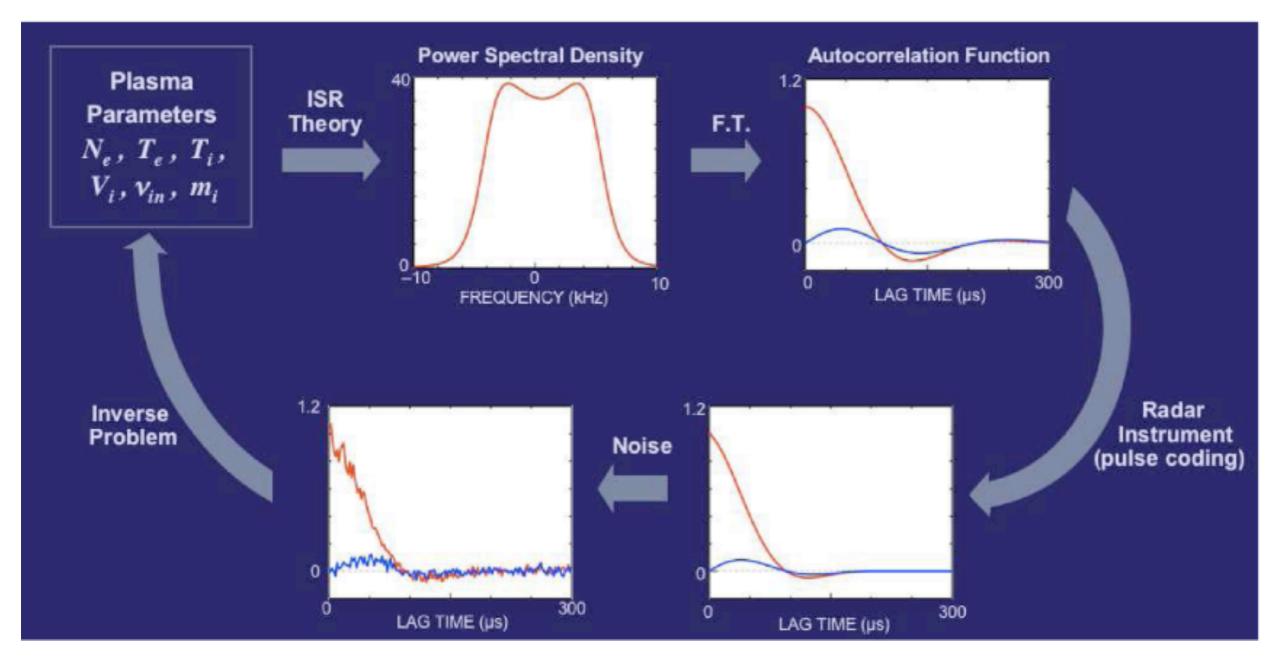
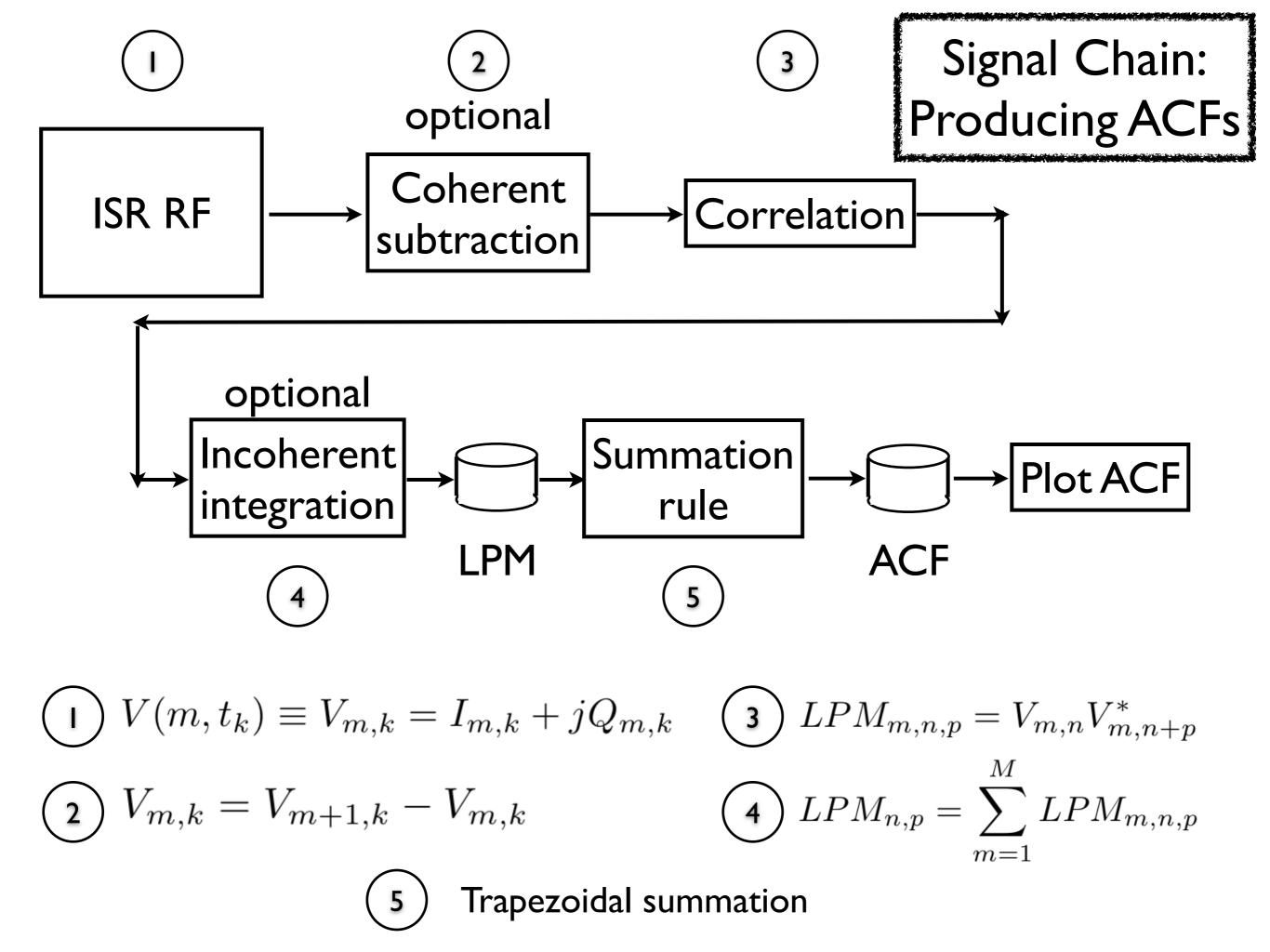
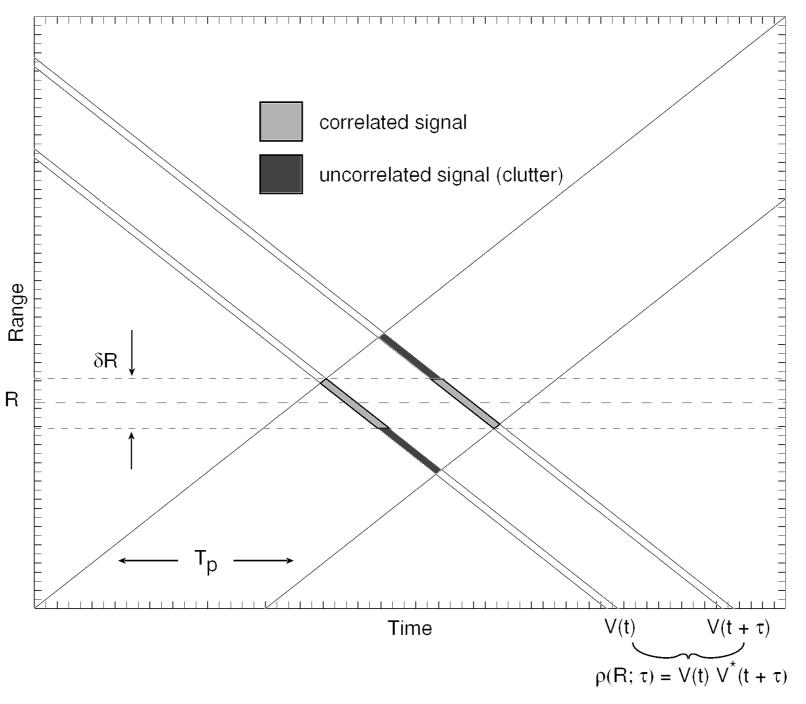
NB: Power spectrum (freq domain) <-> Autocorrelation function (time domain)





As lag increases, correlated signal goes down and uncorrelated signal (clutter = noise) goes up. Bad statistics!

