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inverse problems

theory︷︸︸︷
G (

model︷︸︸︷
m ) +

error︷︸︸︷
e =

data+error︷︸︸︷
d

discrete G︸︷︷︸
Rn×m

m︸︷︷︸
Rm

+ e︸︷︷︸
Rn

= d︸︷︷︸
Rn

or continuous
∫
G(ψ, x)m(x)dx+ e = d(ψ)

or a combination

linear (as above) or nonlinear

i.e. convolution, Fourier transform, Abel transform, Radon
transform, or full ISR theory

– need to estimate m with only statistical information on e
– generally cannot and do not want to simply evaluate G−1

– “Riemann-Lebesque Lemma”
– existence, uniqueness, stability of estimator?
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gravity anomaly

W (x) = ρMG

∫
D(x′)dx′

(D2 + (x− x′)2)3/2
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discrete linear inverse methods

Consider forward problem

G(m−m◦) + e = d−Gm◦

Seeking morel estimate of form

mest ≡ m◦ + G̃(d−Gm◦)

Problem could be under determined, over deterined, or both
(mixed) as well as possibly unstable ...



Fundamental theorem of linear algebra; SVD

vector spaces: Gx = y xtG = yt Gx = 0 xtG = 0

G = UΛV t, d = Gm

=

(
column left
space null space

)
︸ ︷︷ ︸

nxn
e−vecs of GGt

(
Λpxp 0

0 0

)
︸ ︷︷ ︸

nxm√
e−vals

(
row space

null space

)
︸ ︷︷ ︸

mxm
e−vecs of GtG

G̃ = V Λ−1U t, m ≈ G̃d

=

(
row null

space space

)
︸ ︷︷ ︸

mxm

(
Λ−1pxp 0

0 0

)
︸ ︷︷ ︸

mxn

(
column space

left null space

)
︸ ︷︷ ︸

nxn

= VmxpΛ
−1
pxpU

t
pxn

– condition no. ≡ Λmax/Λmin

– introduce damping fi = Λ2
i /(Λ

2
i + α2) or “regularization”



linear optimization strategies

Optimize some combination of:

model prediction error (χ2):

(Gm− d)TC−1d (Gm− d)

model length

(m−m◦)TLTL(m−m◦)

spread of model (Rm) or data (Rd) resolution

Gm ≈ d, G̃d = mest → G̃G︸︷︷︸
Rm

m ≈ mest, GG̃︸︷︷︸
Rd

d ≈ dpred
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strategies II

model error covariance

Cm = G̃CdG̃
T

Bayesian model probability

P (m|d) ∝ e−
1
2 [(mest−m◦)TC−1

m (mest−m◦)+(Gm−d)TC−1
d (Gm−d)]

All (including pseudoinverse) yield same estimate:

mest = m◦ + (GTC−1d G+ C−1m )−1GTC−1d (d−Gm◦)

which is the weighted damped least squares estimate (also the
Kalman gain)
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illustrative example - least squares

m = arg min
m

||Gm− d||22

Gt(Gm− d) = 0

GtGm = Gtd

mest = (GtG)−1Gtd

now add weights:

m = arg min
m

(Gm− d)tC−1d (Gm− d)

= arg min
m

∥∥∥C−1/2d Gm− C−1/2d d
∥∥∥2
2

≈ (GtC−1d G)−1GtC−1d d
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add damping

m = arg min
m

(Gm− d)tC−1d (Gm− d) + α2mtC−1m m

= arg min
m

∥∥∥∥∥
(
C
−1/2
d G

αC
−1/2
m

)
m−

(
C
−1/2
d d

0

)∥∥∥∥∥
2

2

≈ (GtC−1d G+ α2C−1m )−1GtC−1d d

– used normal equations again

– have defined C−1m = C
−1/2t
m C

−1/2
m for real symmetric Cm

– large α guarantees existence of inverse
– this is called ‘weighted damped least squares’
– expensive!
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additional constraints

– consider constraint of form Fm− h = 0:
– can include this by augmenting original forward problem:

(
GtG F t

F 0

)(
m
λ

)
=

(
Gtd
h

)
... where λ is an undetermined (Lagrange) multiplier
– invert LHS for solution, if possible
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optimization problem: iterative methods

GtG︸︷︷︸
A

m︸︷︷︸
x

= Gtd︸︷︷︸
h

ptiApj = 0

– solve this linear system of equations iteratively using
conjugate gradients
– for overdetermined problems, A positive definite, problem has
unique solution
– for mixed-determined problems, A positive with a ridge,
solutoin depends on initial guess for x
– if x◦ is the zero vector, method converges on damped solution
– convergence in m iterations guaranteed but for roundoff error
– early termination tantemount to increased α
– nothing worse than matrix-vector multiply involved
– suitable for sparse math
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nonlinear problem - Newton’s minimization method

– consider a scalar cost function c(x) of a parameter vector x:

c(x◦ + δx) ≈ c(x◦) + ∇c︸︷︷︸
gradient

(x◦)
tδx+

1

2
δxt ∇2c︸︷︷︸

Hessian

(x◦)δx+ · · ·

∇c(x◦ + δx) ≈ ∇c(x◦) +∇2c(x◦)δx+ · · ·

– at cost-function minimum, gradient term vanishes, and

∇2c(x◦)δx ≈ −∇c(x◦)

... which is the foundation for Newton’s minimization method,
with x◦ → x◦ + δx
– never calculate Hessian (2nd derivative) matrix in practice!
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quadratic optimization and the Jacobian

– consider specifically a quadratic cost function of least-squares
form (with data covariances absorbed here)

c(m) =

n∑
i=1

(G(m)i − di)2

=

n∑
i=1

fi(m)2

J ≡


∂f1
∂m1

· · · ∂f1
∂mm

...
...

∂fn
∂m1

· · · ∂fn
∂mm



∇c = 2J(m)tf

∇2c ≈ 2J tJ
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steepest descent

δm ∝ −∇c
= −εJ tf

14 / 18



Levenberg Marquardt

– use J in Newton’s method, iterate ...

J(m)tJ(m)δm = −J(m)tf(m)

– improve iteration with some added damping ...

(J tJ + ΛI)δm = −J tf

adjust Λ parameter to assure convergence

for large Λ, this is the method of steepest descent

for small Λ, this is Newton’s method

error propagation (assuming Cd = I)

covm ≈ (J tJ)−1

iterate until either ‖∇c(m)‖2 or changes to it are small

improve convergence by factoring A matrix



augmented problem with weights, damping

– calculate Jacobian analytically if possible, with finite
differences otherwise
– weights, damping, and constraints included through
augmentation of A matrix, as in linear problem, e.g.

c(m) =

∥∥∥∥∥ G(m)− d
αC
−1/2
m m

∥∥∥∥∥
2

2

K(m) ≡

(
J(m)

αC
−1/2
m

)

(KtK + ΛI)δm = −Kt

(
Gm− d
αC
−1/2
m m

)

– always use NETLIB (never Numerical Recipes)
– consider non-negative least squares (NNLS)



profiles: 12 LT
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