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9 Pulsed-Doppler Radar
© Probability Theory and Stochastic Processes

© Overspread Targets
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Fourier Analysis
Continuous Fourier Transform

FF()} = /oo e s de  FHFW) = o /OO F(w)e duw
Properties:

o Exists when [ |£(t)|* dt converges

o Linearity F {af(t) + Bg(t)} = aF {f(t)} + BF {g(t)}

@ Time reversal F {f(—t)} = F{f(t)}"

o Time Delay F {f(t — to)} = e /0 F {f(t)}

@ Convolution Theorem:

o0

g(t) = F(t) (1) :/ F(E)h(t — ) dt

—00

F{g(t)} = F{f(t)} x F{n(t)}
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Fourier Analysis

Duality Between Time and Frequency

Fourier transform is a unitary operator: F~! = %]—'*.

All properties have an dual
@ Frequency reversal F~1 {F(—w)} = F 1 {F(w)}*
@ Frequency shift 771 {F(w —wp)} = &/t F~ 1 {F(w)}
@ Dual Convolution Theorem:

[e.e]

G(w) = F(w) * H(w) = / F(w/)H(w — o) do

—00

FHGW)} =2nF H{F(w)} x FH {H(w)}

Uncertainty principle (Gabor Limit):

([ e a) ([ 1rer a) = 2 ([ iror dt)2

Narrow in time <> Wide in frequency

Wide in time <> Narrow in frequency
R. H. Varney (SRI)
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Fourier Analysis

Discrete-Time Fourier Transform

Suppose | sample data with sampling period T such that f, = f(nT). The
DTFT is defined as

DTFT {f} = >  fre /T

DTFT ! {F(w)} = % /_}r F(w)e™"T dw

3

@ The DTFT maps a discrete sequence onto a function of continuous
frequency

o The DTFT is ZZ-periodic in w since e=&nT = ¢=J(«+% )T,
@ The DTFT is related to the CFT by:

DTFT {f} = F {i F(nT) (t — nT)}
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Fourier Analysis

Discrete Fourier Transform

Given N discrete samples:

N—-1
Fe= fae 2% ke[o,N-1]  Forward DFT
n=0
1 N1 -k
fo =5 Fre*™n nec[0,N—1]  Inverse DFT
k=0

@ The Fast Fourier Transform (FFT) is an algorithm for computing the
DFT that is O (N log N)

@ The DFT is a discrete sampling of the DTFT.

o If f, = f(nT) for sampling period T, then the corresponding set of
discrete frequencies are

) k
Wy = &M ——
NT
27
NT
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Fourier Analysis

Sampling and Aliasing

Periodicity of complex exponentials:
e27r_/ N — e27r_/ N F2mim VYme7Z

From this it follows that

N7t Tk N1 Thk+mnTN
—ogjnlk o jnTktmnTN
Fr = E fe 2MjNT = E f,e 2mj T
n=0 n=0

k= NT T

For example, with T =2 ms, + = 500 Hz:

<o 4> =025 Hz <+ —425 Hz <+ 75 Hz <> 575 Hz <> 1075 Hz <+ - --
@ The DFT returns frequencies from 0 to % by default. A common

convention is to report the spectrum from —5L- to 5% (fftshift).
@ Nyquist Sampling Theorem: All signal frequencies must be
lw| < 271% for the DFT and DTFT to avoid frequency aliasing.
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Fourier Analysis

Baseband Sampling

Original Signal: v(t)

0
—fo Frequency fo
Baseband Signal: v, (e 20Ty (nT))
—fo 0 fo
Frequency
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Fourier Analysis

Windowing and Frequency Resolution

What are the ramifications of using a finite length segement of data in the
DFT?

where the length N rectangle
N-1 ) function is:
Fi=)_ fpe T DFT
n=0 N 1 0<n<N
> : = {O otherwise
= Y far)e T DTFT
n=—oo

By the convolution theorem for the DTFT: Dirichlet Kernel

DTFT {f X r’V} — DTFT {f} + DTFT {rN}
. N
DTFT N} = et 22 (37)
sin (%w T) |
-10
Width of Dirichlet kernel is related to NT.

