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Continuous Fourier Transform

F {f (t)} =

∫ ∞

−∞
f (t)e−jωt dt F−1 {F (ω)} =

1

2π

∫ ∞

−∞
F (ω)e jωt dω

Properties:

Exists when
∫∞
−∞ |f (t)|2 dt converges

Linearity F {αf (t) + βg(t)} = αF {f (t)}+ βF {g(t)}
Time reversal F {f (−t)} = F {f (t)}∗

Time Delay F {f (t − t0)} = e−jωt0F {f (t)}
Convolution Theorem:

g(t) = f (t) ∗ h(t) =
∫ ∞

−∞
f (t ′)h(t − t ′) dt ′

F {g(t)} = F {f (t)} × F {h(t)}
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Duality Between Time and Frequency

Fourier transform is a unitary operator: F−1 = 1
2πF∗.

All properties have an dual

Frequency reversal F−1 {F (−ω)} = F−1 {F (ω)}∗
Frequency shift F−1 {F (ω − ω0)} = e jω0tF−1 {F (ω)}
Dual Convolution Theorem:

G (ω) = F (ω) ∗ H(ω) =

∫ ∞

−∞
F (ω′)H(ω − ω′) dω′

F−1 {G (ω)} = 2πF−1 {F (ω)} × F−1 {H(ω)}

Uncertainty principle (Gabor Limit):

(∫ ∞

−∞
t2 |f (t)|2 dt

)(∫ ∞

−∞
ω2 |F (ω)|2 dω

)

≥ 1

16π2

(∫ ∞

−∞
|f (t)|2 dt

)2

Narrow in time ↔ Wide in frequency
Wide in time ↔ Narrow in frequency
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Discrete-Time Fourier Transform

Suppose I sample data with sampling period T such that fn = f (nT ). The
DTFT is defined as

DTFT {f } =

∞∑

n=−∞
fne

−jωnT

DTFT
−1 {F (ω)} =

T

2π

∫ π

T

− π

T

F (ω)e jωnT dω

The DTFT maps a discrete sequence onto a function of continuous
frequency

The DTFT is 2π
T
-periodic in ω since e−jωnT = e−j(ω+ 2π

T )nT .

The DTFT is related to the CFT by:

DTFT {f } = F
{ ∞∑

−∞
f (nT )δ (t − nT )

}
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Discrete Fourier Transform

Given N discrete samples:

Fk =

N−1∑

n=0

fne
−2πj nk

N k ∈ [0,N − 1] Forward DFT

fn =
1

N

N−1∑

k=0

Fke
2πj nk

N n ∈ [0,N − 1] Inverse DFT

The Fast Fourier Transform (FFT) is an algorithm for computing the
DFT that is O (N logN)
The DFT is a discrete sampling of the DTFT.
If fn = f (nT ) for sampling period T, then the corresponding set of
discrete frequencies are

ωk = 2π
k

NT

Frequency resolution is ∆ω = 2π
NT

R. H. Varney (SRI) Radar Signals July 26, 2016 6 / 43



Fourier Analysis Pulsed-Doppler Radar Stochastic Processes Overspread Targets

Sampling and Aliasing

Periodicity of complex exponentials:

e2πj
nk
N = e2πj

nk
N
+2πjm ∀m ∈ Z

From this it follows that

Fk =
N−1∑

n=0

fne
−2πj nTk

NT =
N−1∑

n=0

fne
−2πj nTk+mnTN

NT

ωk = 2π

(
k

NT
+
m

T

)

For example, with T = 2 ms, 1
T

= 500 Hz:

· · · ↔ −925 Hz ↔ −425 Hz ↔ 75 Hz ↔ 575 Hz ↔ 1075 Hz ↔ · · ·
The DFT returns frequencies from 0 to 1

T
by default. A common

convention is to report the spectrum from − 1
2T to 1

2T (fftshift).

Nyquist Sampling Theorem: All signal frequencies must be
|ω| < 2π 1

2T for the DFT and DTFT to avoid frequency aliasing.
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Baseband Sampling

Original Signal: v(t)

Frequency
0

f0−f0

Baseband Signal: vn
〈
e−2πjf0nT v(nT )

〉

Frequency
0 f0−f0
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Windowing and Frequency Resolution

What are the ramifications of using a finite length segement of data in the
DFT?

