## LECTURE 2. IMPEDANCE MATCHING

2.1. Main principles
(conjugate matching, maximum delivered power)
2.2. Smith chart
2.3. Maitching with lumped elements
2.4. Matching with transmission lines
2.5. Determination of active device impedances
2.6. Types of transmission lines (coaxial line, stripline,microstrip line,slotline, coplanar waveguide)

### 2.1. Main principles

Impedance matching is necessary to provide maximum delivery of RF power to load from source


$$
\begin{aligned}
& Z_{S}=R_{S}+j X_{S} \\
& \text { source impedance }
\end{aligned}
$$

$$
z_{L}=R_{L}+j X_{L}-
$$

load impedance
$P=\frac{1}{2} V_{\text {in }}^{2} \operatorname{Re}\left(\frac{1}{Z_{\mathrm{L}}}\right)=\frac{1}{2} V_{\mathrm{S}}^{2}\left|\frac{Z_{\mathrm{L}}}{Z_{\mathrm{S}}+Z_{\mathrm{L}}}\right|^{2} \operatorname{Re}\left(\frac{1}{Z_{\mathrm{L}}}\right) \quad$ - power delivered to load
( substitution of real and imaginary parts of source and load impedances)
$P=\frac{1}{2} V_{\mathrm{S}}^{2} \frac{R_{\mathrm{L}}}{\left(R_{\mathrm{S}}+R_{\mathrm{L}}\right)^{2}+\left(X_{\mathrm{S}}+X_{\mathrm{L}}\right)^{2}}$

- power delivered to load as function of circuit parameters
2.1. Main principles

For fixed source impedance $Z_{S}$, to maximize output power

$$
\begin{gathered}
\frac{\partial P}{\partial R_{\mathrm{L}}}=0 \quad \frac{\partial P}{\partial X_{\mathrm{L}}}=0 \\
P=\frac{1}{2} V_{\mathrm{S}}^{2} \frac{R_{\mathrm{L}}}{\left(R_{\mathrm{S}}+R_{\mathrm{L}}\right)^{2}+\left(X_{\mathrm{S}}+X_{\mathrm{L}}\right)^{2}}
\end{gathered}
$$

$$
\left\{\begin{array}{c}
R_{\mathrm{S}}^{2}-R_{\mathrm{L}}^{2}+\left(X_{\mathrm{L}}+X_{\mathrm{S}}\right)^{2}=0 \\
X_{\mathrm{L}}\left(X_{\mathrm{L}}+X_{\mathrm{S}}\right)=0 \\
\end{array}\right.
$$

$$
\left\{\begin{array}{c}
R_{\mathrm{S}}=R_{\mathrm{L}} \\
X_{\mathrm{L}}=-X_{\mathrm{S}}
\end{array} \quad Z_{\mathrm{L}}=Z_{\mathrm{S}}^{*}\right.
$$

- impedance conjugate matching conditions

$$
P=\frac{V_{\mathrm{S}}^{2}}{8 R_{\mathrm{S}}} \quad \begin{gathered}
\text { - maximum power } \\
\text { delivered to load }
\end{gathered}
$$

$$
\left\{\begin{array}{cc}
G_{\mathrm{S}}=G_{\mathrm{L}} \\
B_{\mathrm{L}}=-B_{\mathrm{S}} & Y_{\mathrm{L}}=Y_{\mathrm{S}}^{*}
\end{array}\right.
$$

- admittance conjugate matching conditions

$$
W_{\mathrm{L}}=W_{\mathrm{s}}^{*}
$$

- immitance conjugate matching conditions (Z or Y)


### 2.2. Smith chart

Smith chart represents relationships between load impedance $Z$ and reflection coefficient $\Gamma$

$$
\frac{Z}{Z_{0}}=\frac{1+\Gamma}{1-\Gamma}
$$

with real and imaginary parts of

$$
\frac{R}{Z_{0}}+j \frac{X}{Z_{0}}=\frac{1+\Gamma_{\mathrm{r}}+j \Gamma_{\mathrm{i}}}{1-\Gamma_{\mathrm{r}}-j \Gamma_{\mathrm{i}}} \quad \Longleftrightarrow \quad \frac{Z}{Z_{0}}=\frac{R}{Z_{0}}+j \frac{X}{Z_{0}} \quad \Gamma=\Gamma_{\mathrm{r}}+j \Gamma_{\mathrm{i}}
$$

