
Enterprise Service Bus: A Definition
Version: 1.0, Oct 05, 2007

AUTHOR(S):
Anne Thomas Manes
(amanes@burtongroup.com)

TECHNOLOGY THREAD:

SOA and Integration Strategies

Conclusion
An enterprise service bus (ESB) is a middleware solution that enables interoperability among
heterogeneous environments using a service-oriented model. Although frequently associated
with concepts like “integration” and “mediation,” an ESB also provides a service platform
comparable to an application server. In fact, ESBs represent the consolidation of the integration
and application server product categories. An ESB's true breakthrough feature is its ability to
virtualize services. An ESB's service container abstracts a service and insulates it from its
protocols, invocation methods, method exchange patterns, quality of service requirements, and
other infrastructure concerns.

Page: 1

Application Platform Strategies

In-Depth Research Overview

96020

 mailto:amanes@burtongroup.com

Publishing Information

Burton Group is a research and consulting firm specializing in network and applications infrastructure technologies.
Burton works to catalyze change and progress in the network computing industry through interaction with leading
vendors and users. Publication headquarters, marketing, and sales offices are located at:

Burton Group
7090 Union Park Center, Suite 200
Midvale, Utah USA 84047-4169
Phone: +1.801.566.2880
Fax: +1.801.566.3611
Toll free in the USA: 800.824.9924
Internet: info@burtongroup.com; www.burtongroup.com

Copyright 2007 Burton Group. ISSN 1048-4620. All rights reserved. All product, technology and service names are
trademarks or service marks of their respective owners.

Terms of Use: Burton customers can freely copy and print this document for their internal use. Customers can also
excerpt material from this document provided that they label the document as Proprietary and Confidential and add
the following notice in the document: Copyright © 2007 Burton Group. Used with the permission of the copyright
holder. Contains previously developed intellectual property and methodologies to which Burton Group retains
rights. For internal customer use only.

Requests from non-clients of Burton for permission to reprint or distribute should be addressed to the Client
Services Department at +1.801.304.8174.

Burton Group's Application Platform Strategies service provides objective analysis of application platform
strategies, market trends, vendor strategies, and related products. The information in Burton Group's Application
Platform Strategies service is gathered from reliable sources and is prepared by experienced analysts, but it cannot
be considered infallible. The opinions expressed are based on judgments made at the time, and are subject to change.
Burton offers no warranty, either expressed or implied, on the information in Burton Group's Application Platform
Strategies service, and accepts no responsibility for errors resulting from its use.

If you do not have a license to Burton Group's Application Platform Strategies service and are interested in
receiving information about becoming a subscriber, please contact Burton Group.

Table Of Contents

Synopsis.. 4
Analysis...5

What Is an ESB?... 6
Disparate Definitions.. 7
Related Product Categories...7
So What Is an ESB?.. 8

ESB as the Next Generation Application Platform...8
Evaluating ESBs... 11

Architecture...11
Features... 12

Quality of Service... 12
Mediation.. 12
Containers... 13
Connectors.. 13
Tooling.. 13

Standards Support... 13
HTTP and XML.. 13
WSF.. 14
SCA...14
BPEL...15
JBI... 16
JMS... 16

Playing Well with Others..17
Existing Deployments... 17
Licensing Terms..17

Recommendations...17
Recognize the Value and Limitations of an ESB..18

Understand ESB's Role in a SOA Infrastructure.. 18
Recognize That ESBs Are Not Just for SOA..18

Don't Waste Time Trying to Pick One “Universal” ESB... 18
Pick the Right Tool for the Job... 18

Consider Upgrading Older Systems to ESB Equivalents... 18
Beware of ESB Vendor Lock-In Strategies.. 19

The Details.. 20
ESB Definition..20

Latest Generation of EAI.. 20
ESB Product Features... 20

Positioning ESB Within a SOA Infrastructure... 21
Standards That Apply to ESBs..23

HTTP and REST... 23
Java Message Service..24
Web Services Framework... 24

WSF Foundation... 26
WSF Extensions..27
WSF Programming Models.. 27
WSF Management...29

Business Process Execution Language... 29
Service Component Architecture.. 29
Java Business Integration..32

Conclusion.. 33
Notes... 34
Author Bio ..35

3

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

Synopsis

The enterprise service bus (ESB) product category has matured a great deal since the term was first introduced in
2002. Initially a defensive response by the enterprise application integration (EAI) market to the disruptive
influence of web services, ESBs have transitioned into an offensive play to capitalize on the market potential
inspired by service oriented architecture (SOA). And pretty much every middleware vendor wants a part of it.

As a result, the term “ESB” has been redefined, overloaded, and diluted to the point where it has no precise
meaning. Any two products labeled “ESB” are likely to be very different. But there are some basic commonalities
across the products. Fundamentally, an ESB is a service-oriented middleware solution that enables integration of
heterogeneous systems by modeling application endpoints as services. In the process, the ESB abstracts and
virtualizes the application and enables a much more flexible and adaptable environment.

Although most people associate an ESB with features like integration and mediation, an ESB's primary role in a
SOA infrastructure is to act as a service platform—hosting and managing services. In this regard, it is an
application server. In fact, an ESB represents the consolidation of the EAI and application server product
categories.

4

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

Analysis

“Enterprise service bus” (ESB) is the latest rage in the middleware software market. The term was first introduced
by Progress Software in 2002 to describe its then-new Extensible Markup Language (XML)-enabled message-
oriented middleware (MOM) product, SonicXQ, which has since been renamed Sonic ESB. A few months later,
Gartner pronounced that an ESB was a strategic investment, and shortly thereafter, nearly every middleware
vendor latched onto the term.

Initially, ESB referred to small group of products that combined the reliable messaging and event-driven
processing capabilities of MOM with the multivendor interoperability capabilities of the web services framework
(WSF). This new type of product emerged in response to the disruptive innovation engendered by the WSF. The
traditional Java Message Service (JMS) and enterprise application integration (EAI) vendors saw their market
being eroded by a new, low-cost, standards-compliant middleware. Adding WSF support to their MOM products
allowed them to remain competitive.

The ESB market has matured quite a bit since 2002. The market motivation has switched from defensive to
offensive. ESB vendors are capitalizing on the industry's enthusiasm for service oriented architecture (SOA).
Early ESB products focused much more on “integration” than “service orientation.” Recently, the emphasis has
switched. Integration is still an important concept in ESBs, but service creation and composition is becoming the
primary focus.

With this change of focus, the term “ESB” has been redefined, overloaded, and diluted to the point that it has no
precise meaning. Now ESB refers to almost any type of middleware product, and any two products labeled “ESB”
are likely to be very different.

One feature that tends to be the same across vendors is market positioning. Most ESB vendors refer to their
products as “SOA platforms,” and they often position these products as complete solutions that will support all
integration requirements and enable “instant SOA.” But don't be fooled—there is no silver bullet. Despite the
grandiose implications of the name, an ESB product rarely delivers a single solution for enterprise-wide
integration, much less a complete SOA solution.

No one product can provide a complete SOA solution. Organizations must use an amalgam of products to
implement a SOA infrastructure. The Reference Architecture Technical Position, “SOA Runtime Infrastructure,”
discusses product alternatives and provides a decision framework for designing a comprehensive runtime
infrastructure that supports service-oriented systems.

Although an ESB does not provide a complete “SOA platform,” it is a useful component in a SOA infrastructure,
and it supports two key functional capabilities: It provides a service platform for hosting and managing services,
and it provides mediation services that ensure that messages are delivered properly. Note, though, that some
mediation services required by a SOA infrastructure, such as acceleration and security mediation, are not typically
supported by ESBs. ESB's role in a SOA infrastructure is discussed in the “Positioning ESB Within a SOA
Infrastructure” section of this Technology & Standards document.

The distinction between “SOA platform” and “service platform” is important. “SOA platform” implies a complete
SOA infrastructure solution. “Service platform” refers to one of many functional capabilities supplied by a
comprehensive SOA infrastructure solution. A service platform is equivalent to an application server that can host
services.

One question that Burton Group hears frequently from its clients is, “What ESB should we choose?” Invariably,
the answer is, “many.” Just as most organizations use multiple application platforms and multiple middleware
systems, they are almost certainly going to use multiple ESBs. Each ESB offers different strengths and
weaknesses. Some ESBs focus more on service platform capabilities, while others focus more on mediation and
integration capabilities. Some ESBs are preconfigured to deeply integrate with particular commercial
applications. Each ESB supports a limited set of programming languages, therefore different ESBs are required to
support different languages. ESBs also vary in respect to characteristics like ease of use, manageability,
performance, scalability, and availability. When choosing an ESB for a project, it's important to identify the
project's specific requirements, and choose a product that supports those requirements.

5

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=821
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41390

In contradiction to what vendors say, an ESB is not the foundation of a SOA infrastructure. An organization is
likely to use multiple service platforms and multiple service mediation systems. No one product will sit in the
middle, coordinating the entire environment. In fact, building a SOA infrastructure that relies too heavily on a
single product or vendor may be harmful to a SOA initiative. Service-oriented systems are heterogeneous by
definition. Business processes invariably reach outside corporate boundaries, and organizations no longer have the
option of requiring their partners to use specific products or protocols. A better perspective is to view an ESB as
just one of many tools in the toolbox that can be used to implement services and to manage service interactions.
It's a useful tool, to be sure—but it has its limits, and another tool might be better for a particular job.

One of the most interesting market dynamics sparked by the rise of the ESB is the way it is impacting the
application server market—especially the Java Platform, Enterprise Edition (Java EE) application server market.
An ESB is not just an integration system. It is also an application server. It represents a consolidation of the EAI
and application server product categories. And this consolidation will be very disruptive to the application server
market.

More and more, ESBs are starting to replace Java EE application servers as an application platform. Quite a few
ESBs are built on a Java EE application server, and these ESBs have all the capabilities of the underlying
application server plus additional integration features. But there is one important difference between an ESB and a
Java EE application server: An ESB typically supplies a more abstract container model, and it doesn't require that
developers adhere to the complex Java EE component models, such as Java Servlets and Enterprise JavaBeans
(EJBs). It supports these models for backward compatibility, but it doesn't require them. ESB vendors appear to
be rallying behind a new, language-independent, soon-to-be-standard component model called Service
Component Architecture (SCA). Although still early in its development, SCA shows significant potential as a
major market force that could disrupt Java EE's dominance in the application server market.

Although most people associate ESBs with SOA, an ESB can be very valuable to organizations that have not yet
launched SOA initiatives. An ESB is an application server (at least in most cases), and it provides a simpler, more
abstract, more flexible application platform than a traditional Java EE application server.

In 2004, Burton Group published a document stating that Java EE was a standard in jeopardy. Following the
release of Java EE 5 (JEE5) in 2006, we updated the document with more dire predictions. See the Application
Platform Strategies overview, “JEE5: The Beginning of the End of Java EE.” The emergence of the ESB as the
next generation application platform may be the straw that breaks the camel's back.