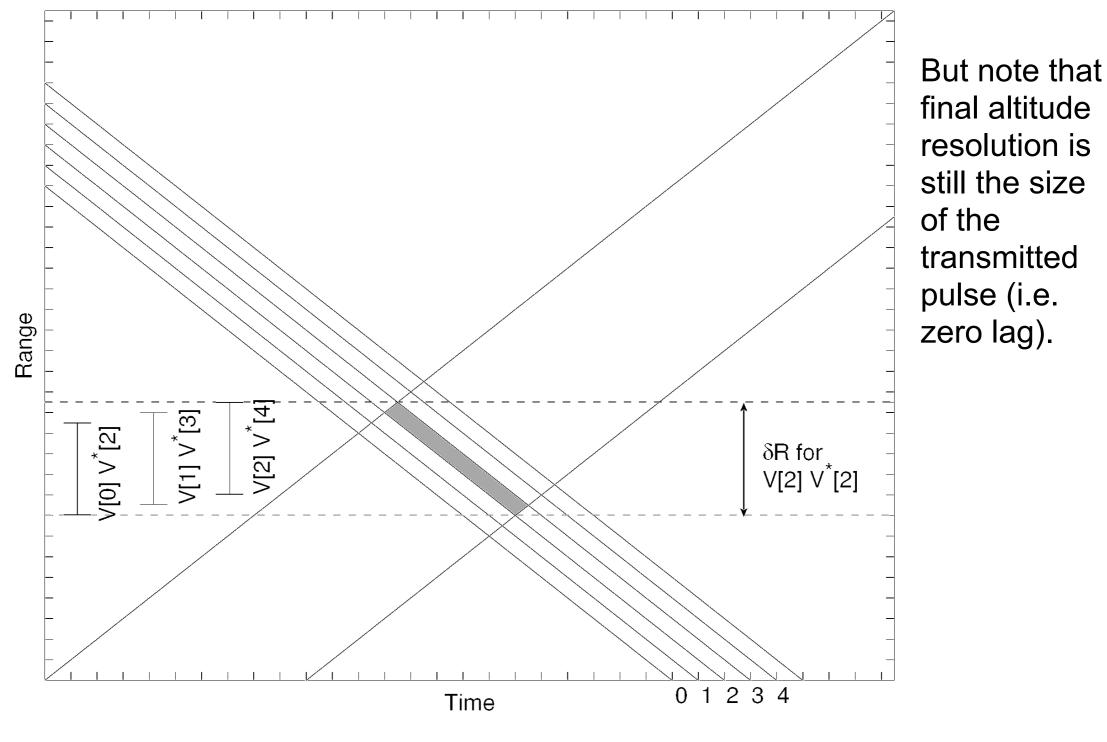
Altitude resolution of individual ACF lags not uniform as a function of lag!



Can't measure ACF at lags larger than pulse length (which sets frequency resolution in your measured power spectrum)*

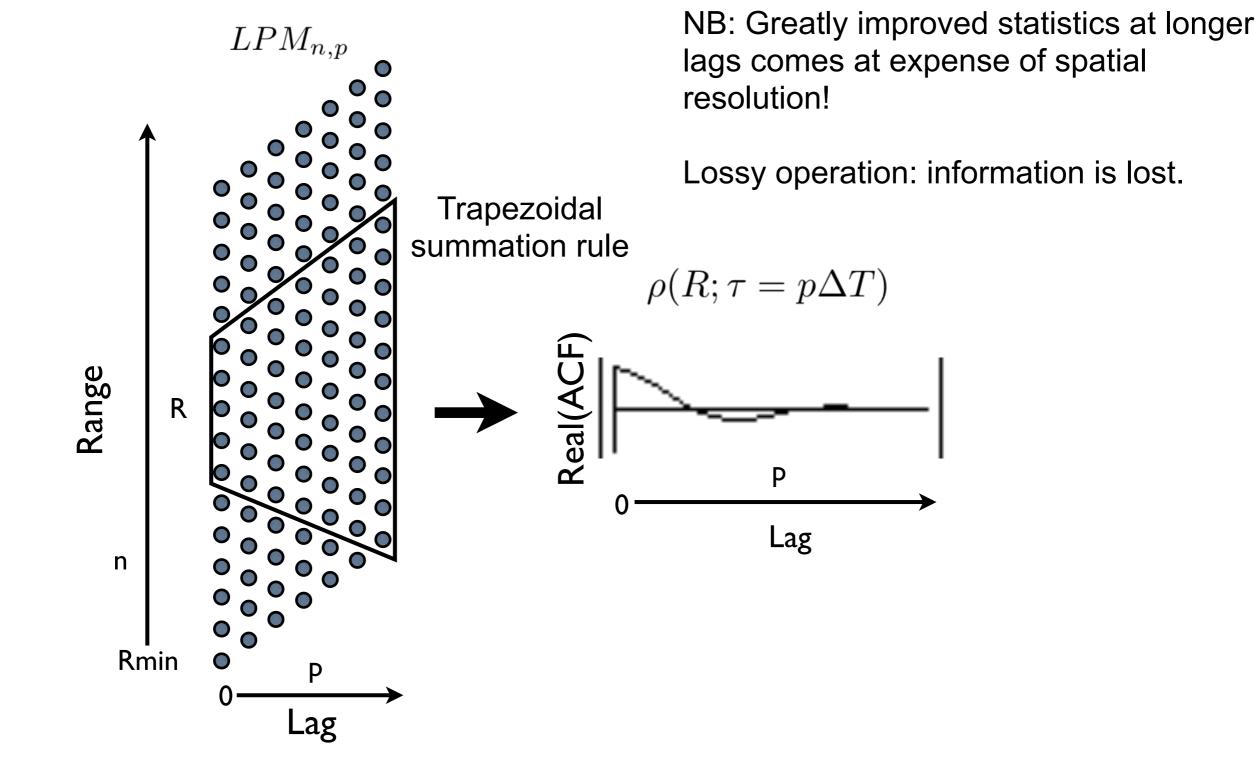
•This is true for any pulsed waveform when we are overspread! (note mismatched RX filter)

ISR 2014 Workshop: Arecibo 2014-07-21 to 2014-07-26 P. J. Erickson



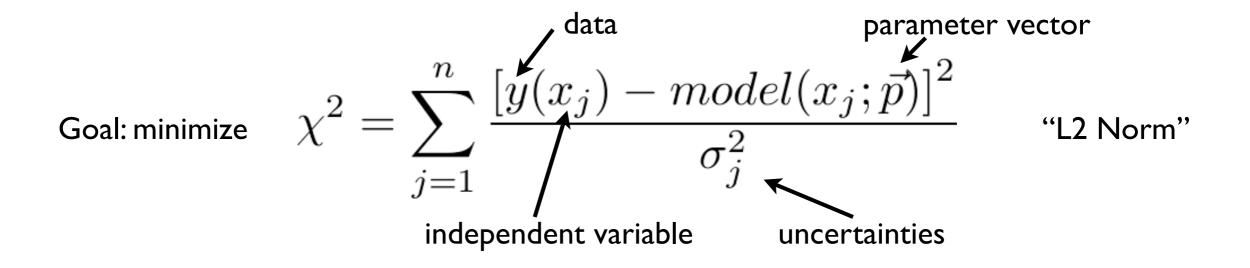
ISR 2014 Workshop: Arecibo 2014-07-21 to 2014-07-26 P. J. Erickson

Summation Rules: Improving Statistics for LPM -> ACF



ISR 2014 Workshop: Arecibo 2014-07-21 to 2014-07-26 P. J. Erickson

Fitting data to a model



Minimize by iterating over parameter vectors.

Some problems are linear least-squares: solvable in one step. Others are nonlinear least-squares: model has complicated variations with parameters. Incoherent scatter is this type.

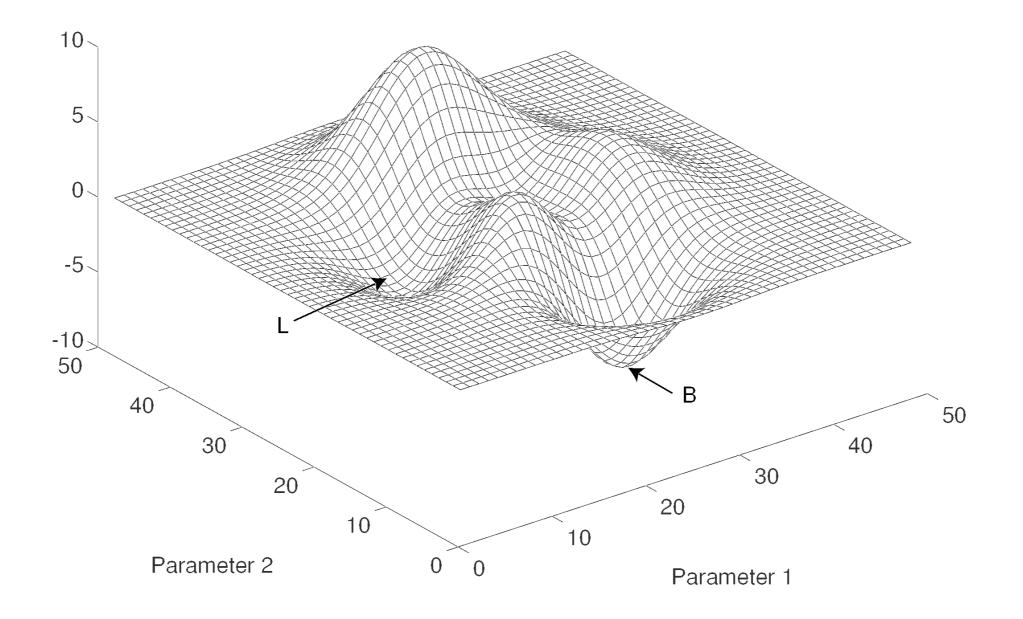
Many different fitting algorithms possible depending on how one analytically expands the minimization function:

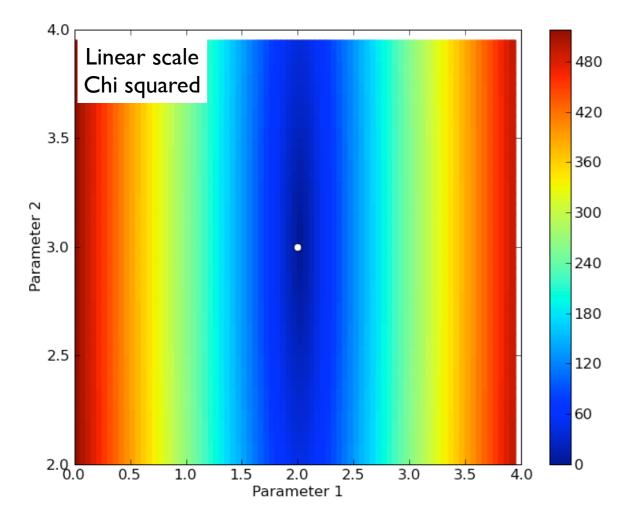
- Gradient-search (Nelder-Mead simplex)
 - Analytic expansion (parabolic surface)
- Levenberg-Marquardt (balance between gradient and analytic)
 - Simulated annealing

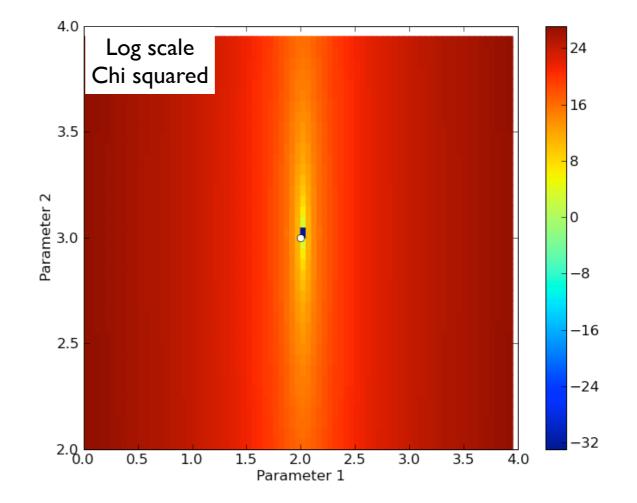
•

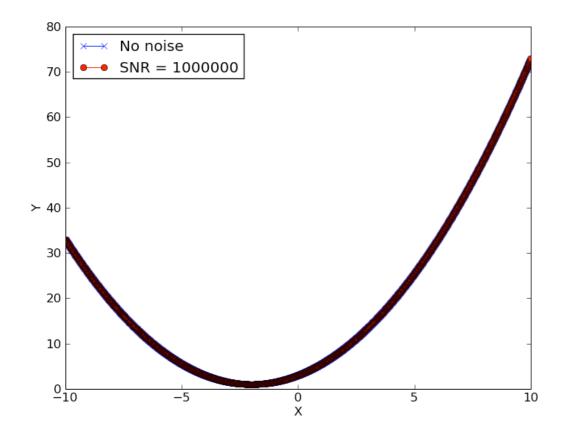
Incoherent Scatter Fit Ambiguities

L, B might both be valid parameter solutions. Might need to use constraints on the parameters to decide which one.

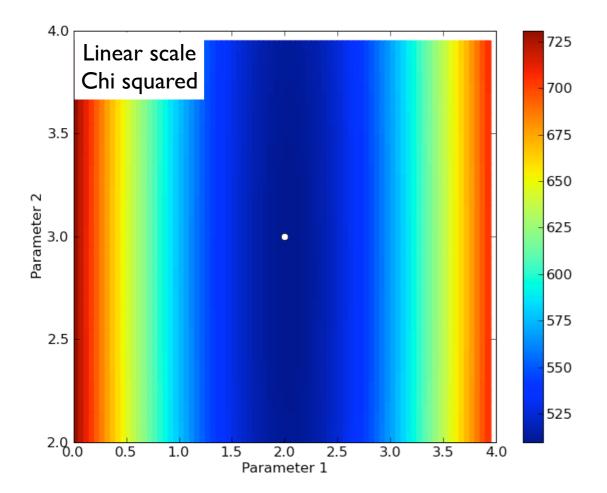


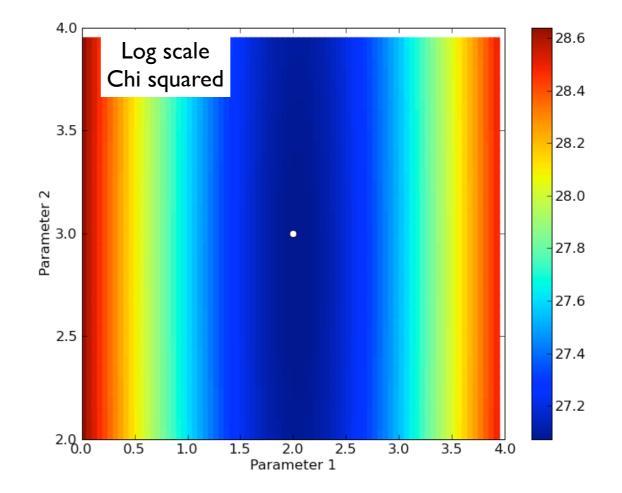


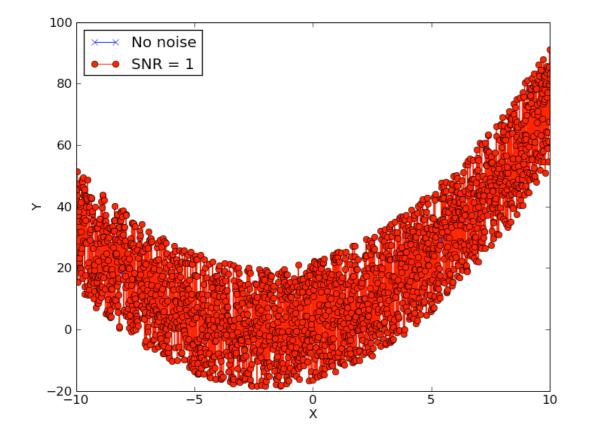




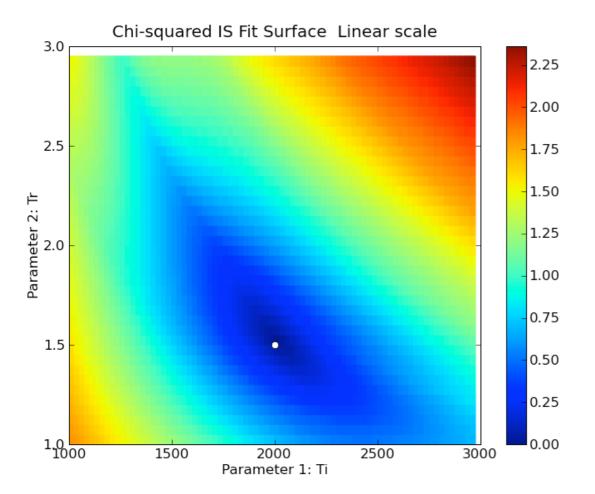
Parabola $y = 0.5 x^2 + 2 x + 3$ Slope, intercept fit No noise

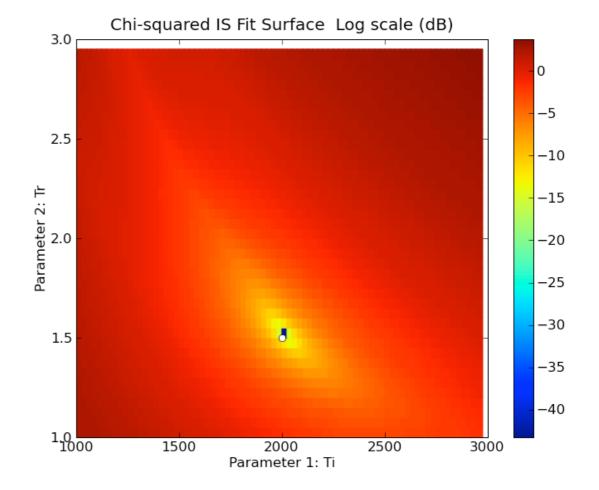


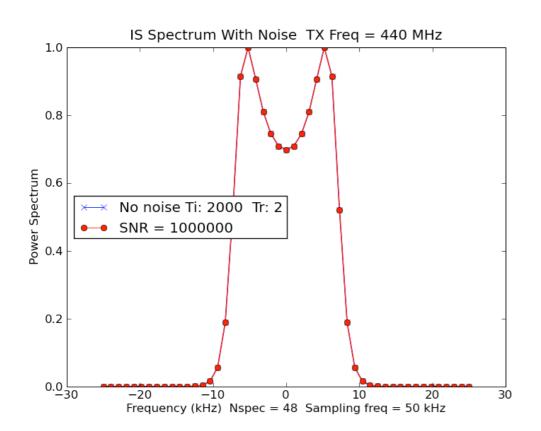




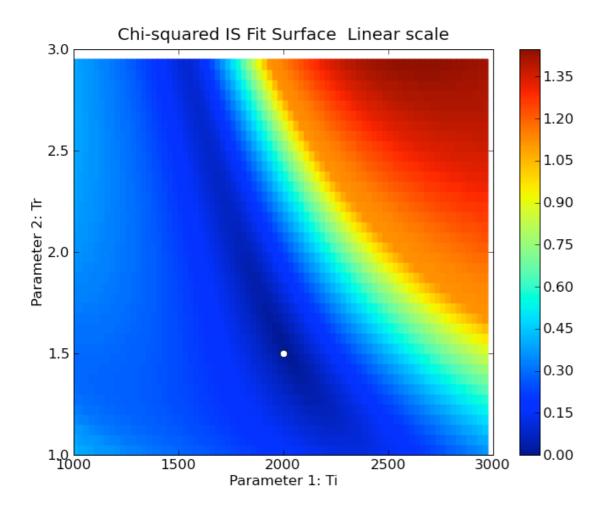
Parabola $y = 0.5 x^2 + 2 x + 3$ Slope, intercept fit Noisy