Equating real and imaginary parts:

$$
\left(\Gamma_{\mathrm{r}}-\frac{R}{R+Z_{0}}\right)^{2}+\Gamma_{\mathrm{i}}^{2}=\left(\frac{Z_{0}}{R+Z_{0}}\right)^{2}
$$

- constant-( $R / Z_{0}$ ) circles: family of circles centered at points $\Gamma_{r}=R /\left(R+Z_{0}\right)$ and $\Gamma_{i}=0$ with radii of $Z_{0}\left(R+Z_{0}\right)$

$$
\left(\Gamma_{\mathrm{r}}-1\right)^{2}+\left(\Gamma_{\mathrm{i}}-\frac{Z_{0}}{X}\right)^{2}=\left(\frac{Z_{0}}{X}\right)^{2}
$$

- constant-(X/Z ${ }_{0}$ ) circles: family of circles centered at points $\Gamma_{r}=1$ and $\Gamma_{i}=Z_{0} / X$ with radii of $Z_{0} / X$

In admittance form:

$$
\left(\Gamma_{\mathrm{r}}+\frac{G}{G+Y_{0}}\right)^{2}+\Gamma_{\mathrm{i}}^{2}=\left(\frac{Y_{0}}{G+Y_{0}}\right)^{2} \quad\left(\Gamma_{\mathrm{r}}+1\right)^{2}+\left(\Gamma_{\mathrm{i}}+\frac{Y_{0}}{B}\right)^{2}=\left(\frac{Y_{0}}{B}\right)^{2}
$$



At Z Smith chart, curve from point $A$ to pint $C$ indicates impedance transformation from resistance 25 Ohm to inductive impedance (25 +j25) Ohm



At combined Z-Y Smith chart:

Z Smith chart provides transformation from point A to point $C$

Y Smith chart provides transformation from point $C$ to point D
2.3. Matching with Iumped elements

L-transformer


Impedance parallel and series circuits


Equivalence when $z_{1}=z_{2}: \quad R_{2}+j X_{2}=\frac{R_{1} X_{1}^{2}}{R_{1}^{2}+X_{1}^{2}}+j \frac{R_{1}^{2} X_{1}}{R_{1}^{2}+X_{1}^{2}}$ I

$$
R_{1}=R_{2}\left(1+Q^{2}\right) \quad X_{1}=X_{2}\left(1+Q^{-2}\right)
$$

$$
\text { where } Q=R_{1}| | X_{1}\left|=\left|X_{2}\right|\right| R_{2}
$$

- quality factor equal for series and parallel circuits
2.3. Matching with lumped elements

For conjugate matching with reactance compensation :


Input impedance $Z_{\text {in }}$ will be resistive and equal to $R_{1}$ when :

$$
\left\{\begin{array}{c}
\left|X_{1}\right|=R_{1} / Q \\
\left|X_{2}\right|=R_{2} Q \\
Q=\sqrt{R_{1} / R_{2}-1}
\end{array}\right.
$$

where $Q=R_{1}| | X_{1}\left|=\left|X_{2}\right|\right| R_{2}$

- quality factor equal for series and parallel circuits
2.3. Marching with lumped elements

2.3. Marching with lumped elements

Connection of two L-transformers


T- transformer

- for each L-transformer, resistances $R_{1}$ and $R_{2}$ are transformed to some intermediate resistance $R_{0}$ with value of $R_{0}<\left(R_{1}, R_{2}\right)$
- for same resistances $R_{1}$ and $R_{2}, T$ - and $\pi$-transformers have better filtering properties, but narrower bandwidth compared with single L-transformer


## $\pi$-type matching circuits



$$
\omega C_{1}=Q_{1} / R_{1} \quad \omega C_{2}=Q_{2} / R_{2}
$$

$$
\omega L_{3}=R_{1}\left(Q_{1}+Q_{2}\right) /\left(1+Q_{1}^{2}\right)
$$

$$
Q_{2}=\sqrt{\frac{R_{2}}{R_{1}}\left(1+Q_{1}^{2}\right)-1} \quad Q_{1}^{2}>\frac{R_{1}}{R_{2}}-1
$$

