Introduction to EISCAT

What you need to know to run an experiment

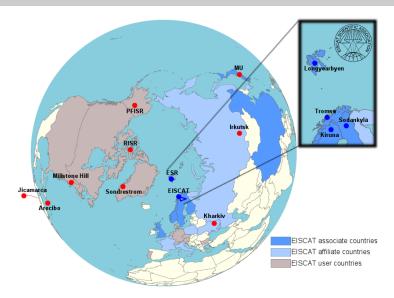
Carl-Fredrik Enell carl-fredrik.enell@eiscat.se

EISCAT Scientific Association

Incoherent scatter radar school 2016, Sodankylä

- Overview of EISCAT
- Overview of EISCAT hardware and signal processing
- 3 EISCAT experiment configuration
- 4 Running EISCAT: EROS command line, real time graph and real time analysis
- 5 Summary and experiment design cookbook

Outline


- Overview of EISCAT
- Overview of EISCAT hardware and signal processing
- 3 EISCAT experiment configuration
- 4 Running EISCAT: EROS command line, real time graph and real time analysis
- 5 Summary and experiment design cookbook

What is EISCAT?

ESR 32-meter antenna

EISCAT in the world

Map Anders Tjulin

EISCAT Svalbard radar (ESR)

- 500 MHz band
- Longyearbyen, Svalbard, 78°09'11" N, 16°01'44" E
- Magnetospheric cusp and dayside auroral oval

From slides by Assar Westman

EISCAT mainland radars

Nightside auroral oval, atmospheric dynamics, active heating...

- UHF, 930 MHz
- VHF, 224 MHz, tristatic

Outline

- Overview of EISCAT
- Overview of EISCAT hardware and signal processing
- Selscal experiment configuration
- 4 Running EISCAT: EROS command line, real time graph and real time analysis
- 5 Summary and experiment design cookbook

Transmitting a signal

Power amplifiers

- Raise the output power
- Peak output
 1 MW or more
 (average some
 250 kW)
- Waveguides to the antennas

NB: an operator must be on duty to turn on the transmitters!

C.-F. Enell (EISCAT) Introduction to EISCAT ISR school 2016 9 / 24

Transmitting a signal

Antennas

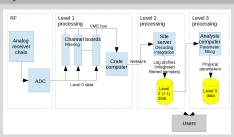
- Waveguide from klystrons
- ESR has antenna switch
- Polarizer
- Receiver protection

Receiving the scattered signal

Analog receiver chain

- Antennas: T/R switch, Receiver protector
- Low noise amplifiers
- Mixers
- Filters

Digital receiver chain


- A/D converter
- DSP boards
- Software

Receiving the scattered signal

Digital receiver (and radar controllers): the VME crate

Schematic summary

Outline

- Overview of EISCAT
- 2 Overview of EISCAT hardware and signal processing
- 3 EISCAT experiment configuration
- 4 Running EISCAT: EROS command line, real time graph and real time analysis
- 5 Summary and experiment design cookbook

Experiment considerations

https://www.eiscat.se/groups/Documentation/UserGuides/eiscat-experiments/at_download/file

- Radar and antenna
 - location
 - ★ Svalbard
 - ★ Mainland
 - frequency
 - **★** UHF
 - ★ VHF
- Pulse code program
 - Altitude interval
 - Range resolution
 - ▶ Time resolution
 - Plasma lines or not
 - Raw data or not
 - Svalbard: antenna switching

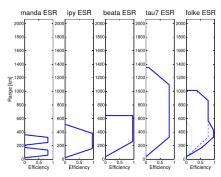


Figure 3: Overview of the ranges covered at the EISCAT ESR radar by the experiments used in the common programmes.

See document at URL above, courtesy Anders Tjulin

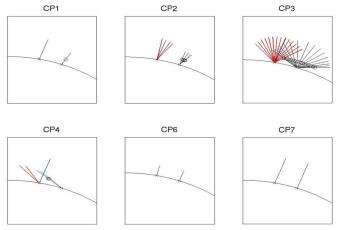
Experiment considerations

https://www.eiscat.se/groups/Documentation/UserGuides/eiscat-experiments/at_download/file

Antenna scan patterns

- UHF, ESR 32 m antenna: fixed position or scan (if possible)
 - Field aligned vs latitudinal coverage
 - Vector velocity: neutral wind or electric field

A fixed position highly recommended for your first experiment


- ESR 42 m antenna: fixed field aligned
- VHF tilt NB controlling this antenna is like moving a football field time to change from vertical to low elevation is up to 20 minutes!

This means: if VHF is to be moved, we will have to do so in advance before the experiment night

Experiment considerations

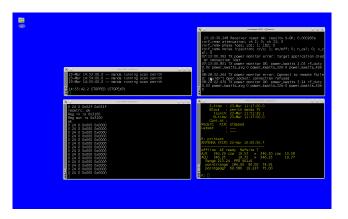
https://www.eiscat.se/groups/Documentation/UserGuides/eiscat-experiments/at_download/file

CP scan patterns

12 / 24

Some recommended pulse code experiments

See documentation for which experiments available on which radar


- manda Middle atmosphere and D region, ion line only, high resolution, raw data
 - beata Standard experiment with plasma lines
 - bella Long baud length, for topside or low elevation, with plasma lines
 - tau7 Longest baud length, topside or low elevation
 - taro Svalbard dual antenna
 - folke Svalbard dual antenna

Outline

- Overview of EISCAT
- 2 Overview of EISCAT hardware and signal processing
- 3 EISCAT experiment configuration
- 4 Running EISCAT: EROS command line, real time graph and real time analysis
- 5 Summary and experiment design cookbook

The EROS console (Kiruna site)

EISCAT Realtime Operating System

The window titled **EROS** console is a command line interface where you run all EROS commands. The programs are written in an extension of the Tcl/Tk script language, called ELAN.