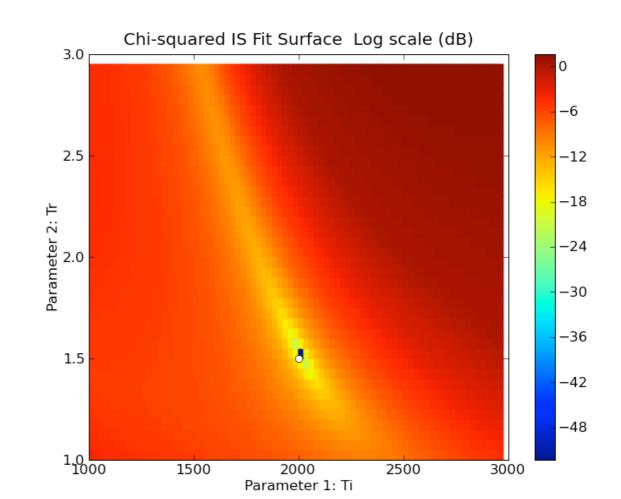


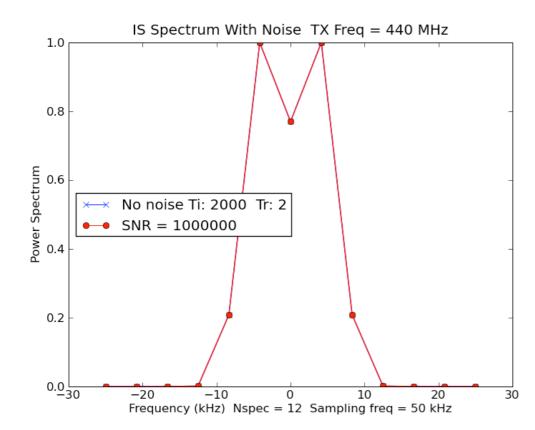




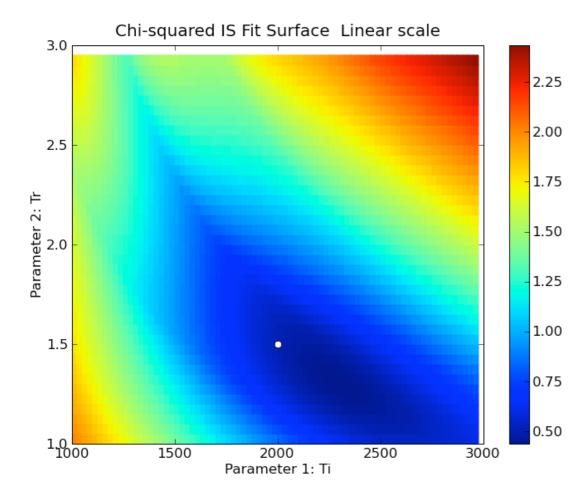
440 MHz IS Spectrum Ti/Tr space Ti = 2000 Tr = 2 No noise

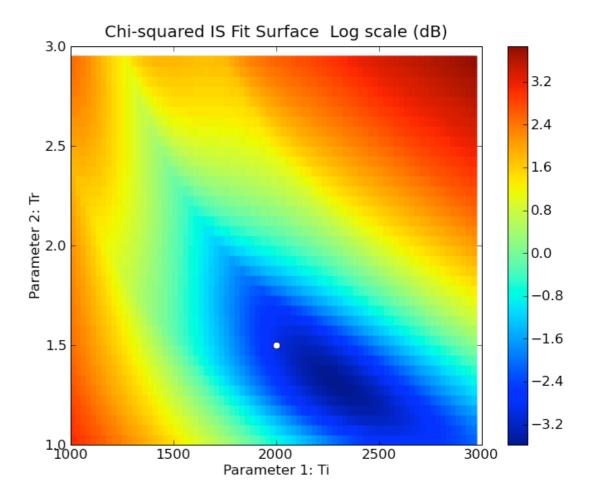


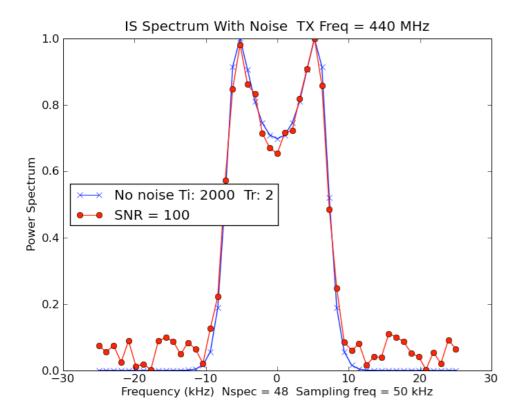




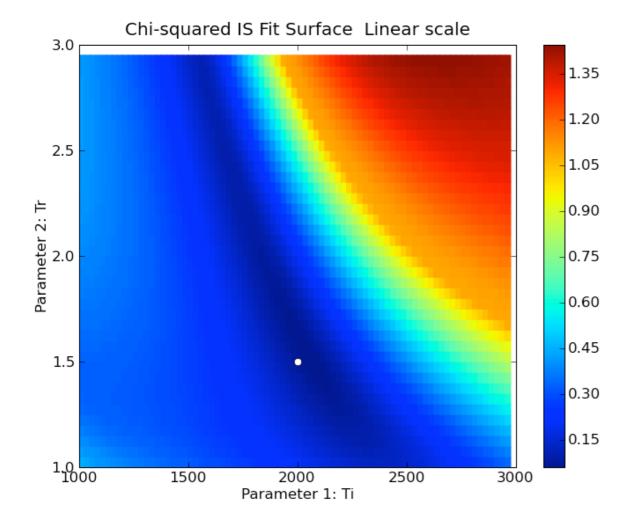
440 MHz IS Spectrum Ti/Tr space Ti = 2000 Tr = 2 Poor sampling

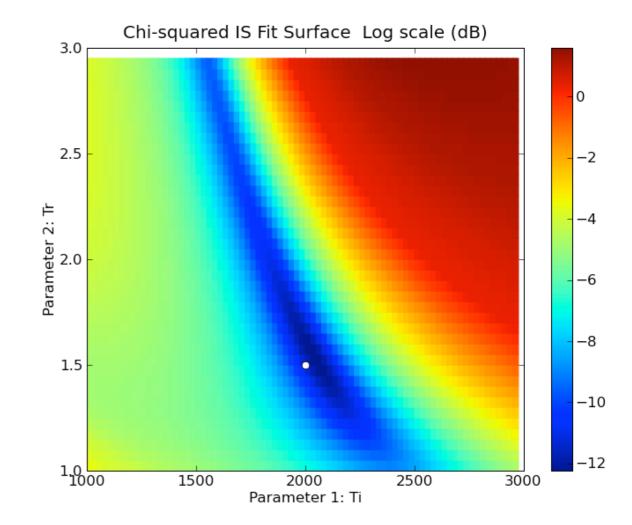


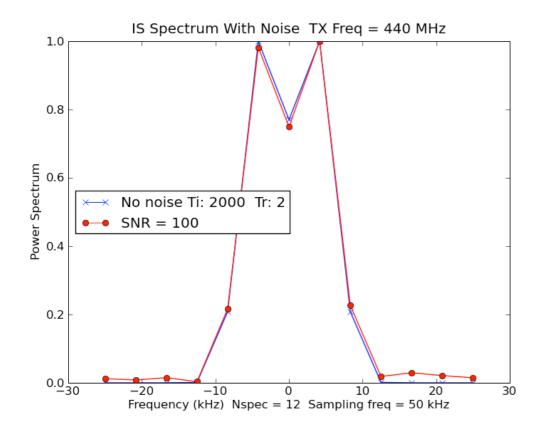




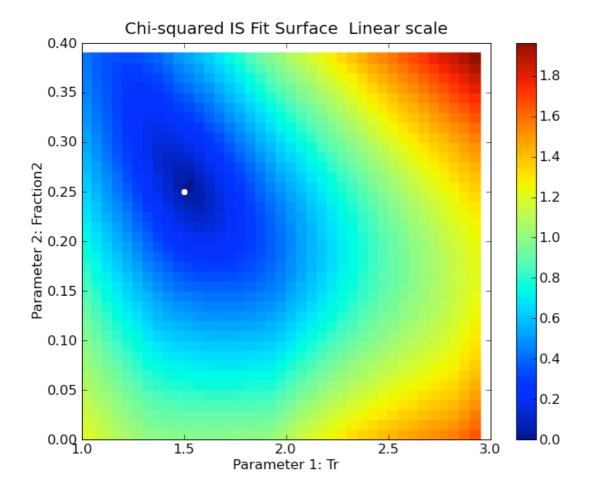
440 MHz IS Spectrum Ti/Tr space Ti = 2000 Tr = 2 Noisy