- widely used as output matching circuit to provide

Class B operation with sinusoidal collector voltage

- useful for interstage matching when active device input and output capacitances can be easily incorporated inside matching circuit
- provides significant level of harmonic suppression
- with additional series LCfilter, can be directly applied to realize Class E mode with
shunt capacitance
2.3. Matching with lumped elements
$\pi$-type matching circuits


$$
\begin{gathered}
\omega L_{1}=R_{1} / Q_{1} \quad \omega C_{2}=Q_{2} / R_{2} \\
\omega C_{3}=\left(1+Q_{2}^{2}\right) /\left[R_{2}\left(Q_{1}-Q_{2}\right)\right] \\
Q_{2}=\sqrt{\frac{R_{2}}{R_{1}}\left(1+Q_{1}^{2}\right)-1} \quad Q_{1}^{2}>\frac{R_{1}}{R_{2}}-1
\end{gathered}
$$



$$
\begin{gathered}
\omega L_{1}=R_{1} / Q_{1} \quad \omega C_{2}=Q_{2} / R_{2} \\
\omega L_{3}=R_{2}\left(Q_{2}-Q_{1}\right) /\left(1+Q_{2}^{2}\right), \\
Q_{1}=\sqrt{\frac{R_{1}}{R_{2}}\left(1+Q_{2}^{2}\right)-1} \quad Q_{2}^{2}>\frac{R_{2}}{R_{1}}-1
\end{gathered}
$$

2.3. Matching with lumped elements

T-type matching circuits


$$
Q_{1}=\sqrt{\frac{R_{2}}{R_{1}}\left(1+Q_{2}^{2}\right)-1} \quad Q_{2}^{2}>\frac{R_{1}}{R_{2}}-1
$$

- widely used as input, interstage and output matching circuits in high power amplifiers
- can incorporate active device lead and bondwire inductances within matching circuit
- provides significant level of harmonic suppression
- can be directly applied to realize Class F mode providing high impedances at harmonics
2.3. Matching with lumped elements

T-type matching circuits


$$
\begin{gathered}
\omega L_{1}=Q_{1} R_{1} \quad \omega L_{2}=Q_{2} R_{2} \\
\omega C_{3}=\left(Q_{1}+Q_{2}\right) /\left[R_{2}\left(1+Q_{2}^{2}\right)\right] \\
Q_{1}=\sqrt{\frac{R_{2}}{R_{1}}\left(1+Q_{2}^{2}\right)-1} \quad Q_{2}^{2}>\frac{R_{1}}{R_{2}}-1
\end{gathered}
$$



$$
\begin{aligned}
& \omega C_{1}=1 /\left(R_{1} Q_{1}\right) \quad \omega L_{2}=Q_{2} R_{2} \\
& \omega L_{3}=R_{2}\left(1+Q_{2}^{2}\right) /\left(Q_{1}-Q_{2}\right),
\end{aligned}
$$

$$
Q_{2}=\sqrt{\frac{R_{1}}{R_{2}}\left(1+Q_{1}^{2}\right)-1} \quad Q_{1}^{2}>\frac{R_{2}}{R_{1}}-1
$$

2.3. Matching with lumped elements

Matching design example


For $R_{\text {in }}=0.9$ Ohm and $R_{1}=50$ Ohm:
$R_{3}=3.5 \mathrm{Ohm}, R_{2}=13 \mathrm{Ohm}$

$$
Q=1.7
$$

Two low-pass and one high-pass L-sections
2.4. Matching with transmission lines

Transmission-line transformer


Impedance at input of loaded transmission line:

$$
\frac{Z_{\text {in }}}{Z_{0}}=\frac{1+\Gamma_{\mathrm{L}} \exp (-2 j \theta)}{1-\Gamma_{\mathrm{L}} \exp (-2 j \theta)}
$$

Input impedance for loaded transmission line with electrical length of $\theta$, normalized to its characteristic impedance $Z_{0}$, can be found by rotating this impedance point clockwise by $2 \theta$ around Smith chart center point with radius $\left|\Gamma_{\mathrm{L}}\right|$

$$
\frac{Z_{\mathrm{L}}}{Z_{0}}=\frac{1+\Gamma_{\mathrm{L}}}{1-\Gamma_{\mathrm{L}}} \quad \square \quad Z_{\mathrm{in}}=Z_{0} \frac{Z_{\mathrm{L}}+j Z_{0} \tan \theta}{Z_{0}+j Z_{\mathrm{L}} \tan \theta}
$$

For conjugate matching with reactance compensation when $Z_{S}=Z_{i n}{ }^{*}$ :

For quarter-wave transmission line with $\theta=90^{\circ}$ :

$$
Z_{\mathrm{in}}=Z_{0}^{2} / Z_{\mathrm{L}}
$$

$$
\begin{gathered}
Z_{0}=\sqrt{\frac{R_{\mathrm{S}}\left(R_{\mathrm{L}}^{2}+X_{\mathrm{L}}^{2}\right)-R_{\mathrm{L}}\left(R_{\mathrm{S}}^{2}+X_{\mathrm{S}}^{2}\right)}{R_{\mathrm{L}}-R_{\mathrm{S}}}} \\
\theta=\tan ^{-1}\left(Z_{0} \frac{R_{\mathrm{S}}-R_{\mathrm{L}}}{R_{\mathrm{S}} X_{\mathrm{L}}-X_{\mathrm{S}} R_{\mathrm{L}}}\right)
\end{gathered}
$$

