Wind, Radar and Rainbows

Group 2 ISR results

Date: 7/22/2011

We imagined a simple measurement

But we-learned nothing is simple.

Methods

SONDRESTROM

Option 2

-alternating code

- 3 km range resolution
- $\mathrm{Ne}, \mathrm{Te}, \mathrm{Ti}, \mathrm{Vi}$
- long pulse
- 50 km range resolution
- barker code
- 600 m range resolution
- Ne from power only
- pulse-to-pulse spectra

EISCAT

Common Program 2

- 3-4 position scan
- tides
- time resolution: 3-6 minutes
- moderate range resolution 3 km
- Height profiles Ne, Te, Ti, Vi
- E+F region 90-150 km

Beata:

- radar UHF
-pulses 32x20 AC
-sampling $10 \mu \mathrm{~s}$
- resolution $1.5-3 \mathrm{~km}$
- range 46-694 km
- plasma line $1 \times 3 \times 2.5 \mathrm{MHz}$
- time resolution 5 s

Results

Solar Wind data and convection

- E-fields maps to the ionosphere causing ExB B_{z} southward drift (convection)
- Two cell convection pattern
- Antisunward with sunward return flow

- ACE: Variable Bz, negative By

ACE Spacecraft Data

SuperDARN Convection Pattern at $\sim 300 \mathrm{~km}$

Magnetometers

Poker Flat

Sondrestrom (Red) Tromsø (Blue)

Wind at SuperDARN altitude

Poker Flat Summary

Vector Velocities 7-19-2011

err V perp north (m/s)

err V anti par $(\mathrm{m} / \mathrm{s}) \times 10$

Simultaneous EISCAT CP2 Velocity Measurements

Mean Vector Magnitudes: Long Pulse vs. Alternating Code

Does Alternating show real structure?

Electric field vector at Sondrestrom

Mean velocities and directions during our run

Electron Density

Alternating Code Signal-to-Noise-Ratio

Long Pulse Signal-to-Noise-Ratio

7-20-2011 5.565 UT - 7-20-2011 6.983 UT

Sondrestrom Pointing Directions