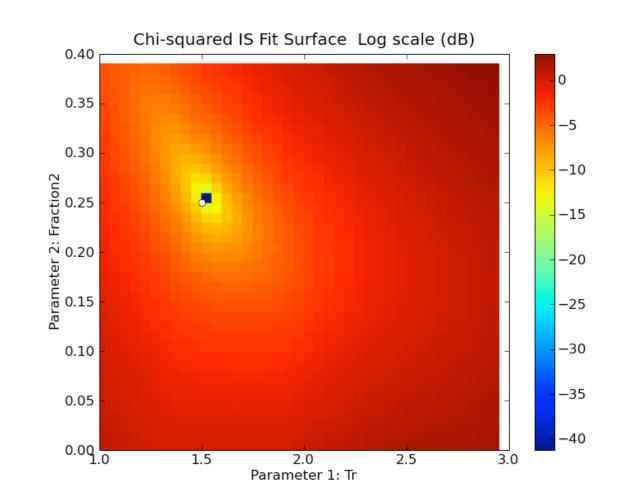


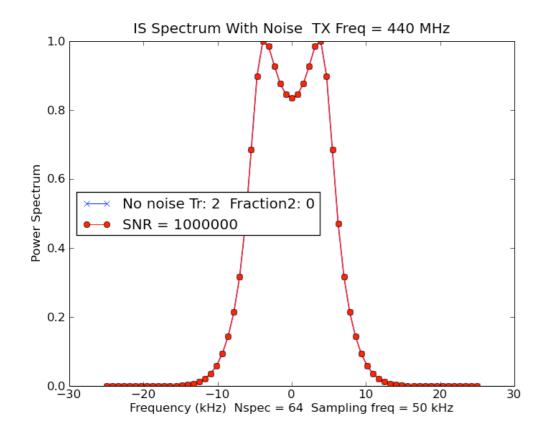




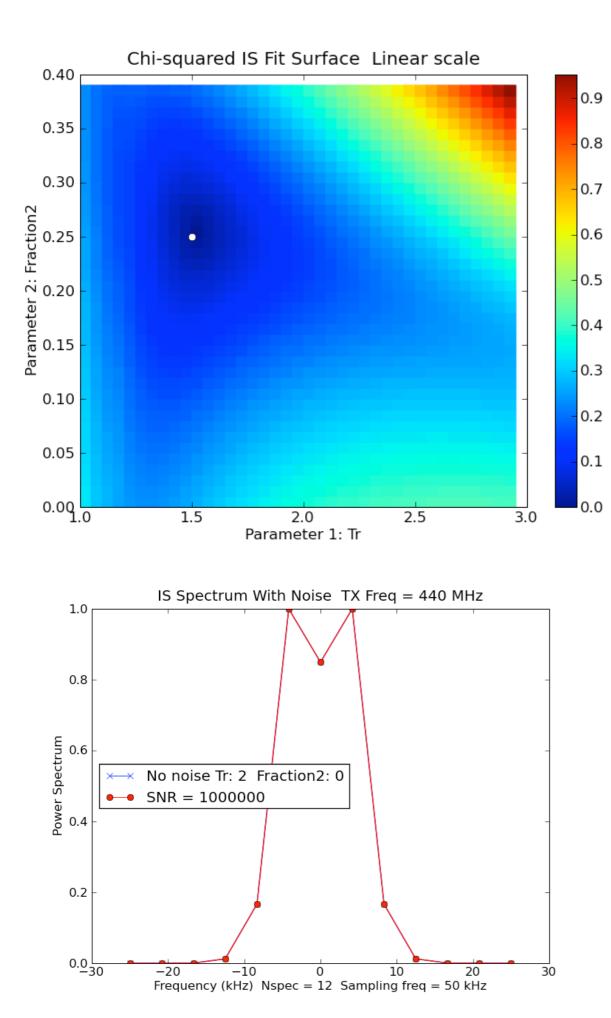
440 MHz IS Spectrum Ti/Tr space Ti = 2000 Tr = 2 Noisy, poor sampling

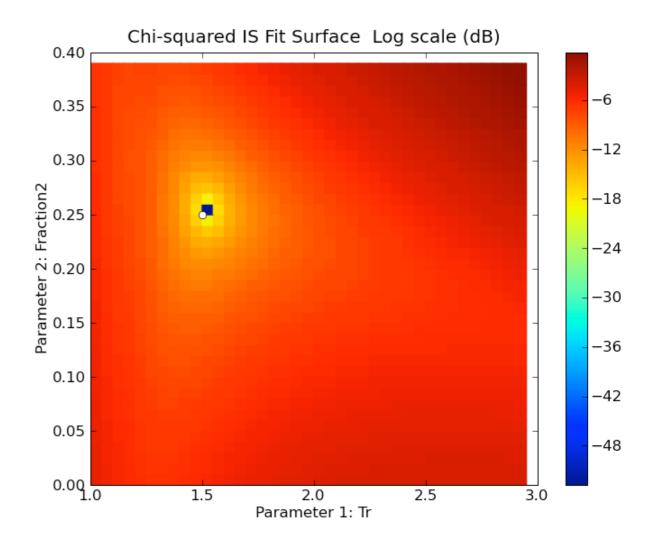




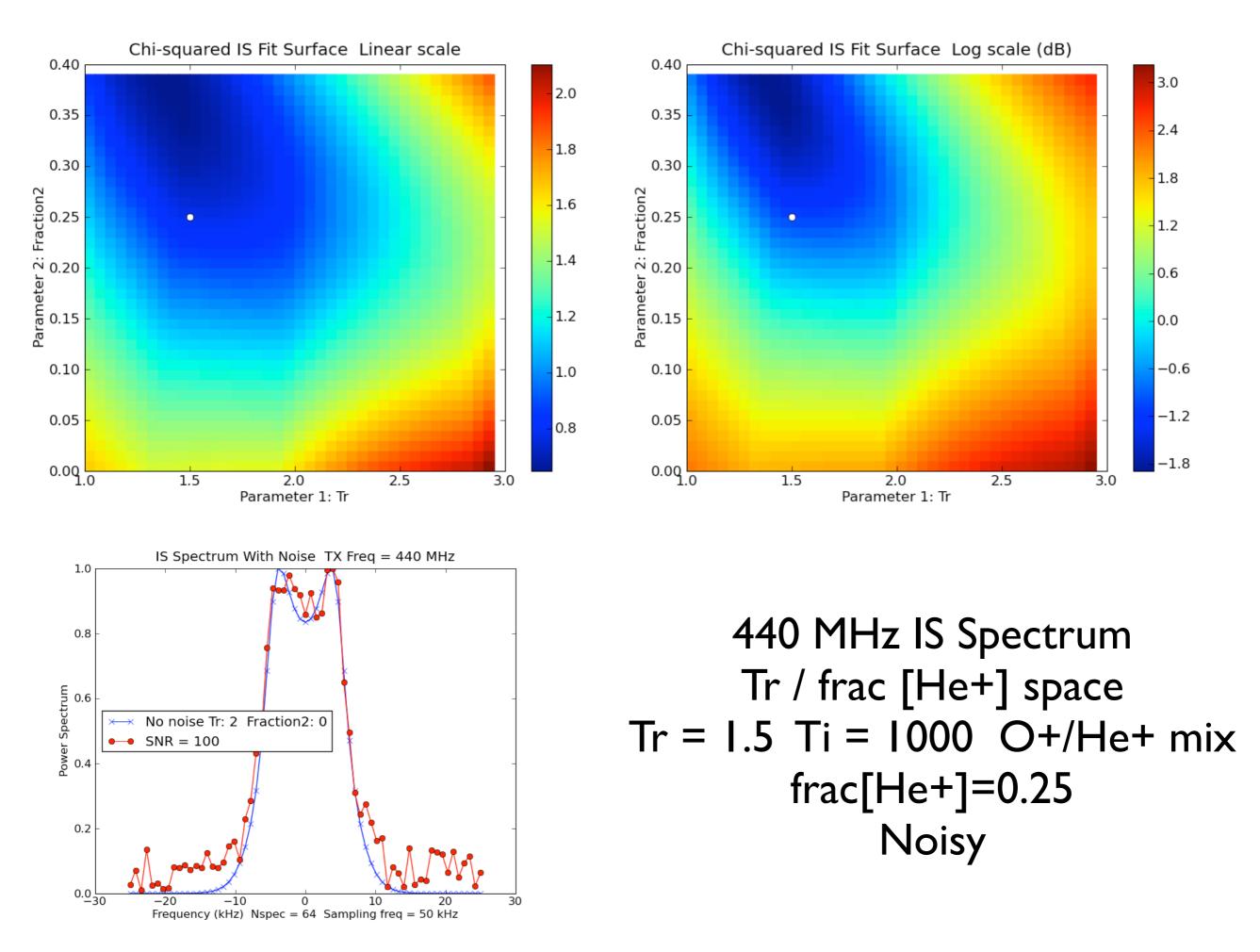


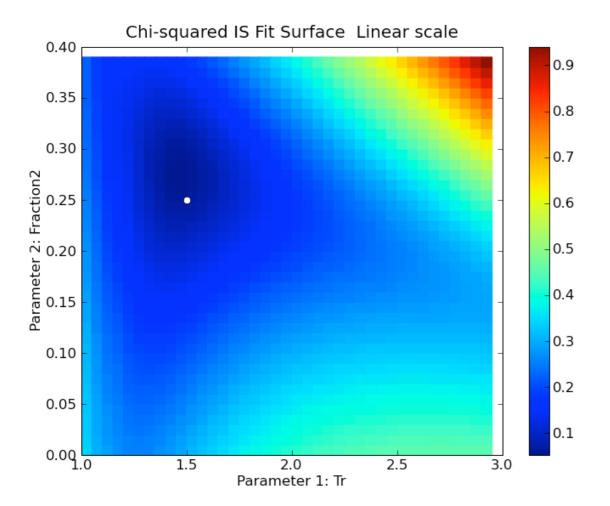
440 MHz IS Spectrum Tr / frac [He+] space Tr = I.5 Ti = I000 O+/He+ mix frac[He+]=0.25 No noise