Fk =

N−1∑

n=0

fne
−jωknT DFT

=

∞∑

n=−∞
fnr

N
n e−jωknT DTFT

where the length N rectangle
function is:

rNn =

{

1 0 ≤ n < N

0 otherwise

By the convolution theorem for the DTFT:

DTFT

{

f × rN
}

= DTFT {f } ∗DTFT

{

rN
}

DTFT

{

rN
}

= e−j N−1
2

ωT sin
(
N
2 ωT

)

sin
(
1
2ωT

)

Width of Dirichlet kernel is related to NT . −0.4 −0.2 0.0 0.2 0.4
−10

−5

0

5

10

15

20

25
Dirichlet Kernel
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Zero-padded Fourier Transforms

What happens if I try to sample a finer grid
of frequencies than the standard DFT?

F ′
k =

N−1∑

n=0

fne
−2πj nk

K k ∈ [0,K − 1],K > N

This is equivalent to zero padding the
original sequence, then taking a standard
DFT.

f ′n =

{

fn n < N

0 N < n < K

F ′
k =

K−1∑

n=0

f ′ne
−2πj nk

K k ∈ [0,K − 1]

Frequency (Hz)
50 100 150

|X
(f

)|
2

0

500

1000

1500

2000

2500
FFT of Length 64 Sequence

64 point
128 point
256 point
512 point

The length N rectangular
window sets the real
frequency resolution. Zero
padding just interpolates the
windowed spectrum.
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Effects of Other Window Functions

Chose tapered window weights wn to combat effects of rectangular window

Fk =

N−1∑

n=0

wnfne
−jωknT

Frequency (samples -1)

-0.5 0 0.5
10 -15

10 -10

10 -5

10 0

10 5 Comparison of Windows

Rectangular
Hamming
Blackman-Harris
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Digital Filters

Finite Impulse Response Filter (FIR)

yk =

N−1∑

n=0

hnxk−n

Infinite Impulse Response Filter (IIR)

yk =

N−1∑

n=0

hnxk−n +

M−1∑

m=1

gmyk−m

FIR used extensively in radar signal processing.
Impulse response is the output when xn = δn. For FIR filters this is hn.
Frequency response of an FIR filter:

H(ω) =

N−1∑

n=0

hne
−jωnT DTFT of Impulse Response

Example: 255-tap FIR Blackman filter used at PFISR

0 50 100 150 200 250
−0.04

0.00
0.04
0.08
0.12

Filter Taps

−0.4 −0.2 0.0 0.2 0.4
Frequency (1/samples)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Frequency Response
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Range-Time Diagram

Range

Time

v00 v01 v02 v03 v04 v10 v11 v12 v13 v14 v20 v21 v22 v23 v24

Interpret the 1-D receiver voltage as a function of time as if it were a
function of both range and time.

vkn is the sample of range gate n after pulse k

n is the “fast-time” dimension (range), and k is the “slow-time”
dimension (time)

Range gate n is at a range of R = ctn
2

Each slow-time sample is separated by one interpulse period (IPP)
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Range-Doppler Processing

Range-Time Data Array:








v00 v10 · · · vK−1
0

v01 v11 · · · vK−1
1

...
...

...
...

v0N−1 v1N−1 · · · vK−1
N−1








Take an FFT along the slow-time
dimension for each range

umn =
K−1∑

k=0

vkn e
2πj mk

K

Range-Frequency Data Array:








u00 u10 · · · uK−1
0

u01 u11 · · · uK−1
1

...
...

...
...

u0N−1 u1N−1 · · · uK−1
N−1








Physically |umn |2 is proportional to
the received power at

Range rn = ctn
2

Frequency ωm = 2π m
KτIPP

Dopper velocity Vm = c
2

ωm

2πf0
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Doppler Aliasing

The FFTs are performed along the slow time dimension, hence the
effective sampling rate is τIPP.

In order to avoid aliasing in the FFTs for each range:

τIPP <
1

2fmax

Short IPPs implies pulses very close together.

