Data Analysis and Fitting 1

Craig Heinselman

What we want to measure: plasma and neutral

state

- Region probed by Incoherent Scatter Radars (ISRs) ~80-1000+ km
- Ionized region of the upper atmosphere (free electrons and ions) - Quasineutral ionized gas (plasma)
- Incoming solar EUV causes atmospheric constituents (N₂, O₂, O) to ionize
- Particle precipitation is also a major ionizing process at high latitudes
- Neutral atmosphere can be probed via influences on the plasma

ISR-Measurable Parameters

BASIC PARAMETERS Ne, Te, Ti, Vi, v_{in} , ion composition

ELECTRODYNAMIC PARAMETERS E, $\sigma_{\rm H}$ and $\Sigma_{\rm H}$, $\sigma_{\rm P}$ and $\Sigma_{\rm P}$, J_{\perp} and J₁₁

NEUTRAL PARAMETERS U_{merid}, U, T_{inf}

ENERGY DEPOSITION f(E)

Incoherent Scatter Radar Data Fitting Basic Parameters

Incoherent Scatter Radar Data Fitting

Ion Velocity

Ion Temperature

Ion Mass

Ion Composition (O⁺ vs. NO⁺)

Ion Composition (O⁺ vs. H⁺)

Ion-Neutral Collision Frequency

Electron/Ion Temperature Ratio

Incoherent Scatter Power Spectra

Frequency (KHz)

Incoherent Scatter Autocorrelation Functions

Model Autocorrelation Function

Incoherent Scatter Radar Data Fitting

- Based on the principle of a 'matched filter'
 - Output of the matched filter maximizes the attainable SNR when both signal and white noise are applied to the input
 - Impulse response is the complex conjugate of the time reversed version of the signal

 $h(t) = s^*(t_M - t)$ $H(f) = S^*(f) \exp(-j2\pi f t_M)$ where h(t) is the impulse response of the matched filter s(t) is the signal to be detected t_{M} is the measurement time t, f are time and frequency

 The ambiguity function is defined as the absolute value of the envelope of the output of a matched filter when the input to the filter is a Doppler shifted version of the original signal

$$|X(\tau, f)| = \left| \int_{-\infty}^{\infty} u(t) u^*(t - \tau) \exp(j2\pi ft) dt \right|$$

 $u(t)$ is the complex envelope of the signal τ is the additional delay

f is the frequency shift (Doppler)

Ambiguity Functions For u(t) with unit energy $|X(\tau, f)| \le |X(0,0)| = 1$

$$\int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} |X(\tau, f)|^2 d\tau df = 1$$

and for all signals $|X(-\tau, -f)| = |X(\tau, f)|$

if
$$u(t) \Leftrightarrow |X(\tau, f)|$$

then $u(t) \exp(j\pi kt^2) \Leftrightarrow |X(\tau, f + k\tau)|$

5 KHz/usec Chirped Pulse

PARS 2006

ACF measurements, can we use phase coding?

- Yes, but we must be careful!
- Barker codes, for instance, can be used if the total code length is sufficiently short (less than the correlation time of the medium – Gray and Farley, 1973). This only gives us power (0-lag) information!
 - Other classes of modulation are also available that, when incoherently averaged, provide good range resolution at the expense (usually) of increased bandwidth and processing complexity
 - Alternating Codes (Lehtinen and Haggstrom, 1987)
 - Coded Long Pulse (Sulzer, 1986)
 - Compressed Alternating Codes
 - Multipulse (not used much for ISR any more because of the superior performance of other techniques)
 - A good, slightly dated reference for many of these techniques is (Sulzer, 1989)
- Finally, at Arecibo they often have too much SNR and use phase coding to obtain more estimates of the acf.

Measuring ACFs

Ambiguity Function (smearing in range and lag)

Full 2d Ambiguity Function

Ambiguity Function Alternating Code (smearing in range and lag)

Full 2d Ambiguity Function

Incoherent Scatter Radar Data Fitting

'Incoherent' electron positions

Incoherent Integration

ISR Signal Strength

Differential received power

$$dP_{r} = \frac{P_{T}L\lambda^{2}G_{TX}(\theta,\phi)G_{RX}(\theta',\phi')n_{e}(\theta,\phi,r)\sigma}{(4\pi)^{3}r^{4}}dV$$

Assuming a narrow antenna beam and sufficiently short pulse

$$dV = \left(\frac{c\tau_P}{2}\right) r d\theta \cdot r \sin\theta \cdot d\phi$$
$$P_r(r) \approx \frac{P_T L \lambda^2 c\tau_P n_e(r)\sigma}{2(4\pi)^2 r^2} \frac{1}{4\pi} \iint G^2(\theta,\phi) \sin\theta \cdot d\theta \cdot d\phi$$