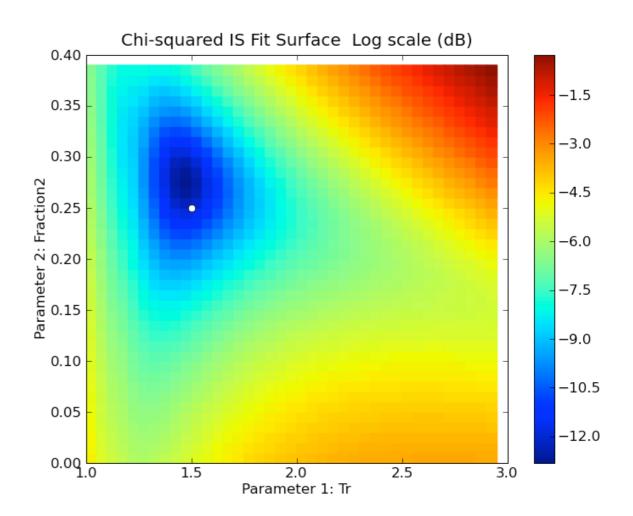


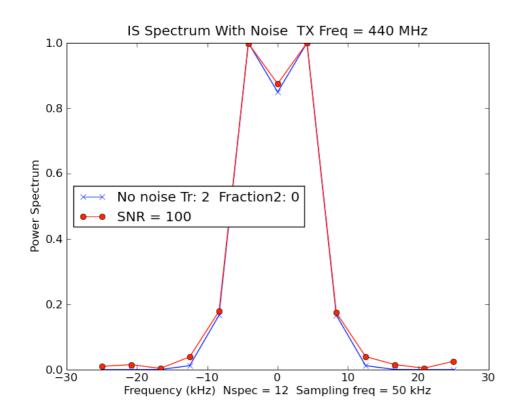


440 MHz IS Spectrum Tr / frac [He+] space Tr = 1.5 Ti = 1000 O+/He+ mix frac[He+]=0.25 Poor sampling

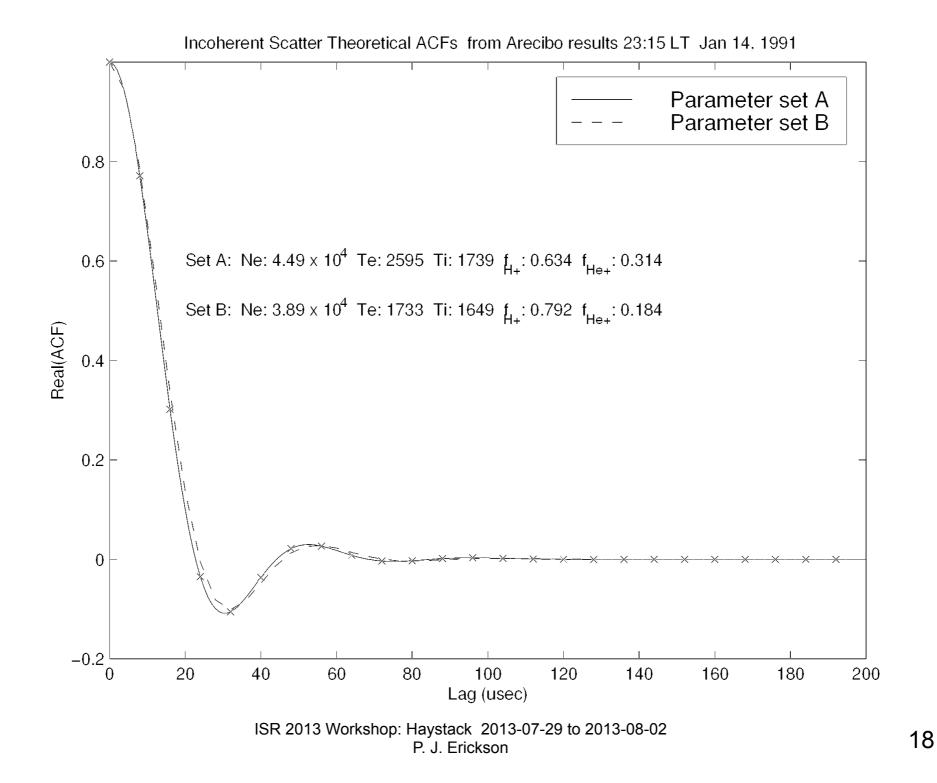








440 MHz IS Spectrum Tr / frac [He+] space Tr = 1.5 Ti = 1000 O+/He+ mix frac[He+]=0.25 Poor sampling, noisy

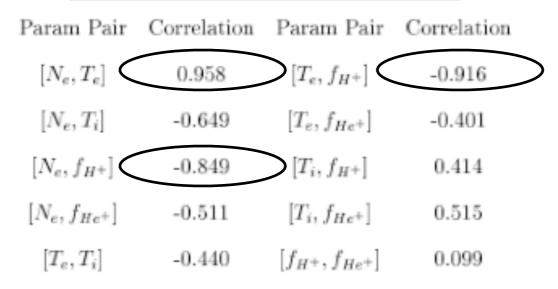


Eigenvalues of Hessian matrix (2nd derivative of min fn) has insights on parameter ambiguities

Table 5.1: Fit results and uncertainty values at 923 km for conditions over Arecibo at 20:41 LT on January 14, 1991. The most ill-defined parameter vector is found from the Hessian matrix eigenvector with the smallest eigenvalue.

Fitter results:				
	Best-fit results	Uncertainty		
N_e	$6.41 imes 10^4$	7.39×10^3		
T_e	2285	41.3		
T_i	2223	23.4		
f_{H^+}	0.490	0.00483		
f_{He^+}	0.159	0.00341		

Correlations between pairs of parameters:



Most ill-defined parameter combination:

+0.998 (N_e) +0.0527 (T_e) -0.0202 (T_i) + 5.46 × 10⁻⁶ (f_{H⁺}) - 2.32 × 10⁻⁶ (f_{He⁺})

Bayesian statistics: add apriori knowledge to stabilize fit.

Can come from other instruments, or from data at other altitudes/times.

One formulation: minimize

$$\chi^2 = \chi^2_{data} + \chi^2_{apriori}$$

Here, the apriori information adds a cost for solutions which wander too far from the apriori knowledge. (DANGER!)

Many implementations in our field:

- Constrained temperature profiles
- Vector velocity fits
- Full profile analysis
- Regularization
- Etc.

Unconstrained Arecibo topside analysis

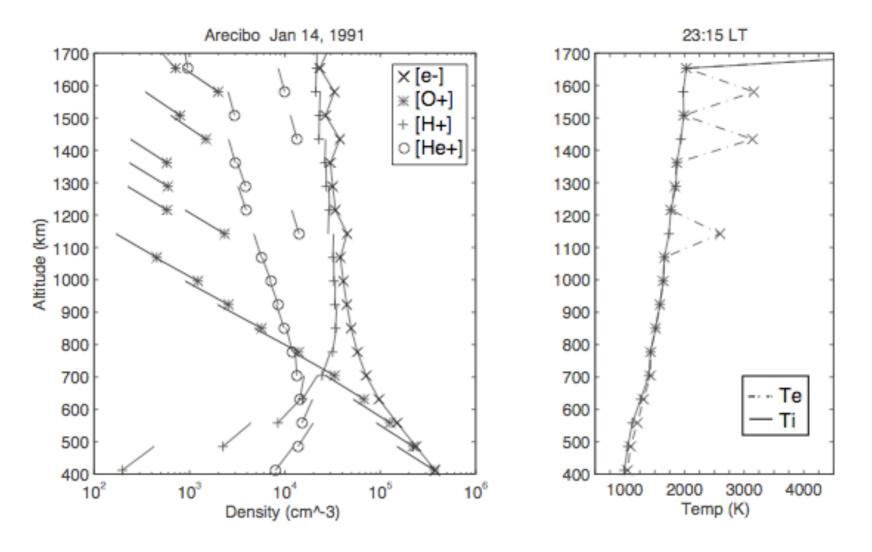
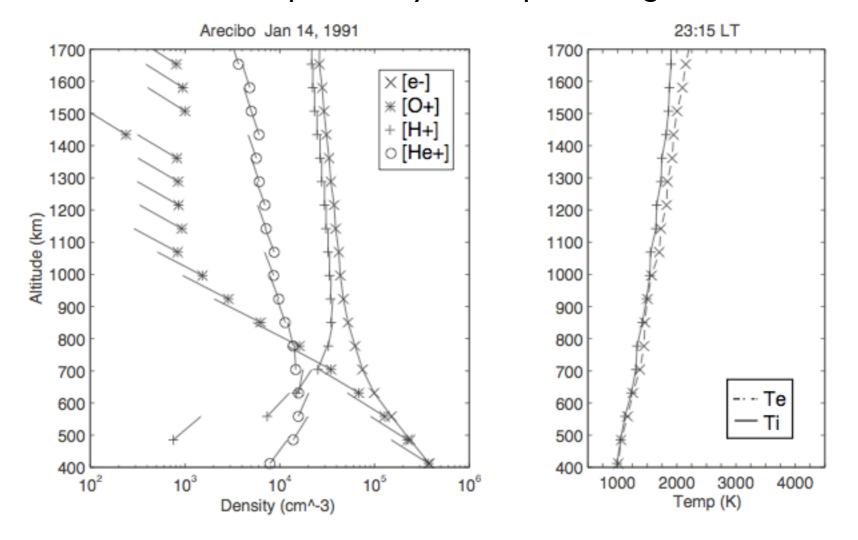


Figure 5.3: Density and temperature values as a function of altitude over Arecibo at 23:15 LT on January 14, 1991, using a 15 minute integration period. The lines emanating from each density value plotted in the left hand panel are predictions of density variation based on multicomponent diffusive equilibrium. There are clear inconsistencies in parameter values at several altitudes.