Is there any problem with having pulses very close together?
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Range Aliasing

Range

Time

v00 v01 v02 v03 v04 v10 v11 v12 v13 v14 v20 v21 v22 v23 v24

rn =
ctn

2
+m

cτIPP
2

for any integer m
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Underspread and Overspread Targets

Shorter IPP:

Captures wide bandwidth

Leads to range aliasing

Longer IPP:

Captures a large range extent

Leads to frequency aliasing

If an IPP exists than can avoid both range and frequency aliasing the
target is underspread. Otherwise it is overspread.
Underspread Example: D-region ISR at 450 MHz

Ranges 0-90 km, Frequencies ±75 Hz

2 ms IPP gives 300 km unambiguous range, ±250 Hz frequencies

Overspread Example: F-region ISR at 450 MHz

Ranges 0-600 km, Frequencies ±10 kHz

600 km unambiguous range requires a > 4 ms IPP

±10 kHz unambiguous frequencies requires a < 50 µs IPP
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Gaussian Random Variables

A Gaussian random variable X has the following probability density
function (Normal Distribution):

p (x) =
1√
2πσ

exp

{

−x − µ

2σ2

}

E{X} = µ

Var{X} = E
{

(X − µ)2
}

= E
{
X 2

}
− µ2 = σ2

A vector of random variables X = [X0X1X2 · · ·XN−1]
T is jointly Gaussian

if each in they have the joint PDF

p (x) =
1

(2π)
N
2 |C |

1
2

exp

{

−1

2
[x− µ]T C−1 [x− µ]

}

E {X} = µ

Cov {X} = E
{

[X− µ] [X− µ]T
}

= C
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Properties of Jointly Gaussian Random Variables

Linear combinations:

Z = αX + βY + γ E{Z} = αE{X} + βE{Y }+ γ

Var{Z} = α2Var{X} + β2Var{Y }+ 2αβCov{X ,Y }

Matrix generalization:
Y = AX+ b E{Y} = AX+ b Cov{Y} = ACov{X}AT

Special cases for zero mean random variables:

Odd moments are zero:
E {V1} = E {V1V2V3} = E {V1V2V3V4V5} = · · · = 0

Fourth moment theorem: E {V1V2V3V4} =
E {V1V2}E {V3V4}+ E {V1V3}E {V2V4}+ E {V1V4}E {V2V3}
General even moment theorem (Isserlis’ Theorem)
E {V1V2 · · ·V2n−1V2n} =

∑∏
E {ViVj}
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Complex Gaussian Random Variables

ISR signals are complex valued, zero mean, and random phase.

V = VR + jVI E {VR} = E {VI} = 0

E {VV ∗} = σ2 E {VRVI} = 0 Cov

{(
VR

VI

)}

=
1

2

(
σ2 0
0 σ2

)

When we talk about correlations between ISR signals

E {V1V
∗
1 } = σ2

1 E {V2V
∗
2 } = σ2

2

E {V1V
∗
2 } = ρ = ρR + jρI

What we really mean is

V1 = V1R + jV1I V2 = V2R + jV2I

Cov













V1R

V1I

V2R

V2I













=
1

2







σ2
1 0 ρR −ρI
0 σ2

1 ρI ρR
ρR ρI σ2

2 0
−ρi ρR 0 σ2

2






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Stochastic Processes: Definitions and Terminology

Stochastic Process (aka Random Process): V (t) where value at every
time is a random variable
Gaussian Stochastic Process:

PDF of each V (t) is a Gaussian distribution (aka normal distribution)
Joint PDF of any subset of samples of V (t) is a jointly Gaussian
distribution (aka Multivariate Normal Distribution)

Moments of a Stochastic Process:
Mean: V̄ (t) = E {V (t)}
Autocorrelation: R (t, t − τ) = E {V (t)V ∗(t − τ)}
Autocovariance:
C (t, t − τ) = E

{[
V (t) − V̄ (t)

] [
V ∗(t − τ)− V̄ ∗(t − τ)

]}
=

R (t, t − τ) − V̄ (t)V̄ ∗(t − τ)
(Wide Sense) Stationary Stochastic Process

V̄ (t) = V̄ is independent of t
R(t, t − τ) = R(τ) is independent of t

ISR signals are Gaussian, zero mean, and stationary as long as the
ionospheric state parameters are constant.
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Examples of Discrete Stochastic Process

Gaussian white noise Wn:

W̄ = 0 Rℓ = E
{
WnW

∗
n−ℓ

}
=

{

σ2
0 ℓ = 0

0 ℓ 6= 0

3-point running sum of Gaussian white noise

Vn = Wn +Wn−1 +Wn−2

Rℓ = E {[Wn +Wn−1 +Wn−2] [Wn−ℓ +Wn−ℓ−1 +Wn−ℓ−2]
∗}

=

{

(3− |ℓ|)σ2
0 |ℓ| < 3

0 |ℓ| ≥ 3
Autoregressive model

Yn = αYn−1 +Wn Yn = Wn + αWn−1 + α2Wn−2 + α3Wn−3 + · · ·

Rℓ =
α|ℓ|

1− α2
σ2
0

−6 −4 −2 0 2 4 6

lag

0.0

0.5

1.0

1.5

2.0

2.5

3.0

−6 −4 −2 0 2 4 6

lag

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
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Examples of Continuous Random Processes