What Is an ESB?
More than 40 commercial and open source products are referred to as “ESB.” Vendors include the who's who of
middleware providers, and then some: BEA Systems, Cape Clear Software, Cast Iron Systems, Fiorano Software,
IBM, IONA Technologies, iWay Software, Microsoft, Neudesic, OpenLink Software, Oracle, OrderWare
Solutions, Paremus, PolarLake, Progress, Rogue Wave Software, SAP, Skyway Software, SOA Software,
Software AG, Sun Microsystems, TIBCO Software, and Vitria Technology. Open source projects include Apache
Camel, Apache ServiceMix, Apache Synapse, Apache Tuscany, BEA's fabric3, Blackbird ESB, ChainBuilder
ESB, IONA's Fuse, JBossESB, Keystroke ESB.NET, Mirth, Mule, ObjectWeb PETALS, ObjectWeb OpenCeltix,
OpenEAI ESB, Sun's Open ESB, and WSO2 ESB. (No doubt there are more.)

Unfortunately, the term “ESB” means different things to different people and therefore generates confusion and
misinterpretation. Two products labeled “ESB” can be remarkably different. Take, for example, Sonic ESB and
IONA Artix ESB. Both products support mediated application integration using XML messaging, but the
similarity ends there. The two products use completely different architectures. Sonic ESB is MOM-based and
relies on a central message service to manage and mediate message traffic. Artix ESB, on the other hand, has no
dependency on MOM and uses a distributed model to manage and mediate messages at the service endpoints.

IBM, ever the overachiever, offers three very different ESB products:

• WebSphere ESB: First introduced in 2005, this product was designed from the ground up to be an ESB. Based
on a centralized model hosted in WebSphere Application Server, this product is different from both Sonic ESB
and Artix ESB.

6

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=70
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/aqualogic/service_bus/
http://www.capeclear.com/
http://www.castiron.com/
http://www.fiorano.com/products/products.htm
http://www-306.ibm.com/software/info1/websphere/index.jsp?tab=landings/esb
http://www.iona.com/products/artix/
http://www.iwaysoftware.com/products/soa_eda_esb.html
http://www.microsoft.com/biztalk/solutions/soa/esb.mspx
http://www.neudesic.com
http://www.openlinksw.com/virtuoso/
http://www.oracle.com/appserver/esb.html
http://www.orderware.net/
http://www.orderware.net/
http://www.paremus.com/
http://www.polarlake.com/
http://www.sonicsoftware.com/products/sonic_esb/index.ssp
http://www.roguewave.com/
http://www.sap.com/platform/netweaver/index.epx
http://www.skywaysoftware.com/
http://www.soa.com/index.php/section/products/products_overview/
http://www.webmethods.com/
http://www.sun.com/software/javaenterprisesystem/javacaps/index.jsp
http://www.tibco.com/software/soa/default.jsp
http://vitria.com/
http://activemq.apache.org/camel/
http://activemq.apache.org/camel/
http://incubator.apache.org/servicemix/home.html
http://ws.apache.org/synapse/
http://incubator.apache.org/tuscany/
http://fabric3.codehaus.org/
http://blackbirdesb.org/
http://www.chainforge.net/chainbuilder/
http://www.chainforge.net/chainbuilder/
http://open.iona.com/
http://labs.jboss.com/jbossesb/
http://www.codeplex.com/KeystrokeEsbNet
http://www.mirthproject.org/
http://mule.codehaus.org/display/MULE/Home
https://wiki.objectweb.org/ESBi/Wiki.jsp?page=Projects
http://celtix.objectweb.org/
http://www.openeai.org/
https://open-esb.dev.java.net/
http://wso2.com/products/esb/
http://www.sonicsoftware.com/products/sonic_esb/index.ssp
http://www.iona.com/products/artix/esb.htm
http://www-306.ibm.com/software/integration/wsesb/

• WebSphere Message Broker: Previously known as WebSphere Business Integration (WBI), this product is
traditionally referred to as an integration broker. IBM rebranded this product an ESB in 2005—presumably to
prevent erosion of its market opportunity by the burgeoning ESB market. It is MOM-based and relies on a
centralized message broker to coordinate, manage, and mediate traffic (similar to but more centralized than
Sonic ESB). It offers the most extensive support for legacy integration among IBM's ESB product family.

• WebSphere DataPower Integration Appliance XI50: IBM is stretching the definition of ESB with this
product.This type of hardware appliance is more traditionally referred to as an XML gateway, and it doesn't
really qualify as an ESB. Although it supports service mediation capabilities, it doesn't support the kind of
application server capabilities typically associated with an ESB.

Ironically, before it had released an ESB product, IBM insisted that ESB was not a product. Instead it defined
ESB as “an architectural pattern that offers a comprehensive, flexible, and consistent approach to integration.”
IBM no longer maintains the same collateral on its website as it did in 2005, but it still uses this “architectural

pattern” terminology to explain why it offers three distinct ESB products.1

Disparate Definitions

The industry is full of disparate definitions for ESB.

Some people stick with the circa 2002 definition: “ESB” is a middleware system that supports both SOA and
event-driven architecture (EDA), or more succinctly, ESB = MOM + WSF. Unfortunately, this definition no
longer holds water. A number of ESB products don't support event-driven processing or don't rely on MOM. With
the standardization of Web Services Reliable Messaging (WS-ReliableMessaging), systems no long require a
MOM and a proprietary protocol to enable reliable message delivery. WS-ReliableMessaging can run over
Hypertext Transfer Protocol (HTTP). See the “Java Message Service” and “Web Services Framework” sections of
this Technology & Standards document for information about MOM, WSF, and WS-ReliableMessaging.

Some people correlate “ESB” with Java Business Integration (JBI), a Java standard specification that defines an
integration framework that supports plug-in component and connector modules. The reasoning goes, “if a product
implements JBI, then it is an ESB.” This statement is reasonably accurate, but the inverse—“if a product is an
ESB, then it implements JBI”—is not. Only a small percentage of ESBs implement JBI. JBI obviously isn't
particularly popular among ESB vendors that don't support Java, and even among the Java community, it has
limited support. For information about this framework, see the “Java Business Integration” section of this
Technology & Standards document.

Some people correlate “ESB” with Business Process Execution Language (BPEL), which is an orchestration
language. Although some ESBs support BPEL, many do not. Many ESB vendors view orchestration as an aspect
of a business process management suite (BPMS) rather than as a feature of an ESB. For information about BPEL,
see the “Business Process Execution Language” section of this Technology & Standards document.

Some people correlate “ESB” with composite application development—the ability to wire service components
together to create applications. A growing number of ESB vendors have joined the SCA standardization effort,
but support for SCA is definitely not pervasive. Some ESBs support much more basic integration capabilities and
don't support composite application development. For information about SCA, see the “Service Component
Architecture” section of this Technology & Standards document.

Some people (particularly users) use the term “ESB” to refer to a complete SOA runtime infrastructure rather than
to any particular type of product. An ESB is just one of many products that work together in an ecosystem to
provide a SOA runtime infrastructure. To avoid overloading terms, Burton Group uses the term “ESB”
exclusively to refer to products and refers to a SOA runtime infrastructure as a managed communications
infrastructure (MCI). For an overview of the MCI, see the “Positioning ESB Within a SOA Infrastructure” section
of this Technology & Standards document.

Related Product Categories

7

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www-306.ibm.com/software/integration/wbimessagebroker/
http://www-306.ibm.com/software/integration/wbimessagebroker/
http://www-306.ibm.com/software/integration/wbimessagebroker/
http://www-306.ibm.com/software/integration/datapower/xi50/
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41403
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41393
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41394
http://jcp.org/en/jsr/detail?id=208
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41401
http://www.oasis-open.org/committees/download.php/23964/wsbpel-v2.0-primer.htm
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41399
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41400
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41390

Compounding the confusion over ESB's definition is the fact that the boundaries differentiating ESBs from other
products are quite blurry. Related product categories include:

• XML gateway: XML gateways are hardware appliances that support service mediation—one of the key
features of an ESB. In fact, XML gateways support a number of mediation capabilities that ESBs do not, such
as acceleration and security mediation. But XML gateways do not provide a service platform—a feature
typically associated with ESBs.

• XML services management (XSM): Like XML gateways, XSM systems support service mediation. They also
support central monitoring and administration of a SOA environment. But they do not provide a service
platform.

• Integration brokers: Quite a few traditional integration broker vendors, such as IBM, Microsoft, Software
AG, and TIBCO, now refer to their products as ESBs. These products tend to be more capable, more complex,
more proprietary, and more expensive than other ESBs, but it's difficult to draw a line between the two product
categories.

• BPMS: Some ESB vendors view orchestration and automated business process management as required
features of an ESB, while others view orchestration as a separate capability—one that belongs to the BPMS
category. For example, BEA and IBM do not support orchestration in their base ESB products, but they supply
separate BPMS products containing a BPEL engine.

• Application server: Most ESBs supply a service platform for building and hosting service agents. In that
regard, an ESB is an application server. Most application servers provide containers for hosting services, and
they typically support a message processing pipeline that supports message mediation and policy enforcement.
And through technologies like Java EE Connector Architecture (JCA), they can support diverse resource
adapters and legacy integration. They generally don't support a wide range of protocols, and they provide fewer
integration tools, but otherwise the line between ESBs and application servers is particularly vague.

So What Is an ESB?

An ESB is a middleware solution that enables interoperability among heterogeneous environments using a
service-oriented model, and it represents the consolidation of the EAI and application server product categories.

This definition is vague and imprecise, but then, so is the ESB market. The specific capabilities, features, and
standards supported by ESBs, as well as their product architectures, can vary significantly among product
implementations. Yet there is some commonality across ESB products. Most ESBs exhibit the following features:

• Service-oriented middleware: ESBs model application endpoints as services.

• Standards compliance: ESBs are more standards compliant than previous generations of EAI technology, and
in particular, they all support multivendor interoperability using the WSF.

• Virtualization of service agents: ESBs provide service containers that virtualize a service and insulate the
application code from its protocols, invocation methods, message exchange patterns (MEPs), quality of service
(QoS) requirements, and other infrastructure concerns.

Beyond these basic characteristics, ESBs are a remarkably diverse and disparate bunch of products. For a more
thorough definition of an ESB, including a discussion of the features and standards supported by ESBs, see the “
ESB Definition” section of this Technology & Standards document.

ESB as the Next Generation Application Platform
Although many people correlate an ESB with integration and mediation, its primary function is actually that of
service platform—or more specifically the “virtualization of service agents.” A service agent is the application
code that implements service functionality, and virtualization of service agents is the true breakthrough in the
ESB product category. This bears repeating: An ESB provides a service container that virtualizes a service and
insulates it from its protocols, invocation methods, MEPs, QoS requirements, and many other infrastructure
concerns.

8

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41387

The Application Platform Strategies overview, “VantagePoint 2007–2008: Build for Today, Architect for
Tomorrow,” discusses the need to separate application and infrastructure concerns. To whit:

Burton Group loosely defines “infrastructure” as everything other than business logic. From this perspective,
functionality commonly required by enterprise applications (such as storage and database access, identity
management, authentication and authorization, logging and auditing, and transaction coordination) is
considered infrastructure. Separating infrastructure and business functionality improves the consistency and

manageability of the former, and allows application developers to focus on the latter.2

Infrastructure refers to nonfunctional aspects of a service, including its protocols, invocation methods, MEPs, and
QoS requirements. Middleware technologies evolve at a different rate from application functionality, and
therefore it is desirable to separate these concerns. Ten years ago, it was quite reasonable to design a system using
Common Object Request Broker Architecture (CORBA), but very few people would consider implementing a
system today using CORBA. They would more likely use web services. But 10 years from now, something better
will be available, and they probably won't consider using web services. Why tie a service to a particular
middleware technology if you don't have to?

