EISCAT modes

- Default exps will be

VHF: CP6 (manda)
D region (360m)
Tristatic at 150 km
UHF: CP1 (beata)
E+F region (3km) Plasma lines

- Interrupts of EPO exps (calibration)

EISCAT Common Programmes

- 6 modes
- Altitude
- D region
- E region
- F region
- Topside

CP4

- Antenna modes
- Fixed
- Small scan
- Large scan

KST experiments

Dsp	Type
exp	
beata	High elevation, (D)EF region, moderate/high resolution
bella	Low elevation, E+F region, moderate resolution
manda	High elevation, D(EF) region, high resolution
tau7	High/Low elevation, (E)F region + topside, low resolution

Dsp exp	Radar	Pulses ($\mu \mathrm{s}$)	Sampling $(\mu \mathrm{s})$	Resolution (km)	Ranges (km)	Plasma line	Time resolution (s)
beata	UHF	$32 \times 20 \mathrm{AC}$	10	$1.5-3$	$49-694$	$1 \times 7.4 \mathrm{MHz}$	5
	VHF	$32 \times 20 \mathrm{AC}$	20	3	$49-694$	$(2 \times 2.5 \mathrm{MHz})$	5
bella	UHF	$30 \times 45 \mathrm{AC}$	15	$1.8-6.8$	$49-1428$	$1 \times 9.8 \mathrm{MHz}$	3.6
	VHF	$30 \times 45 \mathrm{AC}$	45	6.4	$54-1340$	$1 \times 4.9 \mathrm{MHz}$	3.6
manda	UHF/VHF	$61 \times 2.4 \mathrm{AC}$	1.2	$0.18-0.36$	$19-209$		4.8
tau7	VHF	two 16×96 AC	12	$2-14$	$61-2014$		5

KST experiments

Data example

beata 2011-05-10 1026:00 60s 1463kW 186.2/77.5

- Power profile
- Ion line
- Plasma lines

Frequency (kHz)
Frequency (kHz)
Alternating code
Alternating code

Millstone Hill ISR Mode: Regional Vector Coverage 2014-07-22 20 to 2014-07-23 07 UTC

This is an experiment designed to provide rapid time coverage of E, F, and topside region ionospheric parameters in the vicinity of Millstone Hill, in a cone with radius $+/-2$ degrees at F region heights. The mode provides vector ion drifts/electric fields as well as electron density, electron and ion temperatures, and ion composition.
Both the zenith and steerable MISA antennas are used. Integration time in any one position is 4 minutes with the possibility for shorter integrations in post-experiment analysis.
1.Zenith: 960 usec uncoded pulse : 4 minutes [Topside]
2.Zenith: 480 usec alternating code / uncoded pulse: 4 minutes [E, F region]
3.MISA @ 45 deg el, North: 480 usec alternating code / uncoded pulse: 4 minutes [E, F region]
4.Zenith: 480 usec alternating code / uncoded pulse: 4 minutes [E, F region] 5.MISA @ 45 deg el, West: 480 usec alternating code / uncoded pulse: 4 minutes [E, F region]

PFISR Mode for 2014 Student Workshop

This mode consists of 11 look directions, including a vertical beam, an up-B-looking beam, and 9 beams directed towards the North. The mode utilizes E-region (AC) and F-region (LP) pulses, switching lookdirections on a pulse-to-pulse basis. Vector ion flows are resolved by combining the line-of-sight velocities from all beams.

- 11 beam (look directions)
- 330 us long pulse / 20 us sampling
- 480 us alternating code / 10 us sampling
- Dual frequency plasma line channels

Mode for Sondrestrom

Full composite-scans will be run at the Sondrestrom radar tonight. It consist of 2 alternating elevation scans offset to the east and west respectively. This will give convection vs latitude with 5-minute resolution, in addition to standard parameter. 320 us longpulses.

Typical modes: scans

Ne, compscans $(\mathrm{m}-3) \times 10^{10}$ Altitude (height) : 300.00

Rel. Error $<=30.0 \%$ 53003.5-050020.4

2001 Feb 14 053003.5-050020.4

Te, compscans (K) $\times 10^{2}$ Altitude (height) : 300.00

Rel. Error $<=30.0 \%$