2.4. Matching with transmission lines

For pure resistive source impedance $Z_{S}=R_{S}$ :

$$
X_{\mathrm{L}} Z_{0}\left(1-\tan ^{2} \theta\right)+\left(Z_{0}^{2}-X_{\mathrm{L}}^{2}-R_{\mathrm{L}}^{2}\right) \tan \theta=0
$$

For electrical length $\theta=45^{\circ}$

$$
Z_{0}=\left|Z_{\mathrm{L}}\right|=\sqrt{R_{\mathrm{L}}^{2}+X_{\mathrm{L}}^{2}}
$$

$$
R_{\mathrm{S}}=R_{\mathrm{L}} \frac{Z_{0}}{Z_{0}-X_{\mathrm{L}}}
$$

Any load impedance can be transformed into real source impedance using $\lambda / 8$-transformer whose impedance is equal to magnitude of load impedance

To match any source impedance $Z_{S}$ and load impedance $Z_{L}$, matching circuit can be designed with two $\lambda / 8$ transformers and one $\lambda / 4$-transformer


Lumped and transmission line single-frequency equivalence

2.4. Matching with transmission lines

L-type transformer


Real and imaginary parts of

$$
Z_{\text {in }}=Z_{0} \frac{R_{2}+j Z_{0} \tan \theta}{Z_{0}+j R_{2} \tan \theta}
$$

$$
R_{\mathrm{in}}=Z_{0}^{2} R_{2} \frac{1+\tan ^{2} \theta}{Z_{0}^{2}+\left(R_{2} \tan \theta\right)^{2}}
$$

Matching for any ratio of $R_{1} / R_{2}$

$$
1
$$

$$
X_{\text {in }}=Z_{0} \tan \theta \frac{Z_{0}^{2}-R_{2}^{2}}{Z_{0}^{2}+\left(R_{2} \tan \theta\right)^{2}}
$$

Conjugate matching:

$$
R_{\mathrm{in}}-j X_{\mathrm{in}}=\frac{R_{1} X_{1}^{2}}{R_{1}^{2}+X_{1}^{2}}+j \frac{R_{1}^{2} X_{1}}{R_{1}^{2}+X_{1}^{2}}
$$

$$
\begin{aligned}
& R_{1}=R_{\text {in }}\left(1+Q^{2}\right) \\
& X_{1}=-X_{\text {in }}\left(1+Q^{-2}\right)
\end{aligned}
$$

$$
\text { where } X_{1}=-1 / \omega C
$$

where $X_{1}=-1 / \omega C$

$$
\begin{gathered}
C=Q / \omega R_{1} \\
\frac{R_{1}}{R_{2}}=\frac{1+\left(\frac{Z_{0}}{R_{2}}-\frac{R_{2}}{Z_{0}}\right)^{2} \sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta+\left(R_{2} / Z_{0}\right)^{2} \sin ^{2} \theta}
\end{gathered}
$$

Second implicit equation : numerical or graphical solution
2.4. Marching with transmission lines

Matching design example
470-860 MHz 150 W LDMOSFET power amplifier:
three-section input matching


$$
Z_{\text {in }}=(1.7+j 1.3) \Omega
$$

$$
\begin{aligned}
& f_{\mathrm{c}}=\sqrt{470 \cdot 860}=635 \mathrm{MHz} \\
& \mathbf{Q}=635 /(860-470)=1.63
\end{aligned}
$$

$$
\frac{R_{1}}{R_{2}}=\frac{R_{2}}{R_{3}}=\frac{R_{3}}{R_{\text {in }}}
$$

For $R_{\text {in }}=1.70 \mathrm{Om}$ and $R_{1}=50$ Ohm:

$$
R_{3}=5.25 \mathrm{Ohm}, R_{2}=16.2 \mathrm{Ohm}
$$

For $Z_{01}=Z_{02}=Z_{03}=50 \mathrm{Ohm} \Rightarrow$ $\theta_{1}=30^{\circ}, \theta_{2}=7.5^{\circ}, \theta_{3}=2.4^{\circ}$