Most application frameworks don't provide a layer of abstraction between an application and the middleware that
exposes that application to external consumers. This is the real beauty of an ESB. It allows a developer to build a
service that is completely independent from the technology that will be used to expose its capabilities. Today the
service can be exposed using web services; tomorrow, with a slight adjustment to the service's configuration, it
can be exposed using a different protocol. Figure 1 illustrates a next generation application server that enables the
separation of application and infrastructure concerns.

Figure 1: ESB as the Next-Generation Application Platform

The service agent running in the platform's agent container is completely separated from the technology used to
expose its capabilities to the outside world. The message pipeline processor and policy enforcer can expose the
service through any number of communication channels, supporting a wide assortment of client systems,
including rich Internet applications (RIAs) and mashups, rich mobile applications (RMAs), rich desktop
applications (RDAs), remote service endpoints, and others. The pipeline processor also mediates access to the
service agent by enforcing whatever policies apply to the service, such as security, reliability, or transformational
policies.

9

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=1058
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1058
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41403

This type of abstract component model, now found in most ESBs, enables the kind of clean separation of
concerns between application and infrastructure that Burton Group has been espousing for the past 12 years. It
supports the concept of an infrastructure services model (ISM)—in which infrastructure capabilities are
externalized from applications and their application platforms and modeled as services that can be applied to
service agents and service interactions via declarative policies. The infrastructure itself becomes responsible for
ensuring that policies are properly enforced.

Burton Group refers to this next-generation application platform model as the network application platform
(NAP)—a virtualized application platform, based on SOA principles, that dissolves current barriers between
application platforms. The NAP enables simple, flexible communication and integration across logical and

physical boundaries, while maintaining reliability, availability, scalability, serviceability, and security (RAS3). A
diagram representing the NAP is shown in Figure 2.

Figure 2: The Network Application Platform

The NAP is a conceptual model of an environment that supports SOA initiatives. It shows application services
communicating via a managed communications infrastructure (MCI). The MCI relies on infrastructure services
within the ISM to ensure the proper delivery of messages between application service endpoints. A SOA
governance program provides processes and procedures that ensure that services and service interactions conform
to corporate policies, standards, and best practices.

Application services are built on an application platform, which supports the development, deployment,
management, security, and execution of the application service. The application platform is also responsible for
mediating communications between the application service and the MCI and calling on services from the ISM
when dictated by policies.

10

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

As a conceptual model, the components in the NAP do not correspond to actual products. In a concrete model, an
ESB plays the role of an application platform, and it supports some of the functionality provided by the MCI and
the ISM. Some MCI and ISM capabilities may be implemented in an application platform, and some application
platform capabilities may be implemented in the MCI or ISM. The purpose of the model is simply to illustrate the
need to separate application and infrastructure functionality. In a concrete model, the MCI, ISM, and application
platforms work together to create a comprehensive SOA runtime infrastructure. The specific roles that an ESB
plays in a SOA infrastructure are discussed in the “Positioning ESB Within a SOA Infrastructure” section of this
Technology & Standards document.

ESBs don't yet fully support this model, but they are certainly making progress. Most ESBs support a clean
separation between the service agent and the protocols used to expose it. The ability to truly externalize the
infrastructure functionality from the application and the application server is still a bit suspect. Very few ESBs
fully support a declarative policy enforcement model. Many ESBs rely on proprietary configuration mechanisms
that impede centralized policy management and administration and flexible policy enforcement. Nonetheless,
ESBs provide a great improvement over traditional application servers. Organizations should consider using ESBs
for all application server requirements—not just for services and integration.

For more information about the NAP, see the Reference Architecture Service Oriented Architecture Templates
and the Application Platform Strategies Root Document, “Turning the Network Into the Computer: The Emerging
Network Application Platform.”

Evaluating ESBs
When evaluating ESBs, organizations should consider the following criteria:

• Architecture

• Features

• Standards support

• Playing well with others

• Existing deployments

• Licensing terms

Architecture

One of the most fundamental differences among ESB products is the core architecture of their systems. ESBs
typically exhibit one of the following five architectures:

• Extended MOM: These ESBs correspond to the original definition of ESB. These systems typically distribute
multiple nodes across the network and use a MOM infrastructure to support reliable messaging and event-
driven processing among the nodes. Although the ESB nodes communicate using a proprietary protocol,
service endpoints don't need to be aware of the MOM. All services can be exposed using the WSF or other
protocols. These systems tend to implement JBI. Example products include Fiorano ESB, Progress Sonic ESB,
Tibco ActiveMatrix Service Grid, and Apache ServiceMix.

• Extended integration brokers: Over the last five years, the traditional integration broker vendors have added
support for web services and repositioned their products as ESBs. These systems are more standards compliant
than they once were, but still tend to be more proprietary than most ESBs. They also tend to provide a very
centralized solution in which all messages pass through a centralized broker (or a set of federated broker
instances). They typically offer the most extensive integration capabilities. Example products include IBM
WebSphere Message Broker, Microsoft BizTalk Server, SAP Process Integration (PI), and Software AG
webMethods Fabric.

11

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41390
http://www.burtongroup.com/Client/Research/Document.aspx?cid=933
http://www.burtongroup.com/Client/Research/Document.aspx?cid=187
http://www.burtongroup.com/Client/Research/Document.aspx?cid=187
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41361
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41362
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41368
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41375
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41376
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41377

• Extended application server: A number of ESB vendors use a Java EE application server as the basis for their
ESB products. These products are typically stronger in terms of service creation and composition than they are
in legacy integration. They tend to be rather centralized, although they do support distributed nodes. These
systems often implement SCA. Example products include BEA AquaLogic Service Bus, Cape Clear ESB, and
IBM WebSphere ESB.

• Endpoint-based plug-in channels: A few ESB vendors support an extremely distributed model that
implements service mediation at the service endpoint and supports heterogeneous communications using a
channel plug-in architecture. Example products include IONA Artix ESB and Microsoft Windows
Communication Foundation (WCF).

• Mediation agents: Technically, these products don't qualify as ESBs because they don't provide a service
platform, but more than one vendor has been known to label this type of product an ESB. These systems
support service mediation. Mediation agents can be centralized or distributed. Example products include
Apache Camel, Apache Synapse, and SOA Software Network Director, as well as all XSM and XML gateway
products.

Features

Each ESB supports a different set of features and capabilities. Products may excel in a wide variety of areas, such
as performance, ease of use, legacy connectivity, and management. The “ESB Product Features” section of this
Technology & Standards document describes the breadth and scope of ESB features. When choosing an ESB, a
project team should carefully identify its project requirements and select an ESB that matches those requirements.
ESB features should be evaluated based on five areas:

• Quality of service

• Mediation

• Containers

• Connectors

• Tooling

Quality of Service

Can the ESB support the project's nonfunctional requirements? What are the project's performance, scalability,
and latency requirements? How much downtime is acceptable per month or year? Can the ESB support clustering,
load balancing, and other features to support future capacity or availability requirements? How quickly can the
ESB recover from a failure? What surety level is required? What aspects of the project have to be secured? What
mechanisms are available to support those security requirements? Will the project require recoverable
transactions? What mechanisms are available to support transactional integrity?

Mediation

Integration projects typically require various types of mediation capabilities. All ESBs support basic mediation
capabilities such as routing, protocol bridging, and message transformations. But in some cases, a project may
require more sophisticated mediation services. For example, the ESB may need to mediate between service
endpoints that use different message exchange patterns or that support different quality of service (QoS)
capabilities. Or perhaps the ESB will need to mediate between different security domains via automatic credential
mapping. Very few ESBs support these advanced mediation capabilities. (Organizations with these requirements
should also consider using an XSM or XML gateway.)

Another aspect to evaluate is the options available to specify mediation policies. Policy specification options may
include declarative, programmatic, code annotations, or rules. How easy is it to define the policies, configure
them for runtime enforcement, verify their enforcement, manage them, and change them? Does the ESB support
centralized management and configuration of the policies?

12

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41389
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41363
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41364
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41365
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41366
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41367

Containers

ESBs typically provide one or more containers for hosting service endpoints and managing their lifecycle. Each
container typically supports a single programming language and container model. Potential language options
include Java, .NET languages (e.g., C# and Visual Basic), C++, COBOL, BPEL, PHP, and Ruby. Does the ESB
support a standard component model? What languages does it support? What protocol bindings does it support?
What message exchange patterns (MEPs) does it support? What is the level of abstraction provided by the
component model? Is the application logic suitably separated from the bindings and MEPs? Does the ESB support
composition or orchestration? Does the project need these features?

Connectors

ESBs typically supply various resource adapters that enable access to legacy systems. Most ESBs include a few
basic adapters that enable integration via the WSF, JMS, JCA, and database access methods such as Open
Database Connectivity (ODBC) and Java Database Connectivity (JDBC). Many ESBs vendors also supply a host
of additional resource adapters (often sold separately) that provide access to numerous commercial application
systems, domain-specific business protocols, and legacy middleware systems. What adapters will be required by
the project, and are those adapters available? What frameworks are available for implementing custom
connectors?

Tooling

What tooling does the ESB supply? Does it supply service modeling tools? Programming frameworks? Graphical
tools for defining message transformations and mediation policies? Search, query, and reporting tools? How
intuitive and productive are the tools? Does the ESB provide a repository for managing service metadata? Is the
repository pre-populated with models and schemas? If it doesn't include a repository, can it integrate with a third-
party repository? How well does the tooling integrate with the organization's preferred tools and frameworks?
What kind of administrative and management tools are provided? How well do these tools integrate with the
organization's preferred administrative tools?

Standards Support

Standards play a key role in ensuring interoperability and portability of services and in enabling an ecosystem of
development talent, tooling, and third-party applications. As such, it's important that ESBs support standards. Six
groups of standards apply to ESBs:

• HTTP and XML

• WSF

• SCA

• BPEL

• JBI

• JMS

HTTP and XML

HTTP is a standard, pervasive application protocol. It provides the fundamental foundation that enables the World
Wide Web, and it supports a core set of architectural principles known as Representational State Transfer (REST).
Applications that adhere to the REST principles typically exhibit a number of beneficial characteristics, such as
flexibility and scalability. Note, though, that use of HTTP does not guarantee RESTful benefits. An application is
RESTful only if it adheres to the REST architectural principles.

13

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41369
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41370
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41371
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41372
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41373
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41374

XML is a standard, pervasive markup meta-language that can be used to define data vocabularies and formats. It
has become the industry's favorite medium for exchanging documents and structured information. When used
together, HTTP and XML can be remarkably effective as a universal application and data integration system.

When transferred by HTTP, XML data can be sent in its native form wrapped only in the HTTP protocol, or it can
be wrapped in a structured format known as an XML protocol. Popular XML protocols include the Simple Object
Access Protocol (SOAP) and the Atom Publishing Protocol (APP). XML data sent in its native form is known as
“plain old XML” (POX).

ESBs invariably support communications using HTTP. All ESBs support communications via SOAP, and most
systems support POX and other XML protocols. In response to the growing interest in REST, many ESB vendors
have started investing in new features that will enable the creation of RESTful services.

For an overview of these standards, see the “HTTP and REST” section of this Technology & Standards document.
For further information on HTTP and REST, see the Application Platform Strategies overview, “The World Wide
Web: An Introduction.” See also the slides and recording from the Application Platform Strategies TeleBriefing, “
REST: Is it the Next Big Thing?” and the slides from a half-day 2007 Catalyst Conference North America
workshop on REST, “REST Easy.” For information on XML, see the Application Platform Strategies report, “
Extensible Markup Language (XML) 2005: Core XML Standards and Their Impact on Business Development.”

