

Partitioning of energy into auroral fine scale breakup arcs

Hanna Dahlgren¹, Josh Semeter¹, R.A. Marshall² ¹Boston University, ²Stanford University

Observations of dynamic, flaming rays

1 March 2011 substorm Poker Flat, Alaska

5577 Allsky video courtesy: Don Hampton

High speed imager:

sCMOS detector ('Neo'), 2560 x 2160 pxls 25 mm F/0.95 lens -> 33 x 29 deg FOV Spatial resolution: 27 m Temp. resolution: 50 fps in 12 s burst mode

BG3 filter

10:06:11.000

Flaming characteristics from analyzed rays

Flaming characteristics from analyzed rays

flaming time of ~0.4 s.

 2.5×10^{4} Integrated intensity in box 2.5×10^{4} 2.5×10^{4} $1.5 \times$

Magnetometer data show Pi1B pulsations at this time

Time-dispersed electron precipitation

Time-dispersed electron precipitation

Monoenergetic emission rate profiles for N_2^+ emissions, as modeled with the TRANSCAR model [Zettergren et al. 2007], are used to estimate the energy of the precipitating electrons.

By fitting modeled profiles to the measured data, the energy flux of each flux tube is also estimated

By combining observations and modeling we can derive volume emission rates, characteristic energy and energy flux of the precipitation – at micro-scale temporal and spatial resolution The energy flux is partitioned into fine scale structures for which we can study the motion

Adding to the picture: PFISR data showing NEIALs

BOSTON UNIVERSITY

NEIALs – signatures of Langmuir turbulence.

Different responses in each PFISR beam -Horizontal variations

See todays posters IRRI-16 by Hassanali Akbari and ITIT-08 by Michael Hirsch