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Working with high power large aperture radars, you get a
chance to learn (Josh Semeter):

I Geophysics, plasma physics, atmospheric science, and climate
research...

I Electronics: high power amplifiers, RF engineering, digital
signal processing, radar transmit coding...

I Computer science, dealing with lots of data, writing software...

I Signal Processing: Bayesian Statistics, inverse problems,
applied mathematics, radar transmit coding

I Astronomy
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Range resolution, bandwidth, compressed power, range
ambiguity
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Why bother?

I Radar experiment design determines: range resolution, range
extent, spectral resolution, spectral extent, and error bars.
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Radar architecture (Sofrware Defined Radio)

SDR
TX

Clock

PPS 10 MHz

SDR
RX

Waveform generation
Digital output

...
...

Random access
IQ buffer

Filtering
Decimation
Metadata
Storage

Receiver software

Data analysisData analysisData analysis

Transmitter
software

Low level software High level softwareSoftware defined radioAnalog radio frontend
and antenna

Make this part nearly invisible 
for scientist
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What is a baseband signal?
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What is a baseband signal?

The Fourier transform of a real valued signal x(t) ∈ R is conjugate
symmetric x(ω) = x(−ω)∗, which directly follows from the
definition:

x(ω) =

∫ ∞

−∞
x(t)e−iωtdt (1)

Band limited signal only contains information in a band B around
ω0, so it is natural to consider only the portion of the spectrum
that contains the information:

z(t) = e−iω0t

∫ ω0+B/2

ω0−B/2
x(ω)e iωtdω (2)

The Nyquist-Shannon theorem also says that a sample rate of B is
sufficient to retain all information within the band of interest, so
we end up with a discretized signal zn = z(n∆t) ∈ C.
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Radar waveform: complex baseband vs. real signal

ε(t)∈

E(t)∈

1 1 1 1 1 -1 -1 1 1 -1 1 -1 1

I Baseband signal
I Transmit waveform, examples: binary phase code, polyphase

code, continuous code, e.g., chirp, amplitude modulated code.
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Coherent vs. Incoherent

Coherent target

Incoherent target

Full-profile inversion

Lag-profile inversion

Matrix deconvolution

|F {ζr0,t} (ω)|2

E {mtmt+τ}

mt

Pulse-to-pulse Doppler

Matched filter
Inverse filter
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|F {ζr0,t} (ω)|2
mt =

∑
r εt−rζr,t + ξt

mt =
∑
r εt−rζr,t + ξt ≈

∑
r εt−rζr + ξt
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Summary

I Radar waveform, baseband signal

I Probability theory basics – when dealing with mostly noise
dominated signals, we need to use statistics

I Functional analysis aspects – mostly Fourier domain,
convolution, and circulant matrices → efficient numerical
solutions and easier to study analytically

I Coherent target and Incoherent target

I Bandwidth = Resolution

I Time domain. Integrated power = Peak power

I Typical codes: pseudorandom codes, alternating codes,
optimized codes, Barker codes, complementary codes, long
pulse, amplitude modulated codes.
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Measurement model

Measurement model or forward model relates measurements to a
model that describes the measurements with the help of
parameters x and random variables ξ. In the case of radar
measurement, nearly all models are linear:

m = Ax + ξ (3)

Here A is a function that can ”simulate” the measurements, given
the correct values of parameters x.
m ∈ CM×1, measurement vector
A ∈ CM×N , theory matrix
x ∈ CN×1, unknown parameters
ξ ∈ CM×1 ∼ NC(0,Σ), measurement noise.
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Statistical Inverse Problem, Bayes’ Theorem

p(x|m) =
p(m|x)p(x)

p(m)

p(x|m) ∝ p(m|x)p(x)

Where
p(m) is probability of measurements
p(x) is prior distribution of unknown x
p(m|x) is the likelihood function
p(x|m) is the a posteriori distribution
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Estimators

(Kaipio & Somersalo 2004)

Maximum a posteriori:

xMAP = argmax
x

p(x|m) (4)

Conditional mean:

xCM =

∫
xp(x|m)dx (5)

Maximum likelihood:

xML = argmax
x

p(m|x) (6)
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Linear Model, Complex Valued Problems