WSF

The WSF is a standards-based service-oriented middleware framework that supports heterogeneous
interoperability based on the SOAP XML protocol. As a rule, all ESBs support the WSF, but the WSF is a very
complex framework comprising more than 50 specifications. The exact set of WSF specifications supported by an
ESB can vary dramatically. The “Web Services Framework” section of this Technology & Standards document
provides an overview of the WSF and describes the WSF specifications that are most pertinent to an ESB.

At a minimum, an ESB should comply with the Web Services Interoperability Organization (WS-I)'s
interoperability profiles. The WSF specifications frequently support flexibility (i.e., multiple options) in the way
certain features or functions can be specified or implemented. Such flexibility can sometimes create
interoperability challenges. The WS-I profiles clarify ambiguities in the specifications, limit the number of
permitted options, and provide guidance for building web services in an interoperable way.

In particular, an ESB should support the WS-I Basic Profile (BP) and the WS-I Basic Security Profile (BSP). The
BP provides guidance when building basic web services that don't use advanced operational semantics, such as
security, reliability, transactions, and notifications. The BSP provides guidance when building a web service that
requires authentication, message integrity, and message confidentiality. WS-I is in the process of developing the
WS-I Reliable Secure Profile (RSP), which will provide guidance for building services that require both security
and reliable message delivery.

Most ESBs support the BP and BSP. Many ESBs support advanced operational semantics using nonstandard
mechanisms rather than the WSF extension standards. Organizations should evaluate which of these advanced
capabilities are needed by their projects and decide how important standards compliance is to their projects.
Systems that will need to interoperate outside of their domains are likely to have a stronger requirement for
standards compliance.

SCA

The SCA family of specifications is just emerging as a popular service component and composition model
standard. Unlike most other programming models, SCA is language and protocol independent. It uses an
annotated-code framework that effectively insulates a service's business logic from many infrastructure concerns.
For an overview of the model, see the “Service Component Architecture” section of this Technology & Standards
document.

14

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41392
http://www.burtongroup.com/Client/Research/Document.aspx?cid=985
http://www.burtongroup.com/Client/Research/Document.aspx?cid=985
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1155
http://www.burtongroup.com/Guest/Aps/RestWorkshop.aspx
http://www.burtongroup.com/Client/Research/Document.aspx?cid=563
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41394
http://www.ws-i.org/
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41400

SCA has certainly gained broad vendor endorsement, but its effectiveness is yet to be proven. The model is
potentially convenient and highly productive, but only if it succeeds in addressing a number of potentially
dangerous issues:

• Code-centric development: SCA uses an annotated code-driven development methodology, automatically
generating interfaces from application code. A code-centric approach leads developers to generate numerous
incompatible schemas that hinder interoperability efforts.

• Proprietary annotations: SCA defines a number of standard annotations, but there's nothing to prevent
vendors from creating additional proprietary annotations that could derail interoperability and portability.

• Interoperability: SCA leaves a number of features as an exercise for the implementers. When a feature is not
fully specified, interoperability issues usually emerge. This issue is compounded by the fact that SCA is
designed to support multiple languages. Interoperability between implementations has yet to be tested.

• State management: State management is always a tricky aspect of a component model. SCA specifies that the
container must provide automatic state management, and it defines multiple session scopes. It's concerning,
though, that it doesn't define singletons.

These issues aside, SCA is forging new ground by defining a simple, abstract component and composition model
that can be implemented in any language. Language implementations have been specified for Java, C, C++,
COBOL, BPEL, PHP, and Ruby. Many ESB vendors (with the notable exception of Microsoft) have endorsed
SCA, and a number of vendors have delivered support for SCA in their products.

BPEL

For the past five years, BPEL has represented the Promised Land for rapid development of automated business
processes. The vision enables a business person to sit down with a simple modeling tool and quickly design a
business process by wiring together a set of existing service components with a few rules and workflows.

Unfortunately, this vision is a bit disconnected from reality. BPEL modeling tools are not quite simple enough for
the average business person to use. But BPEL can be an effective development tool in the hands of a professional
developer. For an overview of BPEL, see the “Business Process Execution Language” section of this Technology
& Standards document.

A number of vendors include an orchestration engine with their ESBs, but not all of them do. Some vendors don't
provide an orchestration engine at all, while others sell their orchestration engines as separate products. When
selecting an ESB, an organization should first assess whether an orchestration engine is required, and if so,
determine whether that orchestration engine needs to be tightly integrated with the ESB.

As a general rule, orchestration engines support BPEL. Even though the language has a number of limitations, the
siren call of a standard orchestration language (plus overwhelming vendor support) has given BPEL a decisive
victory in the battle of the orchestration languages.

BPEL defines a standard orchestration syntax for specifying workflows that invoke web services in a predefined
sequence. BPEL is useful for describing relatively simple automated business processes, but it has two significant
limitations. First, a BPEL process can only invoke web services. If an application isn't exposed via a web service,
it cannot be incorporated into the process. And second, BPEL does not currently support human participation in a
workflow. (An effort is in process to address this limitation.) Another concern when using BPEL is that many
vendors have implemented proprietary extensions to address some of BPEL's limitations. In fact, BEA and IBM
have proposed a way to extend BPEL with Java (BPELJ).

Although most orchestration vendors support BPEL, BPEL compliance is a fuzzy thing. Some vendors have built
their orchestration engines from the ground up to support BPEL, and their orchestration engines process BPEL
natively. Other vendors adapted their pre-existing orchestration engines, and these products tend to support BPEL
only through import and export. The BPEL is transformed into the engine's native processing language, which
may have different capabilities than BPEL. If a process uses a feature that is not supported by BPEL, the import
and export won't work. In that situation, the project team must determine whether portability of BPEL processes
is a system requirement.

15

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41399
http://www.ibm.com/developerworks/library/specification/ws-bpelj/

For more information about the strengths and weaknesses of BPEL, see the Application Platform Strategies
report, “Crossing the Divide: The Mechanics of Process Execution.”

JBI

JBI defines a standard integration framework for Java-based middleware systems. JBI defines a standard plug-in
model that enables containers and connectors to connect to a centralized message router. Conceivably, a JBI-
compliant container or connector could work with any JBI-compliant message router. Note, though, that JBI does
not define any application-level programming models. It only applies to developers building system-level
connectors and containers. For more information about JBI, see the “Java Business Integration” section of this
Technology & Standards document.

The standard plug-in model has an appealing ring to it because it could enable an ecosystem of after-market and
open source JBI plug-ins. This has certainly been the case with similar Java standards, such as JCA. But a healthy
ecosystem requires pervasive market buy-in. Unfortunately, JBI has not managed to win the endorsement of the
Java superplatform vendors.

JBI has a number of characteristics that dim its luster:

• JBI is based on a message router, which means that JBI is predisposed to support the extended MOM
architecture. Obviously JBI appeals to MOM vendors looking to extend their products, but this architectural
preference reduces its appeal to non-MOM vendors.

• JBI requires all messages to pass through the message router, which involves a transformation on both entry
and exit, even when both endpoints use the same formats and protocols. Many view this overhead as
unnecessary and burdensome.

• JBI defines its plug-in interfaces only in Java. This language dependency contradicts the current trend in the
ESB market to embrace multiple languages.

The fact that JBI does not define any application-level programming models reduces its relevance as an ESB
selection criterion. A developer implementing a service never touches the JBI application programming interfaces
(APIs), and therefore doesn't care if it is there. JBI's value is dependent on the availability of JBI-compliant
connector plug-ins. If the JBI connector plug-in ecosystem doesn't take off, then JBI provides no added value.

JMS

JMS is the standard Java API used to interface with MOM systems. Any MOM vendor that supplies a Java
programming API invariably supports JMS. The Java EE specification also requires support for JMS. JMS is one
of the most pervasive APIs in the industry—at least in the Java community.

Although JMS is widely implemented and used, it has three significant shortcomings:

• No multivendor interoperability: Although JMS provides a common API to multiple MOM products, it does
not support multivendor interoperability. Each MOM product communicates using a proprietary protocol, and
two applications must use the same protocol to communicate.

• Low-level programming model: The low-level nature of the API tightly couples an application to the JMS
programming model and MOM protocols, reducing the flexibility and agility of the application's architecture.

• Restricted to Java: JMS is only available to Java applications, and no comparable standard API exists for
other languages, such as C++, C#, Visual Basic, Python, Ruby, and COBOL.

Most ESBs include support for JMS, and in doing so, they add a layer of abstraction to JMS that addresses these
shortcomings. ESBs typically support a variety of MOM protocols and perform automatic protocol bridging that
enables interoperability between multivendor systems. Some ESBs use a particular MOM product as their primary
communications system between ESB nodes, but service consumers are not required to use that MOM to interface
with services hosted in or exposed by the ESB.

16

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=945
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41401

ESBs typically provide a service-oriented component model that allows developers to build services that are
independent from the middleware used to expose them. For example, most ESBs allow developers to implement
services as “plain old Java objects” (POJOs). The service container hosting the service automatically manages the
interactions between the POJO service and its external interfaces, such as JMS.

And because the service container manages all communications on behalf of the service, the ESB can expose the
service functionality through multiple interfaces and protocols, such as JMS, SOAP, or HTTP, thereby making the
service accessible to any application regardless of programming language or platform. Some ESBs also provide
multiple containers that support different programming languages.

Playing Well with Others

A SOA infrastructure is an ecosystem of cooperating products that together enable services to interact properly
and effectively. An ESB is just one product in this ecosystem. Therefore, it is essential that it plays well with the
other products in the ecosystem.

The Reference Architecture Technical Position, “SOA Runtime Infrastructure,” outlines the functional
requirements of a SOA infrastructure and identifies alternatives that can be used to support those requirements.
The “Positioning ESB Within a SOA Infrastructure” section of this Technology & Standards document discusses
the functional requirements that an ESB can support. But other products will be necessary.

In many cases, the organization has a number of existing middleware, platform, management, and mediation
systems deployed. As a SOA initiative progresses, the organization is likely to deploy additional platform,
management, and mediation systems, as well as governance systems, such as registries and repositories, XSM
systems, and XML gateways. How easily does the ESB integrate and work with these other systems?

Some vendors offer a comprehensive suite of SOA infrastructure products, including ESBs, orchestration engines,
security systems, registry/repositories, management suites, and development tools. In some cases these suites use
proprietary interfaces to enable tighter cohesion among the suite components. In that case, how easy is it to swap
out one component and replace it with a third-party offering? Is single-vendor lock-in an acceptable risk?

Existing Deployments

Very few organizations have the luxury of starting with a green field. Invariably, the organization has existing
deployments of various application platforms and middleware systems. Many middleware vendors now provide
an upgrade path from their legacy products (e.g., MOMs, integration brokers, BPMS, and application servers) to
their new ESB products. These existing deployments may predispose an organization to select an ESB that is
compatible with the installed system. For example, if an organization has extensive deployments of WebSphere
MQ, it might be predisposed to upgrade to WebSphere Message Broker. Likewise, if an organization has
extensive deployments of BEA WebLogic Server, it might be predisposed to upgrade to BEA AquaLogic Service
Bus.

