Radar Basics

- Electromagnetic spectrum
- Radio Waves and Propagation
- Antennas
- Radar fundamentals
- Radar targets and cross-sections
- Radar equation
- Doppler
- Volume scattering

Asti Bhatt, MIT Haystack Observatory
AMISR Summer School 2010

Radio Spectrum

Rac: M Maves

(a) $y(x, t)$ versus x at $t=0$

(b) $y(x, t)$ versus t at $x=0$

TEM Waves

Polarization $\overline{\mathrm{E}}=\left(\mathrm{E}_{1} \hat{x}+\mathrm{E}_{2} \hat{y} \mathrm{e}^{j \varphi}\right) \mathrm{e}^{j(\omega \mathrm{t}-k x)}$ $\alpha=\tan ^{-1} \mathrm{E}_{y} / \mathrm{E}_{x}$
Linear: $\psi=0, \alpha=\mathrm{E}_{2} / \mathrm{E}_{1}$
Circular: $\psi=\pi / 2, \alpha=\mp(\omega t-k x)$
Electromagnetic waves propagate

Propagation Medium

Radio waves are affected by the medium they propagate in. Effects dependent on the refractive index of the medium and wave frequency

Radio waves are also reflected off of the surface

- Atmospheric attenuation

Attenuation usually measured in dB

Example:
SNR $(\mathrm{CB})=10 \log _{10}\left\{\frac{\text { Signal Poner }}{\text { Noise Poner }}\right\}$

$$
\begin{array}{ll}
0 \mathrm{~dB} & =\text { Factor of } 1 \\
3 \mathrm{~dB} & =\text { Factor of } 2 \\
10 \mathrm{~dB} & =\text { Factor of } 10 \\
100 \mathrm{~dB} & =\text { Factor of } 20
\end{array}
$$

Antennas

Most basic form of antennas - a wire element with a time varying current flowing in it

Horn antenna

Parabolic dish Reflector antenna

Gain and Effective Area

Gain $=\frac{\text { Maximum Power Density }}{\text { Power delivered toAntearma } / 4 \pi \mathrm{R}^{2}}$

$$
\begin{gathered}
\mathrm{G}=\frac{4 \pi}{\lambda^{2}} \mathrm{Aeff} \quad \mathrm{~A} e f f \leq \mathrm{Aph} \boldsymbol{\mathrm { C }} \mathrm{~s} \\
\operatorname{Pr}[w]=\operatorname{Pinc}\left[w / \mathrm{m}^{2}\right] \times \operatorname{Aeff}\left[\mathrm{m}^{2}\right]
\end{gathered}
$$

For aperture antennas, Aeff/Aphys ~ 0.5 to 0.7

Radiation Pattern

RAdio Detection And Ranging

Radar equation

Radar cross section tells us about the target properties

It is the effective target cross section as seen by the radar

What the radar transmits: Pulses and waves

Cycles in a pulse.
PFISR frequency $=449 \mathrm{MHz}$
Long pulse length $=480 \mu \mathrm{~s}$
\# of cycles $=215520$!

Radar waveforms modulate the waves with on-off sequence

Pulsed Radar

Duty cycle = Pulse Length/IPP (10\%)
Average power $=$ Peak power \times Duty cycle (100 kW)
PRF (Pulse Repetition Frequency) $=1 /$ IPP $(1 \mathrm{kHz})$
Duty cycle for a CW (continuous wave) radar 100\%

Range Resolution

Range resolution is set by pulse length

Pulse length $=\tau_{p}$, Range resolution $=c \tau_{p} / 2$ for a single target.

Maximum unambiguous range

$$
\text { MUR }=c^{*} \text { IPP/2 }
$$

Pulse duration vs. Range resolution

Pulse Duration	Range Resolution
0.1 nsec	1.5 cm
1.0 nsec	15 cm
10 nsec	1.5 m
100 nsec	15 m
$1 \mu \mathrm{sec}$	150 m
$10 \mu \mathrm{sec}$	1.5 km
$100 \mu \mathrm{sec}$	15 km
1 msec	150 km