04 -02 00 02 04
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Fourier Analysis

Zero-padded Fourier Transforms

What happens if | try to sample a finer grid J500 _ FFT of Length 64 Sequence
of frequencies than the standard DFT? e

—e—128 point
2000 256 point

—e—512 point

N—-1 ~ 1500
Fo=Y fe 2k ke[0,K-1,K>N S
n=0 500
This is equivalent to zero padding the 0 bt L -
original sequence, then taking a standard Frequency (Hz)
DFT. The length N rectangular
window sets the real
o {fn n<N frequency resolution. Zero
" 0 N<n<K padding just interpolates the
K—1 windowed spectrum.
Fi=Y fle 2% kel0,K—1]
n=0
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Fourier Analysis

Effects of Other Window Functions

Chose tapered window weights w, to combat effects of rectangular window

N-1

Fr = E anne_kanT
n=0

Comparison of Windows

[

10710+ ——Rectangular
Hamming

—— Blackman-Harris

10718 ‘
-0.5 0 0.5

Frequency (samples '1)
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Fourier Analysis

Digital Filters
Response Filter (FIR) Infinite Impulse Response Filter (IIR)

Finite Impulse

N—1
Yk = E hnXk—n
n=0

@ FIR used extensively in radar signal processing.
@ Impulse response is the output when x,, = §,,. For FIR filters this is hy,.

@ Frequency response of an FIR filter:

N-1

H(w) = Z h,e“"T DTFT of Impulse Response

n=0

Example: 255-tap FIR Blackman filter used at PFISR

Frequency Response

0.12—— — 12
0.08] &%
0.04| | o
0.00 0.2}
~0.04 0.0

Filter Taps

0 50 100 150 200 250
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N-1 M-1
Y= hoXi—n+ Y 8mYi—m
n=0 m=1
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Pulsed-Doppler Radar

Range-Time Diagram

WOV vivivivivi v vE 2
. Tlme . . . .
Interpret the 1-D receiver voltage as a function of time as if it were a

function of both range and time.
@ vX is the sample of range gate n after pulse k

@ nis the “fast-time” dimension (range), and k is the “slow-time”
dimension (time)
@ Range gate n is at a range of R = %”

@ Each slow-time sample is separated by one interpulse period (IPP)

R. H. Varney (SRI) Radar Signals July 26, 2016 13 / 43



Pulsed-Doppler Radar

Range-Doppler Processing

Range-Time Data Array: Range-Frequency Data Array:

0 1 K-1 0 1 K-1
oo "% no 0
V]_ V]_ V]_ ul ul e ul
0 1 K-1 0 1 K-1
VN—1 YN-1 T Ve Uy-1 Un-1 " Uy
Take an FFT along the slow-time Physically |u,’,"|2 is proportional to
dimension for each range the received power at
K—1 @ Range r, = %"
k 2mjmk
um = v, ek o Frequency wp = 2m g
k=0 H — € Wm_
® Dopper velocity Vi, = 5572
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Pulsed-Doppler Radar

Doppler Aliasing

The FFTs are performed along the slow time dimension, hence the
effective sampling rate is 7ipp.

In order to avoid aliasing in the FFTs for each range:

1
2 fmax

Tipp <

Short IPPs implies pulses very close together.

Is there any problem with having pulses very close together?
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Pulsed-Doppler Radar

Range Aliasing

Range

0o,0,0,0.0

cty
2

rn =

R. H. Varney (SRI)

1,1 ,1 .1 .1 2.2 .2 2 2
Time

CTIppP .

> for any integer m
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Pulsed-Doppler Radar

Underspread and Overspread Targets

Shorter IPP:

@ Captures wide bandwidth

@ Leads to range aliasing
Longer IPP:

@ Captures a large range extent

@ Leads to frequency aliasing
If an IPP exists than can avoid both range and frequency aliasing the
target is underspread. Otherwise it is overspread.
Underspread Example: D-region ISR at 450 MHz

@ Ranges 0-90 km, Frequencies 75 Hz

@ 2 ms IPP gives 300 km unambiguous range, +250 Hz frequencies
Overspread Example: F-region ISR at 450 MHz

@ Ranges 0-600 km, Frequencies +10 kHz

@ 600 km unambiguous range requires a > 4 ms IPP

@ +10 kHz unambiguous frequencies requires a < 50 us IPP
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Stochastic Processes

Gaussian Random Variables

A Gaussian random variable X has the following probability density
function (Normal Distribution):

el 5t)
_— X —_—
2mo P 20?
E{X}=p

Var{X} = E {(X - M)Q} = E{X2)} — 2 = o2
A vector of random variables X = [Xp X1 X5 - - - XN_l]T is jointly Gaussian
if each in they have the joint PDF

