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Scattering Model

Incident EM wave accelerates each charged particle it encounters.  
These then re-radiate an EM wave.

For a single electron located at r = 0, the scattered field at a distance      :

Classical electron radius

Delayed time

scattered field Incident field

Scattering angle
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Scattering Model

Assume a volume filled with electron scatterers whose density is 
represented in space and time by

Illuminating this volume with an incident field from a transmitter location 
means that each electron contributes to the resulting scattered field, using 
Born approximation (each scatter is weak and does not affect others).

With geometrical considerations, scattered field at receiver location is now:

Delayed time
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Assume densities have random spatial and temporal fluctuations about 
a background:

Further, assume backscatter (i.e. monostatic radar):

Then, scattered field reduces to:

Scattering Model
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Scattering Model

Plasmas (ionosphere) are thermal gases and                     is a Gaussian 
random variable, so the Central Limit Theorem applies:

It’s much more useful to look at second order products – in other 
words, examine temporal correlations in the scattered field:

Useful things to measure can now be defined.

statistical average
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Scattering: Measurable Quantities

Defining                                            , then

Total scattered power

and Autocorrelation function (ACF):

or Power Spectrum:
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Incoherent Scattering: A Bragg Experiment

IS radar uses Bragg scattering: radar picks out one point in 3-D k 
space, and obtains characteristic spectral density at that spatial scale:

Contrast this to a sounding rocket or satellite, which responds to an 
integral in k space perpendicular to its trajectory in the z direction:
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Incoherent Scattering Model: Summary

Radar filters in k space:

Form ACF of             for each range, average, transform:

Interpret latter in terms of the medium parameters.
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Incoherent Scattering Detectability
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Incoherent Scattering Detectability
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Incoherent Scattering Detectability
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Incoherent Scattering Detectability

Not bad…

But you need a megawatt class transmitter and a huge 
antenna.

Fortunately, technology makes this possible in the mid 
1950s.
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First Incoherent Scatter Radar

• W. E. Gordon of Cornell is credited with the idea for ISR.
• “Gordon (1958) has recently pointed out that scattering of radio 

waves from an ionized gas in thermal equilibrium may be detected 
by a powerful radar.” (Fejer, 1960) 

• Gordon proposed the construction of the Arecibo Ionospheric 
Observatory for this very purpose (NOT for radio astronomy as the 
primary application)

• 1000’ Diameter Spherical Reflector
– 62 dB Gain

• 430 MHz line feed 500’ above dish
• Gregorian feed
• Steerable by moving feed. 

~40 megawatt-acres



 AMISR 2009 Summer School
P. J. Erickson

13

Proceedings of the 
IRE, November 1958
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First Incoherent-Scatter Radar

• K.L. Bowles [Cornell PhD 1955], Observations of vertical 
incidence scatter from the ionosphere at 41 Mc/sec. Physical 
Review Letters 1958: 

  “The possibility that incoherent scattering from electrons in the 
ionosphere, vibrating independently, might be observed by radar 
techniques has apparently been considered by many workers 
although seldom seriously because of the enormous sensitivity 
required…”
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First Incoherent-Scatter Radar

…Gordon (W.E. Gordon from Cornell) recalled this possibility to the writer 
[spring 1958; D. T. Farley] while remarking that he hoped soon to have a 
radar sensitive enough to observe electron scatter in addition to various 
astronomical objects…”  

Bowles executed the idea - hooked up a large transmitter to a dipole antenna 
array in Long Branch Ill., took a few measurements. 

Gordon presenting on same day at October 21, 1958 Penn State URSI 
meeting:

“…And then I want to tell you about a telephone call that I just had.” 

Oscilloscope + camera + ~4 sec exposure
 (10 dB integration)

~6 week setup time
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Incoherent Scattering Detectability

Bowles’ results found approximately the expected amount 
of power scattered from the electrons (scattering is 
proportional to charge to mass ratio - electrons scatter the 
energy).

BUT: his detection with a 20 megawatt-acre system at 41 
MHz (high cosmic noise background; should be marginal) 
implies a spectral width 100x narrower than expected – 
almost as if the much heavier (and slower) ions were 
controlling the scattering spectral width.

In fact, they do.
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Incoherent Scatter Theoretical Approaches
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Dressed Particles
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Dressed Particles
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Dressed Particles



 AMISR 2009 Summer School
P. J. Erickson

21

Plasma Wave Approach
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Density Fluctuations

• Thermal fluctuations in an 
ordinary collision dominated 
gas can be considered to be 
made up of sound waves.

• In a plasma, the fluctuations 
are ion-acoustic waves and 
electrostatic plasma 
(Langmuir) waves.

• The probability distributions for 
the wave modes and their 
spectrum can be derived by 
various means.



 AMISR 2009 Summer School
P. J. Erickson

23

Ion Acoustic Waves
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Wave Spectrum

Electron Plasma Waves Ion Acoustic Waves

Plasma parameters fluctuate with the waves (density, velocity, etc)

Not to scale
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Damped resonance

• Waves in a plasma are resonances.

• Damped resonances are not sharp
– Example – Q of a resonant circuit.

• IS: Thermal ions have motions close to ion-acoustic 
speed (Landau damping – “surfing”; locked to I-A waves)

Resonance Damped Resonance

fr fr
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Wave Spectrum (ISR Spectrum)

Why aren’t the Langmuir (plasma) waves damped?  
Electron thermal velocity ~ 125 km/s but plasma wave frequency ~ several MHz –
Not much interaction and not much damping.



 AMISR 2009 Summer School
P. J. Erickson

27

Nyquist Theorem
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Incoherent Scatter Spectral Dependence
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Incoherent Scatter Spectral Dependence
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Measurement Statistics
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Measurement Statistics
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Power Estimation
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Power Estimation: Noise Effects
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ACF Estimation
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ACF Estimation: Noise Effects
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