Moving target - Doppler

Positive Doppler = target moving toward the observer

$$
f^{\prime}=f \pm 2 v / \lambda
$$

Doppler shift Negative Doppler = target moving away from the observer

Doppler shift frequency

Tx signal: $\cos \left(2 \pi f_{o} \mathrm{t}\right)$
Return from a moving target: $\cos \left[2 \pi f_{o}(\mathrm{t}+2 \mathrm{R} / \mathrm{c})\right]$
If target is moving with a constant velocity: $\mathrm{R}=\mathrm{R}_{o}+v_{o} \mathrm{t}$
then,
Return: $\cos [2 \pi(f_{o}+\underbrace{f_{o} 2 v_{o} / c}_{\uparrow}) \mathrm{t}+2 \pi f_{o} \mathrm{R}_{o} / \mathrm{c}]$
Doppler frequency:
$-2 f_{o} \nu_{o} / \mathrm{c}=-2 v_{o} / \lambda_{o}$

Resolving Doppler

Tx signal: $\cos \left(2 \pi f_{o} t\right)$
Doppler shifted: $\cos \left[2 \pi\left(f_{o}+f_{D}\right) \mathrm{t}\right]$
Multiply by $\cos \left(2 \pi f_{o} \mathrm{t}\right)->$ Low pass filter $->\cos \left(2 \pi f_{D} \mathrm{t}\right)$
BUT, the sign of f_{D} is lost (cosine is an even function)
So, instead use
$\exp \left(j 2 \pi f_{D} \mathrm{t}\right)=\cos \left(2 \pi f_{D} \mathrm{t}\right)+j \sin \left(2 \pi f_{D} \mathrm{t}\right)$
Generate this signal by mixing cos and sin via two oscillators (same frequency, 90° out of phase)

Components are called I (In phase) and Q (Quadrature): $\operatorname{Aexp}\left(j 2 \pi f_{D} \mathrm{t}\right)=\mathrm{I}+j \mathrm{Q}$

I/Q Demodulation

Reference signal from synchronizer

$R x-90^{\circ}$ out of phase signal

In phase (I):

$$
\begin{aligned}
\operatorname{Pr}(\mathrm{t}) \cos \left(\omega_{\mathrm{c}} \mathrm{t}\right) & =\mathrm{a}(\mathrm{t}) \cos \left(\phi(\mathrm{t})+\omega_{\mathrm{t}} \mathrm{t}\right) \cos \left(\omega_{\mathrm{c}} \mathrm{t}\right) \\
& =\mathrm{a}(\mathrm{t})(1 / 2) \cos \left(\phi(\mathrm{t})+2 \omega_{\mathrm{c}} \mathrm{t}\right)+\cos (\phi(\mathrm{t}))
\end{aligned}
$$

Quadrature (Q):
filtered

$$
\begin{aligned}
\operatorname{Pr}(t) \cos \left(\omega_{c} t\right) & =a(t) \cos \left(\phi(t)+\omega_{0} t\right) \sin \left(\omega_{c} t\right) \\
& =a(t)(1 / 2)--\sin \left(\phi(t)+2 \omega_{c} t\right)+\sin (\phi(t))
\end{aligned}
$$

I and Q together give:
$\operatorname{Sr}(\mathrm{t})=\mathrm{a}(\mathrm{t}) \mathrm{e}^{\mathrm{j}(\mathrm{t}(\mathrm{t}}$
So, the received signal is a time series of complex numbers

I/Q Demodulation

Pulsed Doppler Radar system

So, a pulsed Doppler radar not only detects the target location, but also observes the target movement

Hard targets vs. Soft targets

$$
\begin{aligned}
& \Omega \Delta \mathrm{R} \\
& V=\Omega R^{2} \Delta R \\
& G=\frac{4 \pi}{\lambda^{2}} A=\frac{4 \pi}{\Omega}
\end{aligned}
$$

$P_{r}=\frac{P_{t} G^{2} \lambda^{2} \sigma}{(4 \pi)^{3} R^{4}}$

$$
P_{r}=\frac{P_{t} A \sigma_{v} \Delta R}{4 \pi R^{2}}
$$

Volume scattering - Ionosphere

- Volume scattering cross section σ_{v} has area/volume units
- Signal is proportional to range resolution
- What about the ionosphere ?
- Cross section of a single electron $=10^{-28} \mathrm{~m}^{2}$
- Cross section of a bunch of electrons in a 10 km^{3} volume in the ionosphere assuming electron density $=10^{12} / \mathrm{m}^{3}$, is $10^{10} \times 10^{12} \times 10^{-28}$ $=10^{-6} \mathrm{~m}^{2}$!!)
- CAN be measured by an incoherent scatter radar, which is why we are here.