1 1 _
p() = ——ew {5 lx—ul”
(2m)2 |C|?
E{X}=p

Cov {X} = E{[X — ] [X — " }

p(x) =

C
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Stochastic Processes

Properties of Jointly Gaussian Random Variables

@ Linear combinations:

Z=aX+BY +vy E{Z}=aE{X}+BE{Y}+¥y
Var{Z} = a®Var{X} + 3?Var{Y} + 2a3Cov{X, Y}

@ Matrix generalization:
Y=AX+b E{Y}=AX+b Cov{Y}=ACov{X}AT
Special cases for zero mean random variables:

@ Odd moments are zero:

E{Vi} = E{ViWVLV3} = E{ViVLV3V,V5} =.-- =0
@ Fourth moment theorem: E{V1V,V3V,} =

E{V1V2} E{V3V4} + E{V1V3} E{V2V4} + E{V1V4} E{V2V3}
@ General even moment theorem (Isserlis’ Theorem)

E{ViVo--- Vo, 1 Vo,} =X T E{ViV}}
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Stochastic Processes

Complex Gaussian Random Variables

ISR signals are complex valued, zero mean, and random phase.

E{VW*} = 52 E{VrV;} =0 Cov{<\\//fl?>} _ % <002 £2>

When we talk about correlations between ISR signals
E{VVj} =0} E{WVLVS}=03
E{ViV3} =p=pr+jpi
What we really mean is
Vi =Vig + V1 Vo= Vor + Vo

Vir o2 0 pr —pi
1 2
covd [ ViU _1] 0 o1 PL PR
Vor 2V pr p1 o5 O
Vo —-pi pr 0 03
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Stochastic Processes

Stochastic Processes: Definitions and Terminology

@ Stochastic Process (aka Random Process): V/(t) where value at every
time is a random variable
@ Gaussian Stochastic Process:

o PDF of each V/(t) is a Gaussian distribution (aka normal distribution)

@ Joint PDF of any subset of samples of V/(t) is a jointly Gaussian
distribution (aka Multivariate Normal Distribution)

@ Moments of a Stochastic Process:

o Mean: V(t) = E{V(t)}

o Autocorrelation: R(t,t —1) = E{V(t)V*(t — 1)}

@ Autocovariance: _ _
C(t.t—7)=E{[V(t) - V()] [V*(t—7) = V*(t—7)]} =
R(t,t—71)—V(@)V*(t—1)

@ (Wide Sense) Stationary Stochastic Process
o V(t) = V is independent of t
e R(t,t —7) = R(7) is independent of t
@ ISR signals are Gaussian, zero mean, and stationary as long as the
ionospheric state parameters are constant.
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Stochastic Processes

Examples of Discrete Stochastic Process

Gaussian white noise W,,:

2
W =0 Rg:E{WnW:_e}:{go
3-point running sum of Gaussian white noise
Vo= Wy + Wh1 + W,
= E{[Wn + Wn—l + Wn—2] [Wn—é + Wn—f—l + Wn—Z—2]*}

¢
_ G-l <3
o qs3 A
Autoregressive model sal—y ;

Yo=aY, 1+ W, Y,=W,+aW,_ 1—|—OéW,7 2—|—OéW,7 3+
ol
1270

(=0
040

Ry =

R. H. Varney (SRI) Radar Signals July 26, 2016
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Stochastic Processes

Examples of Continuous Random Processes

Voltage across a warm resistor (Nyquist Noise Theorem)
E{Vg(t)} =0 E{Vg(t)Vg(t —T)} = 4Rkg To(T)

Voltage across capacitor connected to a warm resistor

Ve(t) = Ric /_too Va(t') — Ve(t) dt

1 t -t —1
Vc(t) = R_C /_OO e RC VR(t/) dt’ __VC
2Rkg T _ 17l
E{Vc(t) Vc(t—T)} =~ TRC e RC Vi
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Stochastic Processes

Power Spectrum

@ Fourier transform of a WSS random process does not exist since
2 V()] dt —

@ Fourier transform of the ACF does exist, and is called the Power
Spectrum.

