={ }^{\sim} 0 \mathrm{~cm} / \mathrm{S}$ (difficult to measure, presumable as 0 or even a negative number)
$\mathrm{v}_{1}=23.6 \mathrm{~cm} / \mathrm{s}$ (peak measured speed of a mid-radii particle on prior page)
$\rho_{2}=1.05 \mathrm{~g} / \mathrm{cm}^{3}$
(this number is potentially a measurement from before the water was released into the lighter fluid, so it is also worth testing 1.025 , a measurement obtained from another group's dome)
$\rho_{1}=1.005 \mathrm{~g} / \mathrm{cm}^{3}$ (the less dense fluid)
$\mathrm{g}=980 \mathrm{~cm} / \mathrm{s}^{2}$
$\mathrm{f}=1528$ millif $=1.528 \mathrm{sec}^{-1}$
ALTERNATE CALCULATION
$g^{\prime}=980^{*}(1.05-1.005)$
$\mathrm{g}^{\prime}=\quad 42 \mathrm{~cm} / \mathrm{s}^{2} \quad$?or?
$19.12 \mathrm{~cm} / \mathrm{s}^{2}$
$-23.6[\mathrm{~cm} / \mathrm{s}]=\frac{\mathrm{g}^{\mathrm{s}} \tan \mathrm{y}}{\mathrm{f}}=\stackrel{\mathrm{g}^{\mathrm{g}} \tan \mathrm{y}}{1.528}\left[\mathrm{sec}^{-1}\right]$
$-36.1\left[\mathrm{~cm} / \mathrm{s}^{2}\right]=\mathrm{g}^{6} \tan y$

$$
\mathrm{g}^{\prime}=42
$$

$\tan y=\quad$ 505 \quad ?or? $y=40.68^{\circ}$
Observed angle $36.95^{\circ} .37 / 40.68=.91$ or $40.68 / 37=1.099$, within $\sim 10 \%$ accuracy

$$
37 / 62.09=.60 \text { or } 62.09 / 37=1.68
$$

Reverse calculation $\mathrm{w} / 37^{\circ}$ to obtain the necessary density difference $\mathrm{p}_{2}-\mathrm{p}_{1}$
with $p_{1}=1.005$ would suggest a difference of $.0517 \mathrm{~g} / \mathrm{cm}^{3}$
Further calculations initialized with lower particle velocity $16.4 \mathrm{~cm} / \mathrm{s}$ predicts a lower slope of approximately 30.8° degrees, which coincides with the dome's visible decrease in slow both towards and away from the middle radii.

Calculation Set 2:
Atmospheric Data Analysis

THEORY

Margule's formula has an application for atmospheric cases, using ideal gas relation.
The formula may be simplified in cases where $\mathrm{T}_{1} / \mathrm{T}_{2}={ }^{\sim} 1$

a temperature/wind plot of the - 170 longitudinal

(useful later)

A closer version of this graph with visible data labels is available on the following page.

$$
\tan (\mathrm{y})=\frac{\mathrm{f}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)}{\mathrm{g}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) / \mathrm{T}}
$$

$\tan (\mathrm{y})=$	$\left(1.454^{*} 10^{-4}\right) *(35)$
	(9.8)(19) / (245.5)
$\tan (\mathrm{y})=$	$\left(1.454^{*} 10^{-4}\right) *(8592.5)$
	(186.2)
$\tan (\mathrm{y})=$	$\left(1.454^{*} 10^{-4}\right) *(46.15)$
$\tan (\mathrm{y})=$	0.0067

$$
\begin{aligned}
& \mathrm{f}=1.454 \times 10^{-4} \\
& \mathrm{v}_{2}=35 \mathrm{~m} / \mathrm{s} \\
& \mathrm{v}_{1}=70 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~T}_{1}=255 \mathrm{~K} \\
& \mathrm{~T}_{2}=236 \mathrm{~K} \\
& \mathrm{~T}_{\text {mean }}=245.5
\end{aligned}
$$

This plot shows the height of the 500 mb pressure surface for the displayed latitudes and longitudes. Since the point about which we measured our horizontal temperature difference \& vertical velocity difference was @-170W, 45N, this position is marked and the height is used in an in-atmosphere tangential slope calculation.

A graph of air's potential temperature will more clearly display the sort of temperature w.r.t. density relationship that is exhibited in the dome of denser fluid formed during our controlled, constrained tank experiments.

Viewing direct plots of temperature over the -170 longitude, we observe that the area of greatest wind shear occurs in direct relation to where the temperature gradient is steepest.