Licensing Terms

Although software licenses typically constitute only a tiny fraction of the total cost of ownership of a SOA
initiative, unexpected license or subscription fees can be disruptive to a project. When evaluating an ESB,
estimate the total licensing terms for the product both at initial deployment and at various stages throughout the
SOA initiative. What are the fees for the base product? What are the fees for add-on products, such as tools,
agents, management suites, resource adapters, and security systems? What fees will be imposed when additional
ESB nodes need to be deployed?

Recommendations

17

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=821
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41390

The following recommendations provide guidance related to the positioning and selection of ESB products.

Recognize the Value and Limitations of an ESB

Many ESB vendors position their products as universal integration environments that provide a fast path to SOA,
but such lofty goals are a bit of an exaggeration. Despite the grandiose name and despite what the vendors and
some other analysts say, an ESB is a tactical investment. An ESB is a useful tool, but it is not a universal
integration system, nor does it provide a complete SOA infrastructure.

Understand ESB's Role in a SOA Infrastructure

A SOA infrastructure is an ecosystem of products and services that work together to enable service oriented
systems. An ESB can be a valuable member of that ecosystem, but it is just one of many products that must work
together. (Playing well with others is a critical characteristic.) An ESB is no more important than any other
product in the ecosystem. No one product will sit in the center and coordinate the environment. Most
organizations will use multiple ESBs in their SOA infrastructure, just as they currently use multiple application
languages, platforms, and middleware systems.

An ESB's primary role in a SOA infrastructure is to act as a service platform. It hosts service agents, and it
exposes legacy resources as services. It can also support mediation services, but this role is secondary to its role as
a platform. The ESB's true value is in the way that it virtualizes service agents.

For a discussion of SOA infrastructure product alternatives and a decision framework for designing a
comprehensive infrastructure, see the Reference Architecture Technical Position, “SOA Runtime Infrastructure.”
For an examination of an ESB's role in that infrastructure, see the “Positioning ESB Within a SOA Infrastructure”
section of this Technology & Standards document.

Recognize That ESBs Are Not Just for SOA

Although everyone correlates them with SOA, ESBs offer tremendous value to organizations that have not
embarked on a SOA initiative. ESBs represent a consolidation of the EAI and application server product
segments. ESBs offer a simpler, more intuitive, and less expensive alternative than previous generations of EAI
products. At the same time, they provide a simpler, more abstract, and more powerful application server than
traditional Java EE application servers. Most ESBs offer the same type of reliability, availability, and scalability
features typically associated with application servers, but without the complexity inherent to Java EE. These
characteristics are particularly true of the ESBs that implement the extended application server architecture, but
any ESB that supports service agent virtualization delivers benefit. Organizations should consider using ESBs for
all application server requirements—not just for service enablement and integration.

Don't Waste Time Trying to Pick One “Universal” ESB

An ESB is not a universal integration solution. No one product is going to address all of an organization's
integration requirements. Each ESB offers different features and benefits. Just as most organizations use multiple
languages, platforms, and middleware, they are also going to use multiple ESBs.

Pick the Right Tool for the Job

Before selecting an ESB, it is important to understand a project's requirements and its strategic goals. Then
evaluate ESB options based on those requirements. Keep in mind that some projects may not need an ESB.

Consider Upgrading Older Systems to ESB Equivalents

18

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41375
http://www.burtongroup.com/Client/Research/Document.aspx?cid=821
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41390

Most organizations have a variety of older middleware systems, such as application servers, CORBA systems,
MOMs, and integration brokers. The MOMs and integration brokers use proprietary protocols that propagate
vendor lock-in strategies, and all of these older systems involve a tight binding between application code and the
middleware. Although the legacy applications based on these older systems aren't going away any time soon,
organizations should think twice before investing further in these older middleware systems.

Most middleware vendors provide a new and improved ESB offering that extends and enhances their older
middleware systems. These ESBs can provide a legacy encapsulation environment that paves the way for gradual
migration away from a tight integration model to a more flexible and loosely coupled environment with clean
separation of application and infrastructure concerns. A good strategy is to upgrade existing middleware systems
to their ESB equivalents in order to leverage and extend the current investments.

Beware of ESB Vendor Lock-In Strategies

One of the hidden “gotchas” in today's ESB market is the potential for vendor lock-in. This is especially true of
vendors that use proprietary interfaces to enable better cohesion among the product components in their integrated
SOA suites. When evaluating an ESB, pay particular attention to how well it works with third-party products.

19

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

The Details

This section defines enterprise service bus (ESB), describes the range of ESB features and standards, and
positions ESB within the context of a service oriented architecture (SOA) infrastructure.

ESB Definition
An ESB is a middleware solution that enables interoperability among heterogeneous environments using a
service-oriented model. An ESB models an application endpoint as a service. The ESB may host the service agent
locally, or the service may execute remotely. In both cases, the ESB provides an abstraction layer that virtualizes
the service and separates it from infrastructure concerns. The ESB makes the service accessible to other
applications via one or more middleware protocols. As a general rule, one of the protocols that an ESB supports is
Simple Object Access Protocol (SOAP), but it doesn't require all services to communicate via SOAP. The ESB
mediates interactions between service endpoints and enables dissimilar systems to interoperate.

Latest Generation of EAI

ESB products have evolved from and build on the legacy integration capabilities of traditional enterprise
application integration (EAI) products, such as integration brokers. ESBs enable integration among environments
such as .NET, Java, Common Object Request Broker Architecture (CORBA), Customer Information Control
System (CICS), Information Management System (IMS), Tuxedo, and numerous packaged applications. ESBs
support communications using Hypertext Transfer Protocol (HTTP), SOAP, Internet InterORB Protocol (IIOP),
various proprietary message-oriented middleware (MOM) protocols, as well as numerous domain-specific
business-to-business protocols, such as ACORD, Electronic Data Interchange (EDI), Financial Information
eXchange (FIX), and Society for Worldwide Interbank Financial Telecommunication (SWIFT).

The distinction between ESBs and previous generation EAI products, such as integration brokers and business
process management suites (BPMSs), is often blurry. In fact, a number of integration broker vendors simply
attached the “ESB” moniker to their products after adding support for SOAP and the web services framework
(WSF). As a general rule, ESBs support pervasive and vendor-independent protocols, such as HTTP and SOAP,
although a number of ESBs maintain a dependency on proprietary MOM systems. ESBs generally prefer to work
with Extensible Markup Language (XML) data formats, although many ESBs can work with other formats. ESBs
typically support multiple message exchange patterns (MEPs), such as request/response, one-way messaging, and
event-driven patterns.

ESB Product Features

ESBs represent the consolidation of the EAI and application server product categories. They support integration
and mediation capabilities as well as application hosting and lifecycle management capabilities.

At a minimum, an ESB supports the following service mediation features:

• Routing: An ESB acts a broker, routing messages to service endpoints based on a variety of factors, such as
system load, time of day, identity, message attributes, or message content. An ESB provides a virtualization
layer that enables dynamic service selection, versioning, location, and binding.

• Protocol bridging: An ESB supports automatic mediation across multiple protocols, such as SOAP, HTTP,
CORBA, Java Remote Method Invocation (RMI), and various proprietary and domain-specific messaging
protocols.

• Message transformation: An ESB provides XML data processing capabilities, supporting validation,
aggregation, filtering, and transformation of XML message content. Some ESBs also support data processing
for non-XML formats.

20

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

ESBs also support the following service platform features:

• Service hosting: An ESB provides one or more containers for hosting services and managing service lifecycle.

• Service component model: An ESB supports an abstracted component model that developers can use to
implement services. The component model coordinates the interactions between the container and the service
agent and enables a service to expose its interface through a variety of protocols and MEPs.

Many ESBs support other features, such as:

• Resource adapters: Many ESB vendors provide resource adapters that developers can use to implement
connections to various legacy applications and data sources, and then expose these connections as services.
Resource adapters are often sold separately.

• Composition: Many ESB products include tooling and frameworks that enable developers to wire services
together to create a simple composite application.

• Orchestration: Some ESB products support the development of composite services using an orchestration
model. An orchestrated service is a service that calls other services in a predefined execution pattern or
workflow. An orchestration engine coordinates the execution of the pattern at runtime.

• Reliable messaging: Many ESB products support reliable message delivery semantics, including best effort,
persistent queuing, at least once, at most once, exactly once, and ordered messaging.

• Event processing: Many ESB products support an event-driven interaction pattern via publish and subscribe
capabilities.

• Transactions: Some ESB products support transactional integrity. The persistent queuing systems that enable
reliable messaging and event processing typically operate as transactional data resources, and these queuing
systems can participate in heterogeneous transactions. In addition, an ESB product may supply a distributed
transaction manager that can coordinate a distributed transaction across heterogeneous data resources using a
two-phase commit (2PC) protocol or compensating transactions.

• MEP and capability mediation: In some cases, the ESB can automatically mediate the interaction between
two applications that communicate using different MEPs or that support different capabilities, such as
reliability and transactions.

• Security mediation: In a few rare cases, the ESB can mediate an interaction that crosses security domains by
mapping credentials from one domain to credentials that are acceptable by the second domain. (All ESBs can
control access to services through authentication, but only a few products support federation across security
domains.)

• Tooling: An ESB typically provides tooling for design, development, configuration, deployment, operation,
and management of services. Tooling may be model-driven, graphical, or invoked using a batch command.
Some ESBs come pre-populated with models and metadata related to specific commercial application or
domain-specific models and schemas.

Positioning ESB Within a SOA Infrastructure
While an ESB can provide valuable features that support the development and integration of services, it by itself
does not constitute a complete SOA infrastructure. The Reference Architecture Technical Position, “SOA
Runtime Infrastructure,” provides a decision framework for designing a runtime infrastructure that supports
service-oriented systems.

The Technical Position describes a SOA runtime infrastructure as a managed communications infrastructure
(MCI). This infrastructure is managed in the same sense that a managed code environment is managed. The
infrastructure is responsible for managing communications between service endpoints and ensuring that messages
are delivered properly in accordance with defined policies.

The Technical Position approaches a SOA runtime infrastructure from a functional perspective. It identifies six
core functional capabilities that a SOA runtime infrastructure must support:

• Middleware: Provides the means for service endpoints to communicate

21

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=821
http://www.burtongroup.com/Client/Research/Document.aspx?cid=821

• Service platform: Hosts and manages the lifecycle of service endpoints
• Service mediation: Manages intermediaries that mediate dissimilarities between service endpoints

• Service administration: Configures and controls service endpoints, service intermediaries, and infrastructure
components

• Service monitoring: Monitors service endpoints, service intermediaries, infrastructure components, and
message traffic

• System of record: Maintains an index of service information (stored in metadata and policy repositories) and
enables information exchange among infrastructure components

Figure 3 shows a functional model of the MCI.

Figure 3: Functional Model of an MCI

Service endpoints reside on a service platform. They exchange messages using some type of middleware. The
message exchange is managed by mediation systems, which can be deployed anywhere along the message path
(including within the service endpoint). The rules governing the message exchange are defined by policies, and it
is the responsibility of the infrastructure to ensure that the policies are properly enforced. A system of record
maintains information about the entire environment, and provides pointers to metadata and policies (typically
stored in various repositories). The entire environment should be monitored to enable proactive management of
issues and incidents. A service administration console enables centralized management and configuration.

The Technical Position describes each functional component and identifies the various product alternatives that
can be used to implement the functionality. Unfortunately, product categories don't particularly align with these
functional capabilities. Many products address aspects of multiple functional components, but in many cases they
address only a portion of the required capability. Multiple products are typically required to support all functional
requirements.