Important EROS commands (see http://sgo.fi/ ~jussi/eiscat/erosdoc/eros_commands.html)

runexperiment Load and execute experiment ELAN file at specified time with specified parameters:

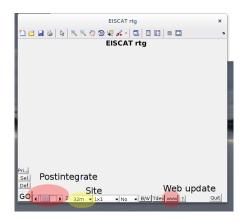
<experiment file> <start time> <scan pattern> <associate
code / CP> <any additional parameters>

Example

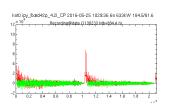
runexp /kst/exp/beata/beata fm ip2 CP

Note: commands can be abbreviated!

```
enablerecording Important: enable data storage
printexperiment Show experiment status
pointdir (and other similar commands) Change antenna pointing
printantenna Show antenna pointing
stopexperiment Stop the experiment
```

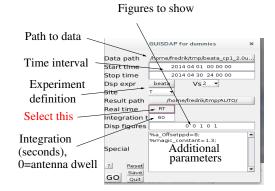

Real-time graph

RTG overview

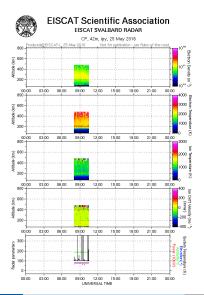

- Matlab software
- Reads data files
- Plots spectra and overviews
 - Selected in experiment's rtg_def.m
- Plots can go to EISCAT web page

RTG user interface

- Post-integration of data
- Site and other settings
- Plot geometry
- Enable WWW update


Example of RTG output

| ipy 2016-05-25 1028/36 6s 633kW 1645/61.6 | 1500 | 1000


Real-time analysis

- GUISDAP: Matlab software package
- guisdap -a
- Set parameters and go

GUISDAP output (vizu)

Realtime output also on EISCAT web page

Outline

- Overview of EISCAT
- 2 Overview of EISCAT hardware and signal processing
- Selscal experiment configuration
- 4 Running EISCAT: EROS command line, real time graph and real time analysis
- 5 Summary and experiment design cookbook

What to do next

- Decide on a scientific objective
- Select a site and radar
- Decide whether a certain time slot is preferred (when is "my" phenomenon most likely to occur?)
- Required range, time resolution, etc. determine what pulse code to use
 - Consider e.g. manda, beata, bella, tau7
 - Check documentation for what code programs are available on "your" radar
- Ohoose antenna pointing (or scan if required and possible)
- Write a short proposal
 - Proposal is evaluated
 - ► Time is allocated (scheduling)

What to do next

- Decide on a scientific objective
- Select a site and radar
- Decide whether a certain time slot is preferred (when is "my" phenomenon most likely to occur?)
- Required range, time resolution, etc. determine what pulse code to use
 - Consider e.g. manda, beata, bella, tau7
 - Check documentation for what code programs are available on "your" radar
- Choose antenna pointing (or scan if required and possible)
- Write a short proposa
 - Proposal is evaluated
 - ► Time is allocated (scheduling)

What to do next

- Decide on a scientific objective
- Select a site and radar
- Decide whether a certain time slot is preferred (when is "my" phenomenon most likely to occur?)
- Required range, time resolution, etc. determine what pulse code to use
 - Consider e.g. manda, beata, bella, tau7
 - Check documentation for what code programs are available on "your" radar
- Choose antenna pointing (or scan if required and possible)
- Write a short proposal
 - Proposal is evaluated
 - ► Time is allocated (scheduling)

What to do next

- Decide on a scientific objective
- Select a site and radar
- Decide whether a certain time slot is preferred (when is "my" phenomenon most likely to occur?)
- Required range, time resolution, etc. determine what pulse code to use
 - Consider e.g. manda, beata, bella, tau7
 - Check documentation for what code programs are available on "your" radar
- Ohoose antenna pointing (or scan if required and possible)
- Write a short proposal
 - Proposal is evaluated
 - ► Time is allocated (scheduling)

What to do next

- Decide on a scientific objective
- Select a site and radar
- Decide whether a certain time slot is preferred (when is "my" phenomenon most likely to occur?)
- Required range, time resolution, etc. determine what pulse code to use
 - ► Consider e.g. manda, beata, bella, tau7
 - Check documentation for what code programs are available on "your" radar
- Choose antenna pointing (or scan if required and possible)
- Write a short proposal
 - Proposal is evaluated
 - Time is allocated (scheduling)

What to do next

- Decide on a scientific objective
- Select a site and radar
- Decide whether a certain time slot is preferred (when is "my" phenomenon most likely to occur?)
- Required range, time resolution, etc. determine what pulse code to use
 - Consider e.g. manda, beata, bella, tau7
 - Check documentation for what code programs are available on "your" radar
- Choose antenna pointing (or scan if required and possible)
- Write a short proposal
 - Proposal is evaluated
 - ► Time is allocated (scheduling)

What to do next

Run your experiment

- Be in Polaria lecture hall well in advance before your allocated radar time!
- EISCAT and SGO staff will assist you how to
 - start your experiment
 - contact the on site transmitter operators
 - save and analyze the data
- Be prepared to have a plan B!

ESR 32-meter antenna

More information

- http://www.eiscat.se
- https://www.eiscat.se/groups/Documentation/UserGuides/ eiscat-experiments/at_download/file

Questions?

• http://sgo.fi/~jussi/eiscat/erosdoc/eros_commands.html)