If noise is proper complex Gaussian noise, ie., EξξT = 0 and
EξξH = Σ, then:

p(m|x) =
1

πN |Σpost|
exp

{
−(m− AxML)HΣ−1

post(m− AxML),
}

(7)
with

Σpost = (AHΣ−1 + Σprior)
−1 (8)

and
xML = ΣpostA

HΣ−1m (9)
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Statistical Inverse Problem, Maximum a Posteriori,
Regularization

If we additionally make the prior assumption that our unknown is a
Gaussian normal random variable distributed as x ∼ N(0,Σprior),
then

p(x|m) =
1√

2πN |Σpost|
exp

{
−1

2
(m− AxMAP)TΣ−1

post(m− AxMAP)

}

Posteriori covariance

Σpost = (ATΣ−1A + Σ−1
prior)

−1 (10)

Maximum likelihood estimator:

xMAP = xCM = ΣpostA
TΣ−1m (11)
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Linear Model, Complex Valued Problems

If noise is proper complex Gaussian noise, ie., EξξT = 0 and
EξξH = Σ, then:

p(m|x) =
1

πN |Σpost|
exp

{
−(m− AxML)HΣ−1

post(m− AxML),
}

(12)
with

Σpost = (AHΣ−1A)−1 (13)

and
xML = ΣpostA

HΣ−1m (14)
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Convolution equation, circulant matrix

The radar pulse convolved with a stationary target is a convolution
equation:

mt =
R∑

r=0

εt−rζr + ξt (15)

Can be expressed as a matrix equation

m = Ax + ξ (16)




m0

m1
...

mN


 =




c0 cn−1 . . . c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2
. . .

. . . cn−1
cn−1 cn−2 . . . c1 c0







ζ0
ζ1
...
ζR


 (17)

This type of an operator is ubiquitous in radar measurement theory.
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Correlation Estimate

Calculating the posteriori covariance is sometimes very expensive.
If we can formulate the problem in such a way that Σ ≈ βI
(AHA + Σprior−1)−1 ≈ αI or even (AHA)−1 = αI, then we can
simplify our MAP and ML estimates.

xMAP = AHm (18)

Can be seen as a form of regularization to achieve computational
speed at the expense if a slightly ”wrong” prior assumption.
Examples: plasma line, match function in radar, discrete Fourier
transform, Lomb-Scargle periodogram, Alternating codes,
pseudorandom codes, complementary codes, Barker codes...
(Sulzer 1986; Lehtinen and Häggström 1987)
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Fourier relationship of an ACF and Spectrum (1/2)
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Fourier relationship of an ACF and Spectrum (2/2)

An autocorrelation function σ(τ) = Ez(t + τ)z(t) can be
expressed as the convolution of a signal z(t) with itself:

σ(τ) = lim
t→∞

1

T

∫ T

0
z(t + τ)z(t)dt (19)

The above equation gives us a hint that the autocorrelation
function is related with power spectral density (a convolution is
multiplication is frequency domain). The Weiner-Khinchin
theorem:

S(ω) =

∫
σ(τ)e−iωτdτ (20)

σ(τ) =

∫
S(ω)e iωτdω (21)
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Coherent vs. Incoherent

Coherent target

Incoherent target

Full-profile inversion

Lag-profile inversion

Matrix deconvolution

|F {ζr0,t} (ω)|2
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∑
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∑
r εt−rζr + ξt
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Full-profile inversion

For long-pulse, the ambiguity is not invertible, i.e., AHA is
singular. In this case, one can still proceed to fit plasma
parameters on the point-spread function, or ambiguity function.
The solution is solvable by making a prior assumption of continuity
of plasma parameters.
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Full-profile inversion

I Pros: very sensitive due to largest possible scattering volume
and smallest possible receiver bandwidth.