Table 1 describes ESB capabilities in relation to the MCI functional requirements.

Function ESB
capabil
ity

Comments

22

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

Middleware Full
support

ESBs typically support multiple middleware technologies with a variety of MEPs
and configurable quality of service (QoS). Even though an ESB provides full support
for middleware capabilities, most organizations will use multiple middleware
products.

Service
platform

Full
support

ESBs typically provide containers to host service endpoints, resource adapters to
expose legacy systems as services, and orchestration engines. Even though an ESB
provides full support for service platform capabilities, most organizations require
multiple service platforms to support different languages and middleware systems.

Service
mediation

Partial
support

ESBs support routing, protocol bridging, and message transformation. Some ESBs
support MEP and capability mediation. Very few ESBs support security mediation.
Additional products, such as XML gateways and XML services management (XSM)
systems are typically required to implement full support for mediation.

Service
administrati
on

Limited
support

ESBs typically supply tools for administering services that reside in the ESB, but
they don't provide a central administration tool for the entire SOA environment.
Additional products such as XSM systems are typically required to enable
centralized administration.

Service
monitoring

No
support

ESBs do not provide operational dashboards for monitoring and managing the SOA
environment. Additional products, such as XSM or SOA extensions to an enterprise
systems management solution, are typically required to support service monitoring.

System of
record

Varies Some ESBs include an integrated registry and repository that manages and enables
sharing of service metadata, policies, and artifacts. In most cases, a registry and
repository is sold separately.

Table 1: ESB Capabilities Within the Context of the MCI Functional Model

Standards That Apply to ESBs
As a general rule, ESBs are more standards compliant than previous generations of EAI technologies. Given that
the industry has not established a concrete definition for ESB, though, it should come as no surprise that the
industry has also not established definitive standards for ESBs.

The wonderful thing about standards is that there are so many of them. In fact, quite a few standards apply to
ESBs—although not all ESBs support all of them. In some cases, the standards complement each other. In other
cases, they overlap. The most prevalent standards supported by ESBs include the following:

• HTTP and REST

• Java Message Service

• Web services framework

• Business Process Execution Language

• Service Component Architecture

• Java Business Integration

HTTP and REST

23

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41392
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41393
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41394
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41399
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41400
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41401

HTTP is the standard, pervasive application protocol that enables the World Wide Web. HTTP is a stateless,
connection-oriented, client/server protocol that implements the architecture of the Web, as specified by Roy
Fielding in his dissertation on Representational State Transfer (REST).

REST is an architectural style of system development, not a middleware technology. REST is similar to and
compatible with SOA, although it imposes additional constraints on service interactions. The first and most
fundamental tenet of REST is that applications interact with resources, and that all interactions with a resource
involve the exchange of representations of the resource. One can think of REST as a resource oriented
architecture (ROA) rather than a service oriented one.

A resource is a constrained type of service. It must have a name (a Uniform Resource Identifier [URI]), and it
must expose its capabilities using a uniform interface. REST is closely associated with HTTP because HTTP
provides this type of uniform interface—all resource interactions use simple, generic methods: GET, POST, PUT,
and DELETE. Other important constraints of the REST style include clean separation of interface from
implementation, stateless communications, cache-ability of resource representations, and the use of hypermedia
(e.g., hyperlinks) to reference and manage state. These constraints bestow predictable benefits to applications that
adhere to them, including extreme scalability and flexibility. The World Wide Web owes its scalability and
flexibility to the REST architecture.

Java Message Service

Many ESBs rely on a MOM foundation for reliable messaging and event-driven processing. The Java Message
Service (JMS) is the standard Java messaging application programming interface (API) for interacting with MOM
systems. JMS 1.1 was approved by the Java Community Process (JCP) in December 2003. All Java-based MOM
products, such as IBM WebSphere MQ, Progress Software SonicMQ, and TIBCO Rendezvous, support JMS.
JMS is also a required feature in the Java Platform, Enterprise Edition (Java EE); therefore, all Java EE-
compatible application servers include support for JMS.

JMS provides a common messaging API that can be used with any MOM system. MOM vendors are responsible
for mapping the JMS API to the messaging capabilities supplied in their products. In some cases, the JMS API
may not provide access to all features in the product. Some MOM products—especially those that predate the
JMS specification—also supply a proprietary API that provides access to the middleware's full functionality.

When using JMS, an application interacts with a MOM product at a relatively low level. The application uses
JMS to establish a connection with the MOM's messaging service. It then sends and receives messages to and
from message destinations (queues or topics) managed by the messaging service. The application can specify a set
of delivery policies indicating the QoS desired, including at least once, at most once, or exactly once. If the
application is sending multiple messages, it can specify that it wants the messages delivered in order. The
messaging service ensures that the messages are delivered to the appropriate target applications according to those
delivery policies. MOM products can guarantee reliable delivery by persisting messages in a durable message
queue. JMS supports asynchronous, intermediated communications by default, disconnecting the receive
operation from the send operation. An application does not receive a message until it explicitly retrieves the
message from the messaging service.

JMS also supports event-driven processing and publish and subscribe (pub/sub) interaction patterns. In this
scenario, an application subscribes to a particular topic and receives a notification whenever a message relating to
the topic is published to the topic queue. Any number of applications may subscribe to the same topic, supporting
one-to-many message delivery. For more information about JMS, see the Application Platform Strategies
overview, “JEE5: The Beginning of the End of Java EE.”

Web Services Framework

24

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://java.sun.com/products/jms/
http://jcp.org/en/jsr/detail?id=914
http://www.burtongroup.com/Client/Research/Document.aspx?cid=70

The web services framework (WSF) provides a language- and platform-independent set of middleware and
communication technologies that enable service-oriented design and standards-based interoperability. The
framework is based on an extensive set of composable standards and specifications, often referred to as WS-*,
which are in various stages of development and readiness. For an in-depth analysis of the WSF standards and their
states of readiness, see the Reference Architecture Template, “Web Services Framework Standards.”

The WSF consists of a set of functional components that work together to supply a complete service-oriented
framework. Each functional component comprises a set of specifications that enable the functional capability.
Each specification addresses a particular capability in the framework, and developers can configure a service to
use only the specific capabilities required by the service. The architecture is organized into four logical groups, as
highlighted in Figure 4.

Figure 4: The WSF Composable Architecture

The four logical groups are:

• WSF foundation: Colored blue in Figure 4, the WSF foundation comprises architectural components that
support basic service interaction requirements, including messaging, description, and discovery.

• WSF extensions: Colored orange in Figure 4, the WSF extensions comprise architectural components that
support advanced operational semantics, such as state management, security, reliability, and transactions.

• WSF programming models: Colored yellow in Figure 4, the WSF programming models comprise
architectural components that support development activities, including service construction, service
orchestration, application composition, data management, and presentation requirements.

• WSF management: Colored green in Figure 4, WSF management comprises architectural components that
support runtime management and provisioning requirements.

25

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=78

The capabilities of an ESB correspond to these logical groups. All ESBs support the basic service interaction
capabilities as defined in the WSF foundation. ESBs typically support many of the advanced operational
semantics defined in the WSF extensions. Many ESBs also support various programming models. An ESB may
also support management interfaces for monitoring and control.

WS-* comprises more that 50 specifications. The following sections discuss only the most pertinent specification
families that apply to ESBs.

WSF Foundation

The WSF foundation specifications support messaging, description, and discovery. The most pertinent WSF
foundation specifications include:

• SOAP: SOAP is a language-independent XML messaging protocol that defines a standard message format,
standard message-exchange patterns, standard message-processing rules, and an extensibility framework.
SOAP 1.1 was published in May 2000. It was never ratified, but it has become a de facto standard. SOAP 1.2
and a family of related specifications were ratified by the World Wide Web Consortium (W3C) in June 2003
and updated in April 2007.

• MTOM: The SOAP Message Transmission Optimization Mechanism (MTOM) enables the attachment and
optimized transfer of binary data with a SOAP message. MTOM can work with both SOAP 1.1 and SOAP 1.2.
MTOM was ratified by W3C in January 2005.

• WS-Addressing: Web Services Addressing (WS-Addressing) supports asynchronous communication and
message routing. WS-Addressing also defines a standard syntax for referencing a web service endpoint. WS-
Addressing 1.0 was ratified by W3C in May 2006.

• XML Schema: XML Schema is a family of specifications that define a syntax for describing the structure,
content, and semantics of XML documents, such as the documents transferred using SOAP. XML Schema 1.0
was ratified by W3C in October 2004. Standardization of XML Schema 1.1 is in progress at W3C. A Working
Draft was published in August 2006.

• WSDL: Web Services Description Language (WSDL) is an XML-based machine-readable service-interface
definition language that describes a web service, and middleware frameworks can generate interface code from
a WSDL description. A WSDL description specifies the abstract interface of the service, bindings that map the
abstract interface to concrete protocols, and the location of the service's endpoints. WSDL uses XML Schema
1.0 to describe the structure of XML message formats. WSDL does not pre-suppose the use of SOAP, (a
binding can describe other protocols), but SOAP and WSDL are typically used together.WSDL 1.1 was
published in March 2001. It was never ratified, but it has become a de facto standard. WSDL 2.0 was ratified
by W3C in June 2007.

• WS-Policy: The Web Services Policy Framework (WS-Policy) and its related specifications provide a means
to declaratively specify the constraints, capabilities, and QoS expectations associated with a service. For
example, developers can specify routing, security, reliability, and transaction requirements using WS-Policy.
Policies are specified using a domain-specific policy assertion language (PAL). Many WSF extension
specification families include a PAL for expressing declarative policies. WS-Policy 1.5 was ratified by W3C in
September 2007.

• UDDI: Universal Description, Discovery and Integration (UDDI) defines a registry data model, and it defines
standard protocols for registering a service and querying the registry. UDDI 3.0.2 was ratified by the
Organization for the Advancement of Structured Information Standards (OASIS) in February 2005.

• WS-MetadataExchange: Web Services Metadata Exchange (WS-MetadataExchange) defines a standard
protocol for querying a service or service avatar to retrieve the service's metadata, including XML Schema,
WSDL, and WS-Policy descriptions. The last revision (written by BEA Systems, CA, IBM, Microsoft, SAP,
Sun Microsystems, and webMethods [now part of Software AG]) was published in August 2006. The authors
have requested a public review of the specification prior to submitting it to a standards body.

26

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/ws-addr-core/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema11-1/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/ws-policy/
http://uddi.org/pubs/uddi_v3.htm
http://schemas.xmlsoap.org/ws/2004/09/mex/

All ESBs support SOAP 1.1, WSDL 1.1, and XML Schema 1.0. A growing number of ESBs support SOAP 1.2,
MTOM, and WS-Addressing. Very few products support WSDL 2.0. A few ESB vendors use WS-Policy to
specify a service's security policies, but they rarely use WS-Policy for other service constraints and capabilities.
Most ESBs support integration with registries via UDDI, but very few support WS-MetadataExchange.

For information about these and other WSF foundation standards, see the Reference Architecture Template, “Web
Services Framework Standards.” For more information on SOAP and WSDL, see the Application Platform
Strategies overview, “The Advent of the Network Platform: Web Services Move into the IT Fabric.” For a more
detailed discussion of WS-Policy, see the Application Platform Strategies overview, “VantagePoint 2005-2006
SOA Reality Check.” For an in-depth discussion of UDDI, see the Application Platform Strategies Technology &
Standards document, “Registry Services: The Foundation for SOA Governance.”