Voltage across a warm resistor (Nyquist Noise Theorem)

E {VR(t)} = 0 E {VR(t)V
∗
R(t − τ)} = 4RkBT δ(τ)

Voltage across capacitor connected to a warm resistor

VC (t) =
1

RC

∫ t

−∞
VR(t

′)− VC (t
′) dt ′

VC (t) =
1

RC

∫ t

−∞
e

t′−t
RC VR(t

′) dt ′

E {VC (t) VC (t − τ)} =
2RkBT

RC
e−

|τ |
RC

VR

VC
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Power Spectrum

Fourier transform of a WSS random process does not exist since
∫∞
−∞ |V (t)|2 dt → ∞
Fourier transform of the ACF does exist, and is called the Power
Spectrum.

S (ω) ≡ F {R (τ)} =

∫ ∞

−∞
R (τ) e−jωτ dτ

Properties of Power Spectrum:

S (ω) is real and S (ω) ≥ 0 [follows from R(τ) = R (−τ)∗]
∫∞
−∞ S (ω) dω = R (0) [total power]
∫ ω2

ω1
S (ω) dω = power in the band from ω1 to ω2

If y(t) = h(t) ∗ x(t) → SY (ω) = |H (ω)|2 SX (ω) where
H (ω) = F {h(t)}
Short correlation times ↔ wide bandwidth and vice versa.
R. H. Varney (SRI) Radar Signals July 26, 2016 24 / 43



Fourier Analysis Pulsed-Doppler Radar Stochastic Processes Overspread Targets

Power Estimation

Given K samples vi of a WSS random process V (t) with true power
P = R(0) = E{V (t)V ∗(t)}, and assuming the samples are far enough
apart that they are uncorrelated
Power estimator:

P̂ =
1

K

K−1∑

i=0

viv
∗
i

Expected value of power estimator:

E
{

P̂
}

= P unbiased estimator

Variance of power estimator:

δP̂2 = E

{(

P̂ − P
)2

}

=
1

K
P2

Relative error δP̂
P

= 1√
K
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Signal Power Estimation with Added Noise

Given K samples vi = si + ni , and an independently known noise power, N

Ŝ =
1

K

K−1∑

i=0

viv
∗
i − N

E
{

Ŝ
}

= S unbiased estimator

Var
{

Ŝ
}

=
1

K
(S + N)2

δŜ

S
=

1√
K

(

1 +
1

S/N

)

For example, δŜ
S

= 0.5 with a S/N = 0.1 requires K = 484.
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ACF Estimation (Pulse-to-Pulse)

Now assume pulses are taken close together and are correlated.
Unbiased Estimator:

R̂ℓ =
1

K − ℓ

K−1∑

n=ℓ

vnv
∗
n−ℓ

E
{

R̂ℓ

}

= Rℓ

Biased Estimator:

R̃ℓ =
1

K

K−1∑

n=ℓ

vnv
∗
n−ℓ

E
{

R̃ℓ

}

=
K − ℓ

K
Rℓ [triangular window]

Var
{

R̃ℓ

}

=
1

K 2

K−1∑

n=ℓ

K−1∑

m=ℓ

|Rm−n|2 ≈
1

K
|R0|2
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Spectral Estimation (Pulse-to-Pulse Periodograms)

Given v0, v1, v2, ..., vK−1 I could compute

V̌n =
K−1∑

k=0

vke
−2πj nk

K n ∈ [0,K − 1]

Šn =
∣
∣V̌n

∣
∣
2

Řk =
1

K

K−1∑

n=0

Šne
2πj nk

K

This turns out to be biased by periodic wrap-around effects. For example:

KŘ2 = v2v
∗
0 + v3v

∗
1 + · · ·+ vK−1v

∗
K−3 + v0v

∗
K−2 + v1v

∗
K−1

This is called a periodogram, and generally shouldn’t be used.
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Zero-padded Periodograms

A better estimator is the zero padded periodogram:

Ṽn =

K−1∑

k=0

vke
−2πj nk

2K n ∈ [0, 2K − 1] S̃n =
∣
∣
∣Ṽn

∣
∣
∣

2

R̃k =
1

2K

2K−1∑

n=0

S̃ne
2πj nk

2K

=
1

K

K−1∑

n=k

vnv
∗
n−k

This provides a fast way to compute the biased ACF estimator using FFTs.