Erickson and Swartz, 1995; Erickson, 1998



Constrained Arecibo topside analysis: Temperature gradient restriction

Figure 5.5: Density and temperature values as a function of altitude over Arecibo at 23:15 LT on January 14, 1991, using a 15 minute integration period. The lines emanating from each density value plotted in the left hand panel are predictions of density variation based on multicomponent diffusive equilibrium. The smooth temperature constraint results in a consistent set of fitted parameters.

Erickson and Swartz, 1995; Erickson, 1998

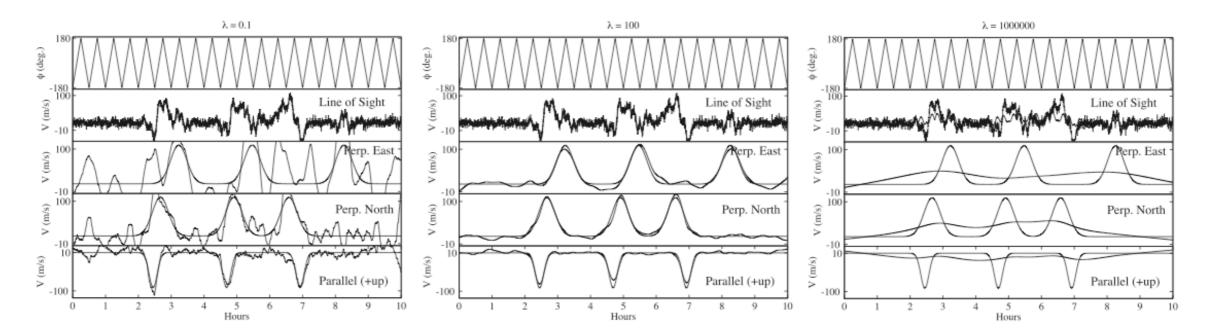
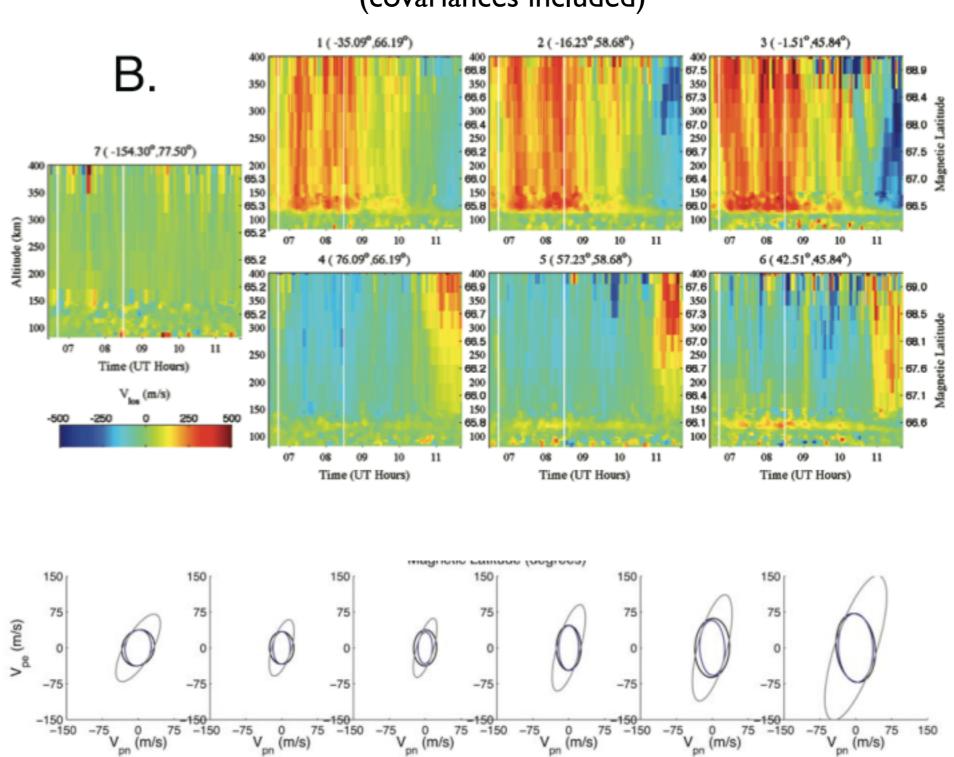


Figure 3. Vector velocity input-output comparison using a simulation assuming a single beam and applying the method of regularization. The panels on the left show the results for a small value of λ . The panels on the center were obtained from a simulation with an optimal value of λ , while the panels on the right correspond to a case with too much λ .

$\begin{bmatrix} V_{pn} \end{bmatrix}$	$\int -\cos\delta\sin I$	$\sin\delta\sin I$	$\cos I$	$\begin{bmatrix} v_x \end{bmatrix}$
$V_{pe} =$	$\begin{bmatrix} -\cos\delta\sin I\\\\\sin\delta\\\\\cos\delta\cos I \end{bmatrix}$	$\cos\delta$	0	v_y .
V _{par}	$\cos \delta \cos I$	$-\sin\delta\cos I$	sin I	v_z
$\begin{bmatrix} V_{LOS}(1) \end{bmatrix}$	$-\cos\phi_1\sin\theta_1$	$i \sin \phi_1 \sin \theta$	$\cos \theta$	$\left[\begin{array}{c} v_x \end{array} \right]$
$\begin{bmatrix} V_{LOS}(1) \\ \vdots \\ V_{LOS}(n) \end{bmatrix} =$	=			vy
$\left\lfloor V_{LOS}(n) \right\rfloor$	$-\cos\phi_n\sin\theta$	$i \sin \phi_n \sin \theta$	$\cos \theta_{-}$	v_z

Arecibo linear regularization of line-of-sight velocities for full vector derivation