WSF Extensions

The WSF extension specifications support advanced operational semantics, such as security, reliability, and
transactions. The most pertinent WSF extension specifications include:

• Web Services Security (WS-Security) and its family of related standards provides the means to attach security
information to a SOAP message, enabling authentication, authorization, auditing, message confidentiality, and
message integrity. Related standards define security token formats, a domain-specific PAL (WS-
SecurityPolicy), a protocol for obtaining security tokens (WS-Trust), and a system for establishing secure
sessions (WS-SecureConversation). WS-Security 1.1 and the various security token profiles were ratified by
OASIS in February 2006. WS-Trust 1.3 and WS-SecureConversation 1.3 were ratified by OASIS in March
2007.WS-SecurityPolicy 1.2 was ratified by OASIS in July 2007.

• Web Services Reliable Messaging(WS-ReliableMessaging) and its associated PAL (WS-RM Policy) support
guaranteed message delivery according to a specified assurance level (AtMostOnce, AtLeastOnce,
ExactlyOnce, and InOrder). WS-ReliableMessaging 1.1 was ratified by OASIS in June 2007.

• Web Services Transaction (WS-Transaction) is a family of specifications that supports distributed
transaction integrity using either 2PC protocols or compensating transactions. The WS-Transaction 1.1
specifications were ratified by OASIS in April 2007.

• Web Services Notification (WS-Notification) is a family of specifications that supports brokered and non-
brokered notifications and pub/sub patterns using a hierarchical tree-based topic space. The WS-Notification
1.3 specifications were ratified by OASIS in October 2006.

• Web Services Eventing (WS-Eventing) supports event-driven notifications using a lightweight, extensible
pub/sub pattern. It supports a subset of the capabilities of WS-Notification. WS-Eventing was developed by
BEA, CA, IBM, Microsoft, and TIBCO Software. It was submitted to W3C in March 2006, although as of
September 2007 W3C had not yet launched a working group to manage the specification.

All ESB vendors support WS-Security and many support WS-Security Policy. Very few support WS-Trust or
WS-SecureConversation. Even fewer ESBs can mediate a secure session established using WS-
SecureConversation. A few ESB vendors have implemented support for WS-ReliableMessaging, and many others
plan to add support for it in late 2007 or early 2008. Currently, most ESBs support reliable messaging using
proprietary methods based on MOM. Many ESB vendors have committed to adding support for WS-Transaction
in the next release of their products, although very few support it currently. Unfortunately, notification standards
are still in flux. Although WS-Notification has been ratified, few products support it. The vendors appear to be
committed to WS-Eventing instead. But until W3C launches a working group to manage it, WS-Eventing has no
chance of being ratified.

For information about these and other WSF extension standards, see the Reference Architecture Template, “Web
Services Framework Standards.” For a more detailed discussion of the WS-Security family of specifications, see
the Security and Risk Management Strategies overview, “Web Services Security Standards 2006: Where Are We
Now?.”

WSF Programming Models

27

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=78
http://www.burtongroup.com/Client/Research/Document.aspx?cid=78
http://www.burtongroup.com/Client/Research/Document.aspx?cid=271
http://www.burtongroup.com/Client/Research/Document.aspx?cid=697
http://www.burtongroup.com/Client/Research/Document.aspx?cid=697
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1045
http://www.oasis-open.org/specs/index.php#wssv1.1
http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrm/200702
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ws-tx#technical
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn#technical
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn#technical
http://www.w3.org/Submission/WS-Eventing/
http://www.burtongroup.com/Client/Research/Document.aspx?cid=78
http://www.burtongroup.com/Client/Research/Document.aspx?cid=78
http://www.burtongroup.com/Client/Research/Document.aspx?cid=137
http://www.burtongroup.com/Client/Research/Document.aspx?cid=137

WSF programming models standards support service construction, composition, and orchestration, as well as data
management and presentation. Service construction and composition programming models tend to be language-
specific. Examples include the following .NET and Java APIs for web services:

• ASMX: Active Server Pages for .NET (ASP.NET) includes an annotated-code programming model and
framework called Active Server Methods (ASMX) for building plain old XML (POX) services and web
services using SOAP 1.1 and WSDL 1.1.

• WSE: The Web Services Enhancements (WSE) framework for .NET augments ASMX, adding support for
MTOM, WS-Addressing, WS-Security, WS-SecureConversation, and WS-Trust.

• WCF: Windows Communication Foundation (WCF) is a .NET 3.0 annotated-code framework that replaces
ASMX and WSE. Although Microsoft doesn't position it so, WCF could be construed to be an ESB. WCF
provides a unified programming model and runtime system that enables an application to communicate over a
variety of communication protocols using an extensible channel plug-in model. WCF includes plug-in channel
modules for POX, SOAP, Microsoft Message Queue (MSMQ), and .NET Remoting. WCF supports SOAP 1.1,
SOAP 1.2, MTOM, WS-Addressing, WSDL 1.1, WS-Policy, WS-MetadataExchange, WS-Security, WS-
SecureConversation, WS-Trust, WS-SecurityPolicy, WS-ReliableMessaging, and WS-Transaction.

• JAX-WS: The Java API for XML Web Services (JAX-WS) defines an annotated-code programming model
and framework for building web services. JAX-WS does not support SOAP encoding, a deprecated XML
encoding format defined in the SOAP 1.1 specification. JAX-WS 2.1 was approved by the JCP in May 2007,
and it is a required component in Java EE. JAX-WS supports POX, SOAP 1.1, SOAP 1.2, MTOM, and WSDL
1.1. JAX-WS defines a handler framework for implementing support for WSF extensions, but standard
frameworks and APIs for each specification have not been defined.

• JAX-RPC: The Java API for XML-based RPC (JAX-RPC) provides a programming model and framework for
building web services. JAX-RPC has been superseded by JAX-WS, although JAX-RPC is still required to
support services that use SOAP encoding. JAX-RPC is a required component in Java EE. JAX-RPC 1.1 was
approved by the JCP in October 2003.

• JAX-RS: The Java API for RESTful Web Services (JAX-RS) will define an annotated-code programming
model and framework for building POX services that adhere to REST architectural constraints. JAX-RS is a
work in progress at the JCP.

The Service Component Architecture (SCA) defines a language- and protocol-neutral service component model,
and it has recently gained significant vendor buy-in. SCA is discussed in the “Service Component Architecture”
section of this Technology & Standards document.

The Business Process Execution Language (BPEL) defines a language for orchestrating web services. BPEL is
discussed in the “Business Process Execution Language” section of this Technology & Standards document.

Data management programming models enable processing and manipulation of data—particularly XML data. The
data management programming models that pertain most to ESBs include:

• XSLT: Extensible Stylesheet Language Transformations (XSLT) is a language for transforming an XML
document using a style sheet. XSLT 1.0 was ratified by W3C in November 1999. XSLT 2.0was ratified by
W3C in January 2007.

• XQuery: XML Query Language (XQuery) is a language for querying, merging, and transforming one or more
XML documents. XQuery 1.0 was ratified by W3C in January 2007.

• SDO: Service Data Objects (SDO) defines a uniform, language-neutral programming model and framework for
mapping data to and from object graphs and a variety of data sources, including XML, relational databases, and
enterprise information systems. The SDO specifications were developed by an informal vendor consortium
called Open SOA whose members include BEA, Cape Clear Software, IBM, Interface21, IONA Technologies,
Oracle, Primeton Technologies, Progress Software, Red Hat, Rogue Wave Software, SAP, Siemens, Software
AG, Sun Microsystems, Sybase, TIBCO, Xcalia, and Zend Technologies. SDO specifications were published
for Java and C++ in November 2006 and December 2006 respectively. Draft specifications for C and COBOL
were published in May 2007, and the PHP community has released a PHP implementation of SDO.

28

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.microsoft.com/downloads/details.aspx?FamilyID=018a09fd-3a74-43c5-8ec1-8d789091255d&displaylang=en
http://msdn2.microsoft.com/en-us/library/ms735119.aspx
http://jcp.org/en/jsr/detail?id=224
http://jcp.org/en/jsr/detail?id=101
http://jcp.org/en/jsr/detail?id=311
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41400
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1232&display=full#41399
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xquery/
http://www.osoa.org/display/Main/Service+Data+Objects+Home
http://www.osoa.org/display/Main/Home
http://www.osoa.org/download/attachments/36/Java-SDO-Spec-v2.1.0-FINAL.pdf?version=1
http://www.osoa.org/download/attachments/36/CPP-SDO-Spec-v2.1.0-FINAL.pdf?version=2
http://osoa.org/download/attachments/36/SDO_Specification_C_V2.1_Draft.pdf?version=1
http://osoa.org/download/attachments/36/SDO_Specification_COBOL_V2.1_Draft.pdf?version=1
http://us.php.net/sdo

Presentation programming models are typically out of the scope of an ESB product. ESBs should support a
variety of presentation modes, including desktop clients, web applications, portal servers, mashup servers, rich
Internet applications (RIAs), and rich mobile applications (RMAs). ESBs support these presentation modes
through a variety of protocol channels.

For information about these and other WSF programming models, see the Reference Architecture Template, “
Web Services Framework Standards.”

WSF Management

WSF management standards support runtime management and provisioning capabilities. Unfortunately,
management standards are woefully immature, and because there are no established standards, ESBs support
management and provisioning using proprietary methods.

For information about emerging WSF management standards, see the Reference Architecture Template, “Web
Services Framework Standards.”

Business Process Execution Language

Many ESBs supply an orchestration engine that can execute structured workflows representing a business process.
The Business Process Execution Language (BPEL) is an orchestration language for defining these automated
business processes. A process definition specifies the precise set of execution steps that govern runtime
interactions among applications, data sources, and other entities required to complete the process. In particular,
BPEL defines a syntax for specifying an automatic workflow for invoking web services (services that are
described by WSDL). Orchestrations defined by BPEL are then in turn exposed as web services.

Web Services Business Process Execution Language (WS-BPEL) version 2.0 was ratified by OASIS in April
2007, and the ESB vendors are strongly committed to this standard. Currently, though, many ESB vendors
implement support for a previous nonstandard version known as Business Process Execution Language for Web
Services (BPEL4WS) version 1.1.

In June 2007, a number of vendors, including Active Endpoints, Adobe Systems, BEA, IBM, Oracle, and SAP,
published a set of specifications know as WS-BPEL Extension for People (BPEL4People) that enable BPEL
process definitions to invoke human workflow activities in a standard way. These specifications will address a
glaring omission in the current specification—that of human participation—but they have not yet been submitted
to a standards body.

For more information about BPEL, see the Application Platform Strategies overview, “Crossing the Divide: The
Mechanics of Process Execution.”

Service Component Architecture

Service Component Architecture (SCA) is a set of specifications that describes a component model for building
and hosting services and an assembly model for building applications based on service composition. SCA is not
an orchestration language; it can't be used to define workflows. Instead it defines standards for representing
services as components that can be wired together to create an application. Each component takes responsibility
for invoking the next component in the sequence rather than relying on an orchestration engine to coordinate the
process.

SCA is language and protocol independent. SCA components can be implemented using many languages, such as
Java, C++, BPEL, and PHP, and they can communicate using various protocols, such as SOAP, RMI, and MOM.
Currently, no one has defined a language implementation binding for .NET, but nothing about SCA precludes
such a thing.