Defining the mean squared gain (backscatter gain) as

$$G_{BS} = \frac{1}{4\pi} \iint G^2(\theta, \phi) \sin \theta \cdot d\theta \cdot d\phi$$

and from Hagen and Baumgartner (1996)

$$\begin{split} G_{BS} &\approx C_{BS} \frac{4\pi A_{eff}}{\lambda^2} \\ P_r(r) &\approx \frac{P_T L c \tau_P C_{BS} A_{eff} n_e(r) \sigma}{2(4\pi) r^2} \\ P_r(r) &\approx \frac{P_T L c \tau_P C_{BS} A_{eff}}{8\pi r^2} \frac{n_e(r) \sigma_e}{\left(1 + k^2 \lambda_D^2\right) \left(1 + k^2 \lambda_D^2 + T_r\right)} \\ P_n &= k_B T_{sys} BW \end{split}$$

 P_T = transmitter peak power L = transmit feed line losses c = speed of light τ_P = transmit pulse duration C_{BS} = backscatter gain constant A_{eff} = antenna effective aperture n_e = electron number density σ_e = electron radar cross-section $k = \frac{2\pi}{\lambda}$ = radar wave number λ_D = plasma debye length T_r = electron to ion temperature ratio k_B = Boltzmann constant T_{sys} = system noise temperature BW = receiver bandwidth

ISR Signal Strength

Signal-to-noise ratio $SNR = \frac{P_r}{P_n} = \frac{\left(P_T L\right)\left(C_{BS} A_{eff}\right)\tau_P}{T_{sys}BW} \cdot \frac{c}{8\pi r^2 k_B} \frac{n_e(r)\sigma_e}{\left(1 + k^2\lambda_D^2\right)\left(1 + k^2\lambda_D^2 + T_r\right)}$ $std\left(\frac{P_r}{P_r}\right) \propto \frac{1}{\sqrt{K_{max}}} \left(\frac{P_r + P_n}{P_r}\right) = \frac{1}{\sqrt{K_{max}}} \left(1 + \frac{1}{SNR}\right)$ To obtain an SNR = 1 with the following parameters L = 1 (no feed line losses) $C_{RS} = 0.4$ $\tau_P = 300 \ \mu \text{sec} (45 \text{ km range resolution})$ $n_{\rho} = 10^{11} \text{ m}^{-3}$ BW = 50 kHz $T_{svs} = 100 \text{ K}$ $k^2 \lambda_D^2 = 0$ (sufficiently high n_e) we need $P_T A_{eff} = 8.7 \times 10^8 \text{ Wm}^2$ for $A_{eff} = 400 \text{ m}^2$ $P_{T} = 2.2 \text{ MW}$

Incoherent Scatter Radar Data Fitting

ISR-Measurable Parameters

BASIC PARAMETERS

Ne, Te, Ti, Vi, ν_{in} , ion composition

ELECTRODYNAMIC PARAMETERS E, $\sigma_{\rm H}$ and $\Sigma_{\rm H}, \, \sigma_{\rm P}$ and $\Sigma_{\rm P}, \, {\rm J_{\perp}}$ and ${\rm J_{||}}$

NEUTRAL PARAMETERS U_{merid}, U, T_{inf}

ENERGY DEPOSITION f(E)

AMISR Ion Velocity Estimation

E-region Electrodynamics

Ion momentum equation

$$n_i m_i \frac{D\vec{V}_i}{Dt} = -\vec{\nabla} P_i + n_i m_i \vec{g} + n_i m_i \Omega_i \left(\frac{\vec{E}}{B} + \frac{\vec{V}_i \times \vec{B}}{B}\right) - n_i m_i v_{in} \left(\vec{V}_i - \vec{U}_n\right)$$

Steady state

$$0 = \Omega_i \left(\frac{\vec{E}}{B} + \frac{\vec{V}_i \times \vec{B}}{B}\right) - v_{in} \left(\vec{V}_i - \vec{U}_n\right)$$

Ion motion with no neutral wind

$$\theta = \arctan\left(\frac{\Omega_i}{\upsilon_{in}}\right)$$

 $\left|\vec{V}_i(z)\right| = \sin\theta \frac{E}{B}$

Ion motion with neutral wind

$$\vec{V}_i(z) = U_n(z) + \frac{\Omega_i}{\upsilon_{in}} \left[\frac{\vec{E}}{B} + \frac{\vec{V}_i(z) \times \vec{B}}{B} \right]$$

Local Electrodynamics

Local Energy Deposition

 $\mathbf{0}^{\mathrm{O}}$

PFISR 2007-10-16

PFISR 2007-11-01

PFISR 2007-11-01

