The NRC is developing a new 2D deterministic lattice code to generate homogenized fuel assembly data to be used in a new multi-group homogenized-assembly 3D core simulator code.

Reactor Modeling:

1. What neutronics parameters will the core simulator need from the lattice code?
2. When 2D lattice data is used in 3D core models, which neutronic effects might be poorly approximated?

2D Lattice Methods:

3. If you were to use 100 energy-group cross section library, how would different isotopes influence your recommendation for a distribution of energy groups?
4. What self-shielding method would you recommend for treating resolved resonances?
5. What transport solution method would you recommend for computing scalar fluxes?

3D Core Methods:

6. If the 3D core model uses a diffusion theory model, what approximation would you recommend to compute homogenized-assembly diffusion coefficients?
7. What are the advantages and disadvantages of using FE (Finite-Element) vs. Nodal methods to solve homogenized diffusion equations?
8. What thermal-hydraulic approximations would you recommend for treating the core’s fuel and coolant temperature distributions?

Uncertainty Factors:

9. If the first application of the new methods will be for the yet un-built AP1000 reactors, what plan would you recommend for determining 95/95 uncertainty factors to be applied to code predictions?