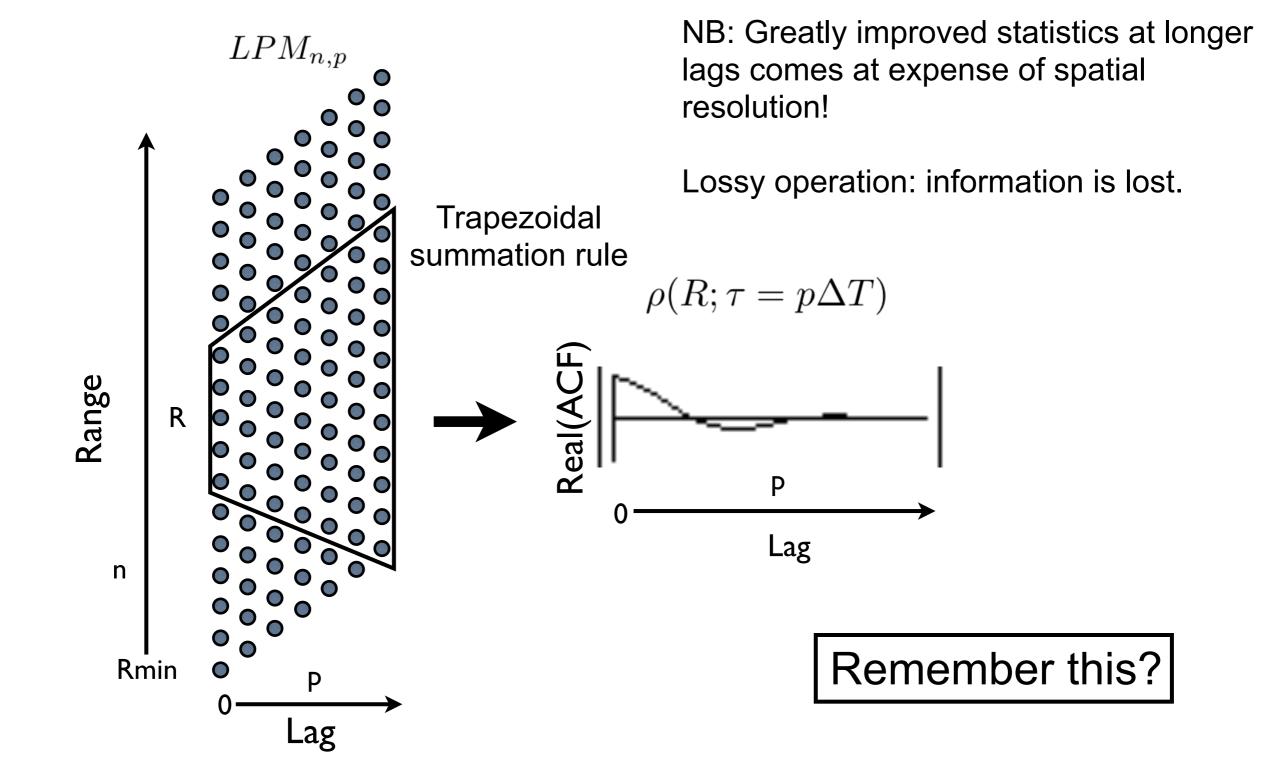
Sulzer et al, 2005



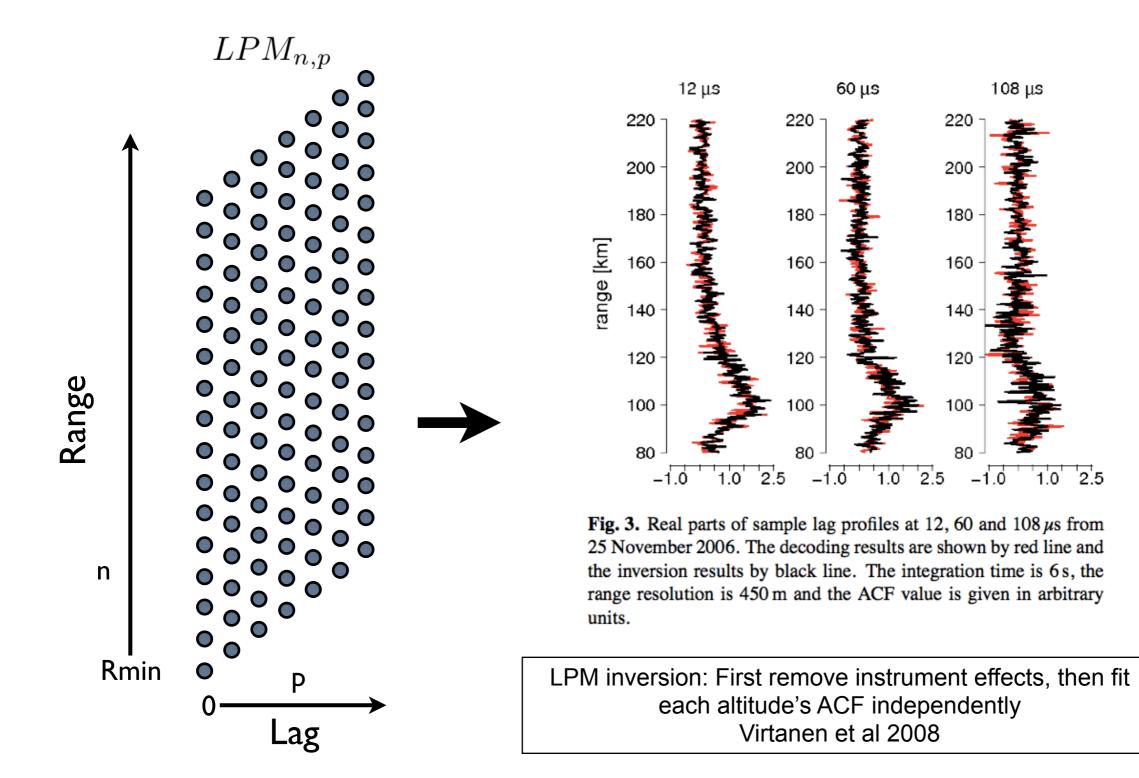
Poker Flat ISR E region winds, electric fields (covariances included)

Heinselman and Nicolls, 2007

Summation Rules: Improving Statistics for LPM -> ACF



Direct LPM Fitting: Use More of the Information Available



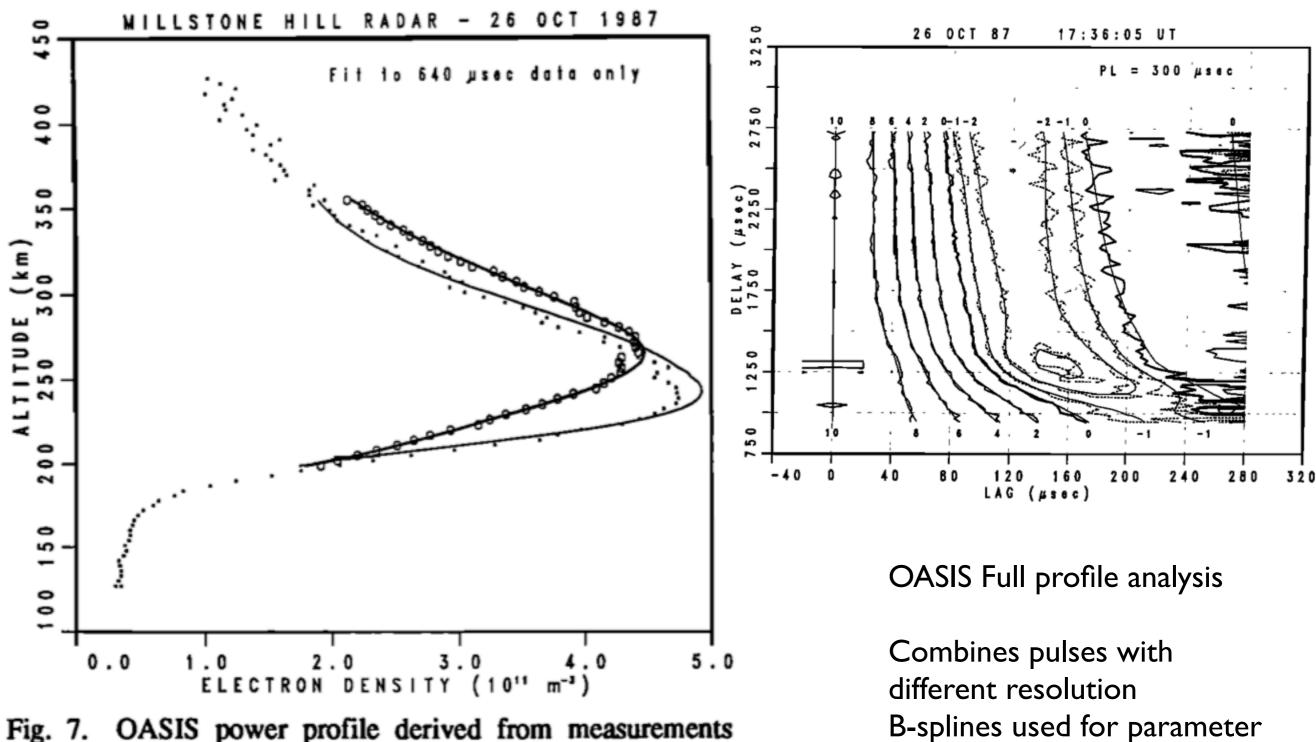


Fig. 7. OASIS power profile derived from measurements made with 640- μ s single pulse. The data are shown as hexagons and the fit to the data as a thick line. The deconvolved profile is shown as a thin line and is compared to nearly simultaneous 100- μ s data which is shown as dots.

Holt et al, 1992

LPMs directly

variation - generate and fit

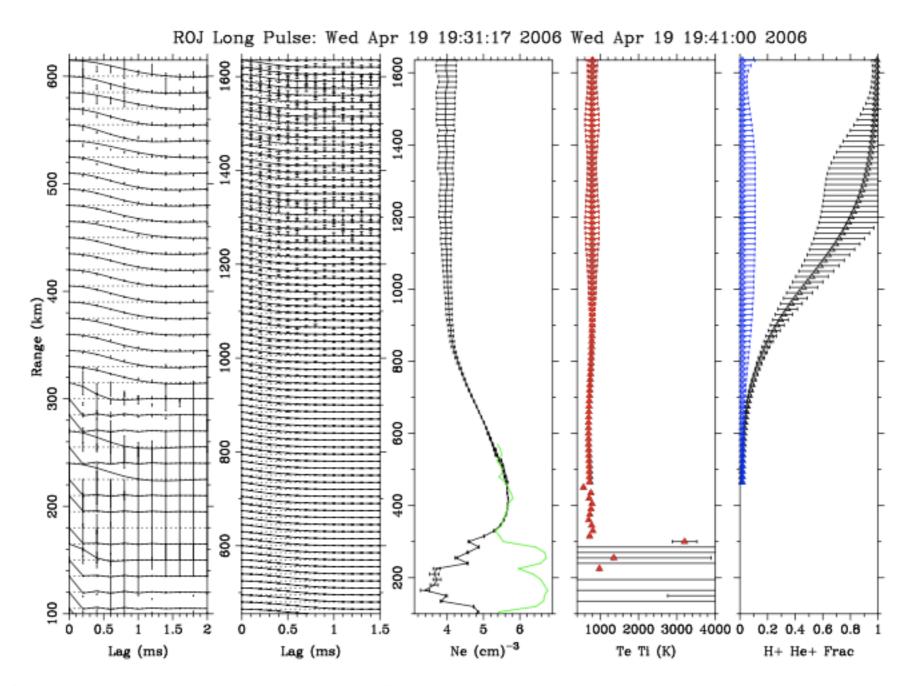


Fig. 3. Jicamarca profiles for 19:30 LT (00:30 UT). From left to right, the panels represent double-pulse lag products, long-pulse lag products, electron density, electron and ion temperature, and light ion fraction (see text).

Full profile at JRO Hysell et al, 2008 6 cost functions inject weighted apriori information