Radar Basics

- Electromagnetic spectrum
- Radio Waves and Propagation
- Antennas
- Radar fundamentals
 - Radar targets and cross-sections
 - Radar equation
 - Doppler
- Volume scattering

Asti Bhatt, MIT Haystack Observatory AMISR Summer School 2010

Chart of the Electromagnetic Spectrum

Radio Spectrum

10 ¹¹	Band	Applications
10 — 10 ¹⁰	Extremely High Frequency EHF (30 - 300 GHz)	Radar, advanced communication systems, remote sensing, radio astronomy
10 -	Super High Frequency SHF (3 · 30 GHz)	Radar, satellite communication systems, aircraft navigation, radio astronomy, remote sensing
10° —	Ultra High Frequency UHF (300 MHz - 3 GHz)	TV broadcasting, radar, radio astronomy, microwave ovens, cellular telephone
10° —	Very High Frequency VHF (30 - 300 MHz)	TV and FM broadcasting, mobile radio communication, air traffic control
10' —	High Frequency HF (3 - 30 MHz)	Short wave broadcasting
10° —	Medium Frequency MF (300 kHz - 3 MHz)	AM broadcasting
10° —	Low Frequency LF (30 - 300 kHz)	Radio beacons, weather broadcast stations for air navigation
	Very Low Frequency VLF (3 - 30 kHz)	Navigation and position location
10 ³ —	Ultra Low Frequency ULF (300 Hz - 3 kHz)	Audio signals on telephone
10 ² —	Super Low Frequency SLF (30 - 300 Hz)	Ionospheric sensing, electric power distribution, submarine communication
	Extremely Low Frequency ELF (3 - 30 Hz)	Detection of buried metal objects
10° 3x	f< 3 Hz	Magnetotelluric sensing of the earth's structure

Frequency (Hz)

Radio Waves

Wave phase velocity $c = f\lambda = \omega/k = 3x10^8 m/s$

TEM Waves

Electromagnetic waves propagate

Polarization
$$\overline{E} = (E_1 \hat{x} + E_2 \hat{y} e^{j\varphi}) e^{j(\omega t - k)}$$

 $\alpha = \tan^{-1} E_y / E_x$
Linear: $\psi = 0$, $\alpha = E_2 / E_1$
Circular: $\psi = \pi/2$, $\alpha = \mp (\omega t - kx)$

Propagation Medium

Radio waves are affected by the medium they propagate in. Effects dependent on the refractive index of the medium and wave frequency

Radio waves are also reflected off of the surface

- Atmospheric attenuation
- Reflection off of earth's surface
- Over-the-horizon diffraction
- Atmospheric refraction

Antennas

Gain and Effective Area

 $Gain = \frac{Maximum Power Density}{Power delivered to Anteanna / 4\pi R^2}$

$$G = \frac{4\pi}{\lambda^2} A eff \qquad A$$

$$Aeff \leq Aphys$$

 $Pr[w] = Pinc[w/m^2] \times Aeff[m^2]$

For aperture antennas, Aeff/Aphys ~ 0.5 to 0.7

Radiation Pattern

<u>RAdio</u> <u>Detection</u> <u>And</u> <u>Ranging</u>

Radar equation

Radar cross section tells us about the target properties

It is the effective target cross section as seen by the radar

What the radar transmits: Pulses and waves

Cycles in a pulse.

PFISR frequency = 449 MHz Long pulse length = 480 μs # of cycles = 215520 ! Radar waveforms modulate the waves with on-off sequence

Duty cycle = Pulse Length/IPP (10%) Average power = Peak power x Duty cycle (100 kW) PRF (Pulse Repetition Frequency) = 1/IPP (1kHz)

Duty cycle for a CW (continuous wave) radar 100%

Range Resolution

Range resolution is set by pulse length

Pulse length = τ_p , Range resolution = $c\tau_p/2$ for a single target.

Maximum unambiguous range

MUR = c*IPP/2

Pulse duration vs. Range resolution

Pulse Duration	Range Resolution
0.1 nsec	1.5 cm
1.0 nsec	15 cm
10 nsec	1.5 m
100 nsec	15 m
1 μsec	150 m
10 μsec	1.5 km
100 µsec	15 km
1 msec	150 km

Moving target - Doppler

 $f = c/\lambda$

V

Doppler

shift

Positive Doppler = target moving **toward** the observer **Negative** Doppler = target moving **away** from the observer

Doppler shift frequency

Tx signal: $cos(2\pi f_o t)$

Return from a moving target: $cos[2\pi f_o(t + 2R/c)]$

If target is moving with a constant velocity: $R = R_o + v_o t$

then,

Resolving Doppler

Tx signal: $cos(2\pi f_o t)$ Doppler shifted: $cos[2\pi (f_o + f_D)t]$

Multiply by $cos(2\pi f_o t) \rightarrow Low pass filter \rightarrow cos(2\pi f_o t)$

BUT, the sign of f_D is lost (cosine is an even function)

So, instead use $\exp(j2\pi f_D t) = \cos(2\pi f_D t) + j\sin(2\pi f_D t)$

Generate this signal by mixing cos and sin via two oscillators (same frequency, 90° out of phase)

Components are called I (In phase) and Q (Quadrature): $Aexp(j2\pi f_D t) = I + jQ$

I/Q Demodulation

In phase (I): $Pr(t)cos(\omega_{c}t) = a(t)cos(\phi(t) + \omega_{c}t) cos(\omega_{c}t)$ $= a(t) (\frac{1}{2}) (cos(\phi(t) + 2\omega_{c}t) + cos(\phi(t)))$ Quadrature (Q): filtered $Pr(t)cos(\omega_{c}t) = a(t)cos(\phi(t) + \omega_{c}t) sin(\omega_{c}t)$ $= a(t) (\frac{1}{2}) (sin(\phi(t) + 2\omega_{c}t) + sin(\phi(t)))$ I and Q together give:

 $Sr(t) = a(t)e^{j\phi(t)}$

So, the received signal is a time series of complex numbers

I/Q Demodulation

Pulsed Doppler Radar system

Hard targets vs. Soft targets

Volume scattering - lonosphere

- Volume scattering cross section σ_v has area/volume units
- Signal is proportional to range resolution
- What about the ionosphere ?
 - Cross section of a single electron = 10^{-28} m^2
 - Cross section of a bunch of electrons in a 10 km³ volume in the ionosphere assuming electron density = 10¹² /m³, is 10¹⁰ x 10¹² x 10⁻²⁸ = 10⁻⁶ m² !!)
 - CAN be measured by an incoherent scatter radar, which is why we are here.