S(w)= F{R(7)} = /_oo R(r)e 7 dr

Properties of Power Spectrum:
® S(w)isreal and S (w) > 0 [follows from R(7) = R(—7)"]
o [% S(w) dw = R(0) [total power]
° f;"f S (w) dw = power in the band from w; to wy
o If y(t) = h(t) * x(t) = Sy (w) = |H (w)|* Sx (w) where
H (w) = F {h(t)}
@ Short correlation times <> wide bandwidth and vice versa.
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Stochastic Processes

Power Estimation

Given K samples v; of a WSS random process V/(t) with true power
P = R(0) = E{V(t)V*(t)}, and assuming the samples are far enough
apart that they are uncorrelated

Power estimator:

=
w

*

p_

x|~
.
o
A
=

Expected value of power estimator:
E {13} =P unbiased estimator

Variance of power estimator:

5P = E{(/ﬁ—P)z} - %/ﬂ

Relative error %P =1
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Stochastic Processes

Signal Power Estimation with Added Noise

Given K samples v; = s; + n;, and an independently known noise power, N

=, )
SZR 2 vivi — N
E { A} =S unbiased estimator
Var{A} = %(S—FN)2
S 1

vl

5=l o)
)

For example, 2 = 0.5 with a S/N = 0.1 requires K = 484.
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Stochastic Processes

ACF Estimation (Pulse-to-Pulse)

Now assume pulses are taken close together and are correlated.
Unbiased Estimator:

1 K—-1
Rg = K—_E z; VnV;:_g
n—

E{Ry} — R

Biased Estimator:

| K1
Re= Z VaVn_g
n={
~ K-t
E{ g} = Ry [triangular window]

. 1 K—-1K-1 1
Var{Rg} 5 ZZ|Rm—n|2%R‘RO|2
n={ m=/{
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Stochastic Processes

Spectral Estimation (Pulse-to-Pulse Periodograms)

Given vg, v1, Vo, ..., vk_1 | could compute

Vo= we 2% nelo,K 1]
k:O

K
This turns out to be biased by periodic wrap-around effects. For example:
K/?z = V2V8< + V3V1* + -+ VK_1V;%_3 + VOV;*<_2 + V1V;*<_1

This is called a periodogram, and generally shouldn't be used.
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Stochastic Processes

Zero-padded Periodograms

A better estimator is the zero padded periodogram:

K-1
~  n o ~ 12
Vo=3 we Wi nelo,2k -1 §,= (vn

k=0

1 2K—1 }
Rk = W Z 5,,e27”2_

n=0
1 K-1 .
= R VnVn_k
n=k

Rk is a and triangularly windowed estimate of R (7).

S, is an and smoothed estimate of S(w).
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Stochastic Processes

Effects of Aliasing and Windowing on Periodograms

250 -
——Periodogram
——Theoretical Spectrum

200 | —pBiased Spectrum 1

[EEY
[
o

PSD (Arb. Units)
[N
o
o

al
o

0 500
Frequency (Hz)

Radar Signals

0
-500
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Stochastic Processes

Combining Coherent and Incoherent Integration

Divide a sequence of M pulses into L sets of K such that M = LK.
X VkVi_p C€[0,K—1]

Increasing the coherent integration time K gives
@ Longer lags in R
@ Higher frequency resolution in S

Increasing the incoherent integration time L gives
@ Better statistics

In general K should be long enough to capture the correlation time of the
process; longer is computationally wasteful.

Unlike the coherent integration samples, the incoherent integration
intervals do not need to be contiguous in time.
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Overspread Targets

Double Pulse Experiment

| Range

Time

§ B . T g le . [ _z z
V(ts + )V (ts) = [s(h,t—i—r)—i—s(h—i— St 2)] [s(h,t)—i—s(h St 2)]
*(p. . (g Ty T
—s(ht+r)s* (ht)+s(ht+r)s (h 2,t+2)
cr T\ s* (h: S D U
+s(h+7,t+§)s(h,t)+s(h+2,t+2)s (h Tt )
ISR signals from disjoint altitudes are uncorrelated:

E{s(h;t+7)s* (ht)} = {g(hl;T) :1 ; :i

E{v(ts +T)v*(ts)} = E{s(h;t +7)s" (h;t)} = R(h; 7)
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Overspread Targets

Error Analysis of Double Pulse Experiment

Without self-clutter (dual polarization):
vi=s(ht+71)+n(t+7) vo =s(h;t)+ n(t)

Ry = > wavs  E{RO)} = E{uvs} = R(hi7)

var {R(r)} =  [Etwvivive) — IE (i) ]

1 * * *
=% [E{vivs} E{viwa} + E{vivy } E{vyva}

+E (b v}~ |E {3} ]
1
:RE{vlvl*}E{v;vz}
_ S%(h)

1 2 L 2
= o [5(h) + NJ" = —¢ [1+S(h)/’V}
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Overspread Targets

Double Pulse Experiment with Self-Clutter

With self-clutter (single polarization):