29

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.burtongroup.com/Client/Research/Document.aspx?cid=78
http://www.burtongroup.com/Client/Research/Document.aspx?cid=78
http://www.burtongroup.com/Client/Research/Document.aspx?cid=78
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://www.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/
http://www.burtongroup.com/Client/Research/Document.aspx?cid=945
http://www.burtongroup.com/Client/Research/Document.aspx?cid=945
http://www.oasis-opencsa.org/sca

The fundamental abstractions in the SCA model are similar to those used in the Spring Framework. The SCA
model is depicted in Figure 5. An SCA composite contains one or more components. A component may be
implemented using any supported language. A component may allow properties (external data values) to
influence its operation. Each component exposes one or more services (interfaces that may be consumed by
applications or other components). A component also typically has one or more references (dependencies on other
components). When assembling components, a reference must be wired to its associated service. References and
services can support one or more bindings (invocation mechanisms and protocols). A composite application can
in turn be exposed as a component, promoting its internal services, references, and properties for external
consumption. A composite configuration, described in a Service Component Definition Language (SCDL) file,
describes each component (its implementation, properties, services, references, and bindings), provides values for
the properties, wires references to services, and associates policies with the components and wires.

Figure 5: The SCA Composition Model

The SCA specifications were developed by an informal vendor consortium called Open SOA, whose members
include BEA, Cape Clear, IBM, Interface21, IONA, Oracle, Primeton, Progress Software, Red Hat, Rogue Wave,
SAP, Siemens, Software AG, Sun Microsystems, Sybase, TIBCO, Xcalia, and Zend. These vendors published the
SCA v1.0 specifications in March 2007 and subsequently submitted them to OASIS. Open SOA has since
published a few additional draft specifications adding support for C and COBOL component models and a
binding for the Java EE Connector Architecture (JCA). Open SOA also plans to publish an additional draft
specification defining an SCA component model for Java EE.

The SCA specifications are now managed by the OASIS Open Composite Services Architecture (Open CSA)
Member Section, which comprises six technical committees (TCs). Each TC is responsible for one or more of the
SCA specifications. As of September 2007, SCA comprised 13 specifications, which include two foundational
specifications and define support for five programming languages (Java, C++, C, COBOL, and BPEL) and five
bindings (SCA internal binding, web services, JMS, Enterprise JavaBeans [EJB], and JCA).

The two foundational specifications define an abstract SCA component and assembly model and a policy
framework:

30

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www.springframework.org/
http://www.springframework.org/
http://www.osoa.org/display/Main/Home
http://www.oasis-opencsa.org/
http://www.oasis-opencsa.org/sca-cfp

• SCA Assembly Model v1.0 defines the abstract SCA component and composite assembly model, as well as the
SCA internal binding. The SCA internal binding is implementation-specific and can be used for interactions
between references and services within a single SCA domain.

• SCA Policy Framework v1.0 defines a framework for associating policies (defined via WS-Policy or other
unspecified means) with a service component or wire.

SCA supports multiple programming languages by mapping the abstract SCA component model to language-
specific component models. The SCA language-specific specifications include:

• SCA Java Common Annotations and APIs v1.00, which defines a common set of Java annotations and APIs
that are used by the other Java-related SCA specifications. These annotations and APIs are used to indicate the
properties, services, and references within a component.

• SCA Java Component Implementation Specification v1.00, which describes how to implement an SCA
component using a Java class and how to invoke an SCA component from a Java client application.

• SCA Spring Component Implementation Specification v1.0, which describes how to implement an SCA
component in Java using the Spring Framework and how to reference an SCA component in a Spring
configuration.

• SCA Client and Implementation Model Specification for WS-BPEL v1.00, which describes how to implement
an SCA component using BPEL and describes an extension to BPEL that enables a BPEL process to invoke an
SCA component.

• SCA Client and Implementation Model Specification for C++ v1.00, which describes how to implement an
SCA component using C++ and how to invoke an SCA component from a C++ client application.

• SCA C Client and Implementation Specification v1.00 (Draft), which describes how to implement an SCA
component using C and how to invoke an SCA component from a C client application.

• SCA COBOL Client and Implementation Specification v1.00, which describes how to implement an SCA
component using COBOL and how to invoke an SCA component from a COBOL client application.

In addition to these specifications, the PHP community has launched an open source project called SOA PHP that
includes a prototype implementation of SCA for PHP. IBM also provides prototype support for SCA components
implemented with Ruby in IBM WebSphere Process Server.

SCA supports multiple invocation mechanisms and protocols via binding specifications. A service uses a binding
to expose its capabilities to client applications and components. A reference uses a binding to describe the
mechanism used to invoke its associated service. The SCA Assembly Model specification describes a vendor-
specific binding (SCA internal binding) that can be used to wire references to services within a single SCA
domain (a single instance of an SCA runtime environment). The additional SCA binding specifications include:

• SCA Web Service Binding Specification v1.00, which enables seamless interoperability between SCA
components and web services that communicate using SOAP 1.1 or SOAP 1.2. The web services binding
allows an SCA component to expose its capabilities as a web service or to reference and invoke a web service.

• SCA JMS Binding Specification v1.00, which enables seamless interoperability between SCA components and
JMS applications. The JMS binding allows an SCA component to send and receive messages via a JMS queue
or topic.

• SCA EJB Session Bean Binding v1.00, which enables seamless interoperability between SCA components and
EJB applications. The EJB binding allows an SCA component to expose its capabilities as an EJB session bean
or to reference and invoke an EJB session bean.

• SCA JCA Binding Specification v1.00, which enables seamless interoperability between SCA components and
legacy applications accessible through a JCA adapter. The JCA binding allows an SCA component to expose
its capabilities as a JCA resource or to reference and invoke JCA resources.

SCA has garnered wide support from ESB vendors and is likely to emerge as the prominent component and
assembly model standard for ESBs. For a more in-depth overview of SCA, see the informative “Introducing SCA
” white paper by David Chappell.

31

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_JavaAnnotationsAndAPIs_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_JavaComponentImplementation_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_SpringComponentImplementationSpecification-V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforBPEL_V100.pdf?version=1
http://osoa.org/download/attachments/35/SCA_ClientAndImplementationModel_Cpp-V100.pdf?version=2
http://osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforC_V100Draft.pdf?version=1
http://osoa.org/download/attachments/35/SCA_ClientAndImplementationModelforCOBOL_V1.00.pdf?version=2
http://www.osoa.org/display/PHP/SCA+with+PHP
http://www.alphaworks.ibm.com/tech/scarubycomponent
http://osoa.org/download/attachments/35/SCA_WebServiceBinding_V100.pdf?version=2
http://osoa.org/download/attachments/35/SCA_JMSBinding_V100.pdf?version=2
http://osoa.org/download/attachments/35/SCA_EJBSessionBeanBinding_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_JCABindings_V1_00.pdf?version=1
http://www.davidchappell.com/articles/Introducing_SCA.pdf

Java Business Integration

Java Business Integration (JBI) is a standard Java API that defines a plug-in framework for integration
infrastructure systems. It defines a standard set of system-level interfaces that enable a JBI-compliant container or
resource adapter to be plugged into any JBI-compliant integration system (such as an ESB). JBI is similar in
concept to JCA except that it does not have a dependency on Java EE.

The fundamental concepts of the JBI framework are shown in Figure 6. JBI acts as an intermediary that routes
messages between service endpoints, and it relies on a single common format to enable heterogeneous
interoperability. The core of the framework is the Normalized Message Router (NMR). All messages routed by
JBI are first converted into a normalized format that separates routing and QoS information (referred to as the
message context) from the application payload. Service endpoints are accessed through plug-in components that
communicate with the NMR using the JBI system-level APIs. JBI describes two types of plug-in components:

• Service engines are containers that host service endpoints. Example service engines include Java containers for
plain old Java objects (POJOs) and EJBs, a BPEL engine, and an engine that executes XSLT scripts. JBI does
not specify any details regarding the component models for these containers.

• Binding components are connectors to remote service endpoints. A JBI-compliant system must provide a
binding component for SOAP. Binding components could also provide access to endpoints that communicate
using JMS, JCA, CORBA, or any other protocol.

Figure 6: JBI Framework

JBI 1.0 was developed through the Java Community Process (JCP) and approved as a standard Java API in June
2005. Sun Microsystems also sponsors an open source community website, Open JBI Components, which has the
goal of fostering an ecosystem of pluggable JBI components. JBI 1.0 is supported by a number of smaller ESB
players, but it has not gained the support of the Java superplatform vendors, including BEA, IBM, Oracle, and
SAP. A new Java Specification Request (JSR 312) was launched in March 2007 to define JBI 2.0, although BEA
and IBM voted against the new effort.

32

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://jcp.org/en/jsr/detail?id=208
https://open-jbi-components.dev.java.net/
http://www.jcp.org/en/jsr/detail?id=312

Conclusion

An enterprise service bus (ESB) is a middleware solution that enables interoperability among heterogeneous
environments using a service-oriented model. Although frequently associated with concepts like “integration” and
“mediation,” an ESB also provides a service platform comparable to an application server. In fact, ESBs represent
the consolidation of the integration and application server product categories. An ESB's true breakthrough feature
is its ability to virtualize services. An ESB's service container abstracts a service and insulates it from its
protocols, invocation methods, method exchange patterns, quality of service requirements, and other
infrastructure concerns.

33

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

Notes

1 “WebSphere software: ESB Overview.” IBM. Accessed online 21 Aug 2007. http://www-
304.ibm.com/jct03001c/software/info1/websphere/index.jsp?tab=integration/esb&.

2 Anne Thomas Manes, Richard Monson-Haefel, Joe Niski, Lyn Robison, Chris Howard. “VantagePoint
2007–2008: Build for Today, Architect for Tomorrow.” Burton Group. 30 Mar 2007.
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1058.

34

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

http://www-304.ibm.com/jct03001c/software/info1/websphere/index.jsp?tab=integration/esb&
http://www-304.ibm.com/jct03001c/software/info1/websphere/index.jsp?tab=integration/esb&
http://www.burtongroup.com/Client/Research/Document.aspx?cid=1058

Author Bio

Anne Thomas Manes

Vice President and Research Director

Emphasis: Service-oriented architecture, web services, XML, governance, superplatforms, application servers,
Java, J2EE, .NET, application security, data management

Background: Former Chief Technology Officer at Systinet, a SOA governance vendor (now part of HP). Director
of Market Innovation in Sun Microsystem's software group. Manes' 28-year industry background also includes field
service and education at IBM Corporation; customer education at Cullinet Software; product management at Digital
Equipment Corporation; chief architect at Open Environment Corporation; and research analyst with Patricia
Seybold Group.

Primary Distinctions: Named one of the 50 most powerful people in networking in 2002 by Network World. Listed
among the "Power 100 IT Leaders," by Enterprise Systems Journal. A frequent speaker at trade shows and
InfoWorld, JavaOne, and RSA conferences. She has also authored numerous articles in trade publications. Member
of Web Services Journal editorial board. Authored "Web Services: A Manager's Guide," published by Addison-
Wesley, 2003. Participated in web services standards development efforts at W3C, OASIS, WS-I, and JCP. Anne
earned a BA in Economics at Wellesley College.

35

BURTON GROUP 7090 Union Park Center Suite 200 Midvale · Utah 84047 · P 801.566.2880 · F 801.566.3611 · www.burtongroup.com

