Unravelling long-term behaviour in historic geophysical data sets

Thomas Ulich Sodankylä Geophysical Observatory, Sodankylä, Finland thu@sgo.fi - http://cc.oulu.fi/~thu/ (2010-07-28)

Sodankylä Geophysical Observatory

- First observations during the International Polar Year 1882/83.
- ⇒SGO established 1913.
- Finland independent from Russia in 1917.
- ⇒SGO part of University of Oulu since 1997.
- Oldest scientific research institute in Northern Finland.

Greenhouse Cooling

Doubling of $[CO_2]$ and $[CH_4]$

cools

Mesosphere by 10 K and Thermosphere by 50 K.

Atmosphere shrinks.

ayer of maximum electron density lowers by 15-20 km.

Greenhouse high up?

- Model results, assuming doubling of CO₂ and CH₄:
- Stratopause cools by 8 K, stratosphere by 15 K. (Brasseur & Hitchman, 1988)
- Mesosphere and thermosphere cool by 10 K and 50 K, respectively. (Roble & Dickinson, 1989)
- F2-layer peak (hmF2) lowers by 15-20 km. (Rishbeth, 1990)
- Riometer absorption decreases. (Serafimov & Serafimova, 1992)
- Stratopause cools by 14 K, mesosphere by 8 K, thermosphere by 50 K. (Akmaev & Fomichev, 1998)

Ionosonde

Gregory Breit Merle Tuve

G Breit and M A Tuve, A radio method of estimating the height of the conducting layer, Nature, 116, p. 357, 1925.

(27 June 1901 - 20 May 1982)

Sodankylä lonosonde

Sodankylä

Dulu

lelsinki

- Sodankylä ionosonde measurements began Ist August 1957.
- Until Nov 2005: I sounding per 30 min.
- Until Mar 2007: I sounding per 10 min.
- ▶ IPY (Apr ´07-Mar ´08): I sounding per minute.
- April 2008: we forgot to turn off IPY mode.
- Millionth ionogram: May 2007, at lunchtime.
- High data quality: first 800.000+ ionograms were analysed by the very same person!

Problems

• Data resolution (h, 3-h, day, month(?), ...)

• Low-pass filtering or polynomial fitting...

Problems

- Data resolution (h, 3-h, day, month(?), ...)
- Low-pass filtering or polynomial fitting...
- Removal of underlying (cyclic) variability:
 - -Choice of proxy (sinusoid, SSN, Group SSN, F10.7 (adj./obs.), Ly-α, Mg II, E10.7, ...)
 - -Resolution of proxy: compatibility with data

Problems

- Data resolution (h, 3-h, day, month(?), ...)
- Low-pass filtering or polynomial fitting...
- Removal of underlying (cyclic) variability: ...
- Data gaps

Problems

- Data resolution (h, 3-h, day, month(?), ...)
- Low-pass filtering or polynomial fitting...
- Removal of underlying (cyclic) variability: ...
- Data gaps
- Measurement errors
- Mathematics of trend detection
 - -stepwise or multi-parameter fit
 - -error propagation

Making models

• Base functions of the model(s) are, e.g.:

- $+ x_2 t_i$
- $+ x_3 F_{10.7}(t_i)$
- $+ x_4 Ap(t_i)$
- + $x_5 sin(2\pi t_i)$
- + $x_6 cos(2\pi t_i)$
- + $x_7 sin(4\pi t_i)$
- + x₈cos(4πt_i)

+ ...

- -> measurement errors
- -> constant
- -> sampling times
- -> solar activity
- -> geomagnetic activity
- -> annual variation
- -> semi-annual variation

Modelling the data

The ionospheric property of interest is function of time and a number of other parameters. The model of the data is therefore

$$m(t) = \mathcal{F}(t, x_1, \dots, x_M)$$

where

$$\mathcal{F}(t, x_1, \dots, x_M) = \sum_{i=1}^M x_i f_i(t)$$

The actual measurements m_i observed at time t_i are equal to the model plus some measurement error ε_i

 $m_i = \mathcal{F}(t_i, x_1, \dots, x_M) + \varepsilon_i$

Inverse problem I

This can be expressed as a matrix equation. Usually there are many more data points than unknowns x_i and the problem is overdetermined:

Inverse problem II

Measurements and theory are weighted by the measurement errors:

$$B_{ij} := rac{A_{ij}}{arepsilon_i} \ ext{and} \ b_i := rac{m_i}{arepsilon_i}$$

The solution is the vector \mathbf{x} , which minimises the following expression:

$$\chi^2 = |\mathbf{B} \cdot \mathbf{x} - \mathbf{b}|^2$$

We are left with a general least squares problem. Solving this results in the most probable solution for \mathbf{x} .

Signal Spectrum by Stochastic Inversion

T. Nygrén and Th.Ulich, Calculation of signal spectrum by means of stochastic inversion, Ann. Geophys., 28, 1409-1418, 2010.

Trends in other Observations

Height	Method	Parameter	Trend	Reference
in km			per Year	
75	Sounding rocket	Temperature	-0.6 K	Kokin and Lysenko, 1994
70	Sounding rocket	Temperature	-0.7 K	Golitsyn et al., 1996
60-70	Lidar	Temperature	-0.4 K	Hauchecorne et al., 1991
60	Sounding rocket	Temperature	-0.4 K	Golitsyn et al., 1996
60	Sounding rocket	Temperature	-0.33 K	Keckhut et al., 1999
50-60	Lidar	Temperature	-0.25 K	Aikin et al., 1991
50	Sounding rocket	Temperature	-0.25 K	Golitsyn et al., 1996
40	Sounding rocket	Temperature	-0.1 K	Golitsyn et al., 1996
30-60	Sounding rocket	Temperature	-0.17 K	Dunkerton et al., 1998
30-50	Sounding rocket	Temperature	-0.17 K	Keckhut et al., 1999
30	Sounding rocket	Temperature	-0.1 K	Golitsyn et al., 1996
25	Sounding rocket	Temperature	-0.1 K	Golitsyn et al., 1996
25	Sounding rocket	Temperature	-0.11 K	Keckhut et al., 1999

lonsondes, originally deployed for monitoring ionospheric conditions for HF radio communication and for studying short-term events, are becoming useful in an environmental context.

Conclusion

(I was lying!)

They provide long-term measurements of our environment!