V1=S(h;t+7)+s(h+%;t+g)+n(t+r)

v2:s(h;t)—|—s(h—%;t+g)+n(t)

Ry =2 v E{R()} = E{wi3} = R(hi7)
var { R(r)} = %E{vlvf} E {viv,)

:%[S(h)+s(h+%)+/v] [S(h)+5(h—%)+N]

Signal-to-Noise ratio — Signal-to-(Noise+Clutter) ratio
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Multipulse Experiments

,{/}’\
| OO
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Overspread Targets

Uncoded Long Pulse

A Range

Time

—-
t]+8T

n
0 b

I | I
lq+2T
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Overspread Targets

Amplitude Ambiguity Function

After transmitting a pulse envelope s(t), the scattered signal is

o 3 ik-r & _5
x(t)—/dref s(t—c an, (re-1)

The receiver records a filtered and sampled version of the scattered signal

y(ts):/dtx(t)h*(ts—t)

, 2r r
_ 3 k-r =t - * -
_/dtd re/ s<t C)ANe (r,t C)h (ts — t)

Define the amplitude ambiguity function

2
Wt555<t——r> h* (ts — t)

C

y(t) = / dtdr MW (¢, r) AN (1.t — )

C
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Overspread Targets

Range-Lag Ambiguity Function

When we form ACFs, we take products of samples and average:

(y (ts2) y* (ts1)) = / dtydtyd®ridrpel (r27r)

<ANe (rz, ty — —) AN: <r1, t— r—;)>
Wisa (t2, r2) Wegq (t1, 1)

Change variables t; =t th=t+7 ri=r rp=r+r
Perform r’ integral and take expected value

ly (t2) y* (1)) = /drd3rR r)/dt Wiea (£ + 7, r) W, (¢, 1)

Wtsl’ts2 (T’r)

The measured lag-product is the ISR ACF we want R (k, 7, r) blurred the
the range-lag ambiguity function W, ., (7,r)
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Overspread Targets

2-D Range-lag Ambiguity Function of Long Pulse

Range (us)

Ambiguity function with a boxcar filter. 480 us long pulse, 30 pus sampling.

2d Ambiguity Function, Lag 3

7(ps)

R. H. Varney (SRI)

0.000064

0.000056

0.000048

0.000040

0.000032

0.000024

0.000016

0.000008

0.000000

Range

Full 2d Ambiguity Function

July 26, 2016

0.000064
0.000056
0.000048
0.000040
0.000032
0.000024
0.000016
0.000008

0.000000
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Overspread Targets

Theoretical Long Pulse Examples

A particular exaggerated example using 1.5 ms long pulses and a profile
with a sharp T, gradient at 500 km.

18Od&CF without Ambiguity Function ACF with Ambiguity Function

1600 F
1400

1200

Range (km)
=
o
(w]
o

0
0 100 200 300 400 500 600 0

100 200 300 400 500 600
Lag (us)

Lag (us)
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Overspread Targets

Random Codes and Alternating Codes

A Range

t+1

_l’_
3031V0V1 —ao(aosh + alsh 1 —|— as, _ + 33Sh ;)

t+3 t+1 2%
al(aosh+1 +ais, " + azsh i —l— azs; ' 5)"

*\ t xt+1 +2 *H‘
E{aoaivovi} =E {sjs;"} + aparE {sh 15,17

t+1 _xt+2
—|—aoalaga3E{sh >Sh_
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Overspread Targets

Range-lag Ambiguity Function of Alternating Codes

Ambiguity function for a boxcar filter. 480 us (16-baud, 30 us baud, 32 pulse).
Full 2d Ambiguity Function

Range (ps)

* ¢ 4 4 44
* .+ 4 4 4

AT TPk T T 6 6 K

SR R L O K 2
+

..‘ L D N
L 0‘0’0‘0’0’0’0

*

*

e L E D D R L O
-

-
*

*
*
*
.
*
&
*
*
*
*
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PP P20 0909099
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+

.
.
-
.0
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-
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-
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*
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* 4

7 (us)
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0.000040

10.000032

{0.000024

0.000016
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Overspread Targets

Canonical ISR Experiments

D-region: Underspread pulse-to-pulse processing

Perpendicular to B drifts (Jicamarca): Underspread pulse-to-pulse
processing

E-region: Alternating codes, overspread processing

F-region and topside: Uncoded long pulse, overspread processing

Active area of research: Combination modes that compute lags both
within the pulse (overspread) and pulse-to-pulse (underspread) in order to
estimate the properties of the D-, E-, and F-regions simultaneously.
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