For $\theta_{1}=\theta_{2}=\theta_{3}=30^{\circ} \Rightarrow Z_{01}=50 \mathrm{Ohm}, Z_{02}=15.7 \mathrm{Ohm}, Z_{03}=5.1 \mathrm{Ohm}$
2.5. Determination of active device impedances

Analytical evaluation
Output resistance in Class B: $\quad R_{\text {out }}^{(\mathrm{B})}=\frac{\left(V_{\mathrm{cc}}-V_{\text {sat }}\right)^{2}}{2 P_{\text {out }}}$
where $V_{\text {sat }}$ is defined from load line analysis

Output capacitance :

$$
\begin{array}{ll}
C_{\text {out }}=C_{\mathrm{c}} & - \text { bipolar device } \\
C_{\mathrm{out}}=C_{\mathrm{ds}}+C_{\mathrm{gd}} & - \text { FET device }
\end{array}
$$

Large-signal collector capacitance

$$
C_{\mathrm{c}}\left(V_{\mathrm{c}}\right) / C_{\mathrm{c}}\left(E_{\mathrm{c}}\right)
$$

$$
\begin{aligned}
& C_{\mathrm{c}}=C_{\mathrm{co}}\left(1+\frac{v_{\mathrm{c}}}{\varphi}\right)^{\gamma} \begin{array}{c}
\text { - junction } \\
\text { capacitance }
\end{array} \\
& v_{\mathrm{c}}=E_{\mathrm{c}}+V_{\mathrm{c}} \sin \omega t \Rightarrow i_{\mathrm{c}}=C_{\mathrm{c}}\left(v_{\mathrm{c}}\right) \frac{d v_{\mathrm{c}}}{d t} \\
& C_{\mathrm{c} 1}=\frac{I_{\mathrm{c} 1}}{\omega V_{\mathrm{c}}}=\frac{C_{\mathrm{c}}\left(E_{\mathrm{c}}\right)^{2 \pi}}{\pi} \int_{0}^{2 \pi} \frac{\cos ^{2} \omega t}{(1+\xi \sin \omega t)^{2}} d(\omega t) \\
& \begin{array}{|l|l|l|l|}
\hline & & & \\
\hline
\end{array} \\
& \underset{\text { where }}{\text { where }} \quad \xi=V_{c} /\left(E_{c}+\varphi\right)
\end{aligned}
$$

2.5. Determination of active device impedances S -parameter measurements


To define $Z_{\text {out }}$, source with nominal power is placed instead of load, and load becomes source
2.5. Determination of active device impedances

## Power measurements



- tune input impedance transformer to maximize incident power,
I.e., power delivery from source to active device
- tune output impedance transformer to maximize output power delivered to load
- measure transformer impedances seen from the active device input and output, I.e., $Z_{\mathrm{S}}$ and $Z_{\mathrm{L}}$
- calculate input and output active device impedances according to

$$
Z_{\text {in }}=Z_{\mathrm{S}}^{*} \quad Z_{\text {out }}=Z_{\mathrm{L}}^{*}
$$

### 2.6. Types of transmission lines

Coaxial line


> Main wave type for coaxial line - transverse electromagnetic TEM wave

$$
Z_{0}=\frac{\eta}{2 \pi} \ln \left(\frac{b}{a}\right)
$$

- characteristic impedance
- wave impedance of lossless line equal to intrinsic medium impedance
- widely used for hybrid high power applications: combiners, dividers, transformers
2.6. Types of transmission lines


## Stripline



$$
Z_{0}=\frac{30 \pi}{\sqrt{\varepsilon_{\mathrm{r}}}} \frac{b}{W_{\mathrm{e}}+0.441 b}
$$

- characteristic impedance

$$
\frac{W_{\mathrm{e}}}{b}=\frac{W}{b}-\left\{\begin{array}{cc}
0 & \text { for } \frac{W}{b}>0.35 b \\
\left(0.35-\frac{W}{b}\right)^{2} & \text { for } \frac{W}{b} \leq 0.35 b
\end{array}\right.
$$

- provides lower characteristic impedance
2.6. Types of transmission lines

Microstrip line


$$
Z_{0}=\frac{120 \pi}{\sqrt{\varepsilon_{\mathrm{r}}}} \frac{h}{W} \frac{1}{1+1.735 \varepsilon_{\mathrm{r}}^{-0.0724}(W / h)^{-0.836}}
$$

- characteristic impedance

2.6. Types of transmission lines


## Slotline



Characteristic impedance


Coplanar waveguide


- provide higher characteristic impedance
- widely used for hybrid and monolithic integrated circuits