I Cons: range extended correlations

(Hysell et.al., 2008; et.al., Holt 1992)
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Lag-profile inversion

Discretized incoherent scatter radar equation:

mt =
∑

r

εt−rζr ,t + ξt (22)

Here mt is measured baseband signal, εt−r is the transmit
waveform, ξt is receiver noise, and ζr ,t is the incoherent
backscatter process, the collective return from the bazillions of
scatterers moving in various directions within the radar volume
defined propagation time r and t.
In radar we often use propagation time r from transmitter to target
and target to receiver (in the monostatic case, round-trip time
r = 2R/c).
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Lag-profile inversion

If the change of ζr ,t is slow enough that ζr ,t ≈ ζr , then the
equation reduces to a convolution equation. This is true in the
D-region with most radars, and also with perpendicular to the
magnetic field measurements at Jicamarca.

mt =
∑

r

εt−rζr + ξt (23)

However, in the E and F-regions, ζr ,t already changes significantly
during the time that the pulse travels through the scattering
volume. How do we solve the problem then?
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Lag-profile inversion

We assume that the second order products (the ACF)
E ζr ,tζr ,t+τ = στr are unchanged over a certain observation period.
This is the wide sense stationary uncorrelated scattering medium
assumption (Clarke 1968, van Trees 2002).
To estimate στr , we can look at lagged products. Dropping all the
zero mean terms, we get:

mtmt+τ =
∑

r

εt−r εt−r+τσ
τ
r + ξ′t . (24)

26 / 35



Lag-profile inversion

In linear equation form

mτ = Wτστ + ξ′. (25)

The noise term ξ′t is not Gaussian white noise, and also contains
self-noise, but it approaches the Gaussian distrubution when we
average lagged products long enough. The above equation is a
linear equation, and it is the basis for lag-profile inversion
(Virtanen et al., 2008, Nikoukar et al., 2008).
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Lag-profile inversion

Maximum likelihood estimate of autocorrelation function estimates:

σ̂τ = (WτTΣ−1Wτ )−1WτTΣ−1mτ . (26)

We can also look at the “error bars”, or the covariance matrix of
our estimate:

Σp = (WτTΣ−1Wτ )−1, (27)

where Σ = Eξ′ξ′
T

is the covariance matrix of the errors.
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Lag-profile inversion

Useful features:

I The framework of linear inverse problems can be applied to
solve the problem (a lot of classical results available to
analyze the problem)

I If coding is good enough, the problem is not ill-posed, and we
get unbiased estimates of the range dependent autocorrelation
functions.

I Missing measurements are not a problem (eg., outlier removal
can be done in receiver sample level and it doesn’t bias our
estimates).

I We can use different range resolutions for different altitudes
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Lag-profile inversion

Problematic features:

I Poor coding results in an ill-posed problem and regularization
is needed, which biases our results.

I With high signal to noise ratio, the assumption of circular
symmetric Gaussian errors is wrong and the use of the wrong
covariance degrades the results. This could be fixed by using
generalized complex Gaussian errors with Eξ′ξ′T 6= 0, but
this is dependent of our unknown radar target.

I Ok for single beam applications, but matrix equations are slow
for high resolution multi-beam analysis.
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Fast Lag-profile inversion

If we now rewrite some of the terms in more compact form
(mtmt+τ = mτ

t , εt−r εt−r+τ = ετt−r , and Eζr ,tζr ,t+τ = στr ), we
obtain:

mτ
t =

∑

r

ετt−rσ
τ
r + ξ′t , (28)

we notice that the equation is actually a convolution equation.
Another way to view the problem is that each lag of the
autocorrelation function is convolved with the range ambiguity
function.
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Fast Lag-profile inversion

Obtaining the maximum likelihood estimate for the equation

mτ
t = Wτστ + ξ′, (29)

would require calculating:

x̂ = (WτTΣ−1Wτ )−1WτTΣ−1m. (30)
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The Fast Fourier Transform (FFT) is your friend.

Zm =
N−1∑

n=0

zne
−i2πmn/N , (31)

I Spectral estimation

I Convolutions

I Deconvolutions

I Diagonalization of circulant form linear equations

I Grid search of the likelihood function of a moving point target
model
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So what can you do with a high power large aperture
radar?

I Ionospheric plasma parameters

I Meteor radar (accurate orbital elements of mg sized
meteoroids)

I Planetary radar (asteroids, planets, moons)

I Space debris tracking (down to mm diameters)

I Radar imaging (Field aligned irregularities)
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Why work with high power large aperture radar?

I It is challenging. Once you know how to deal with incoherent
scatter radars, all other types of radar measurements are easy.

I It is fun.
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