R̃k is a sampled and triangularly windowed estimate of R (τ).

S̃n is an aliased and smoothed estimate of S(ω).
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Effects of Aliasing and Windowing on Periodograms

Frequency (Hz)
-500 0 500

P
S

D
 (

A
rb

. U
ni

ts
)

0

50

100

150

200

250
Periodogram
Theoretical Spectrum
Biased Spectrum
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Combining Coherent and Incoherent Integration

Divide a sequence of M pulses into L sets of K such that M = LK .

R̃ℓ =
1

L

L−1∑

ℓ=0

1

K

K−1∑

k=ℓ

vkv
∗
k−ℓ ℓ ∈ [0,K − 1]

Increasing the coherent integration time K gives

Longer lags in R̃

Higher frequency resolution in S̃

Increasing the incoherent integration time L gives

Better statistics

In general K should be long enough to capture the correlation time of the
process; longer is computationally wasteful.
Unlike the coherent integration samples, the incoherent integration
intervals do not need to be contiguous in time.
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Double Pulse Experiment

v(ts + τ)v∗(ts ) =
[

s (h; t + τ) + s
(

h +
cτ

2
; t +

τ

2

)] [

s (h; t) + s
(

h − cτ

2
; t +

τ

2

)]

= s (h; t + τ) s∗ (h; t) + s (h; t + τ) s∗
(

h − cτ

2
; t +

τ

2

)

+ s
(

h +
cτ

2
; t +

τ

2

)

s∗ (h; t) + s
(

h +
cτ

2
; t +

τ

2

)

s∗
(

h − cτ

2
; t +

τ

2

)

ISR signals from disjoint altitudes are uncorrelated:

E {s (h1; t + τ) s∗ (h2; t)} =

{

R(h1; τ) h1 = h2

0 h1 6= h2

E {v(ts + τ)v∗(ts )} = E {s (h; t + τ) s∗ (h; t)} = R(h; τ)
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Error Analysis of Double Pulse Experiment

Without self-clutter (dual polarization):

v1 = s (h; t + τ) + n (t + τ) v2 = s (h; t) + n(t)

R̂(τ) =
1

K

K−1∑

i=0

vi1v
∗
i2 E

{

R̂(τ)
}

= E {v1v∗2 } = R(h; τ)

Var
{

R̂(τ)
}

=
1

K

[

E {v1v∗2 v∗1 v2} − |E {v1v∗2 }|2
]

=
1

K
[E {v1v∗2 }E {v∗1 v2}+ E {v1v∗1 }E {v∗2 v2}

+
✭
✭
✭
✭
✭
✭
✭
✭
✭

E {v1v2}E {v∗2 v∗1 } − |E {v1v∗2 }|2
]

=
1

K
E {v1v∗1 }E {v∗2 v2}

=
1

K
[S(h) + N]2 =

S2(h)

K

[

1 +
1

S(h)/N

]2
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Double Pulse Experiment with Self-Clutter

With self-clutter (single polarization):

v1 = s (h; t + τ) + s
(

h+
cτ

2
; t +

τ

2

)

+ n (t + τ)

v2 = s (h; t) + s
(

h − cτ

2
; t +

τ

2

)

+ n(t)

R̂(τ) =
1

K

K−1∑

i=0

vi1v
∗
i2 E

{

R̂(τ)
}

= E {v1v∗2 } = R(h; τ)

Var
{

R̂(τ)
}

=
1

K
E {v1v∗1 }E {v∗2 v2}

=
1

K

[

S(h) + S
(

h +
cτ

2

)

+ N
] [

S(h) + S
(

h − cτ

2

)

+ N
]

Signal-to-Noise ratio → Signal-to-(Noise+Clutter) ratio
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Multipulse Experiments
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Uncoded Long Pulse
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Amplitude Ambiguity Function

After transmitting a pulse envelope s(t), the scattered signal is

x(t) =

∫

d3r e jk·r s

(

t − 2r

c

)

∆Ne

(

r, t − r

c

)

The receiver records a filtered and sampled version of the scattered signal

y (ts) =

∫

dt x(t)h∗ (ts − t)

=

∫

dtd3r e jk·rs

(

t − 2r

c

)

∆Ne

(

r, t − r

c

)

h∗ (ts − t)

Define the amplitude ambiguity function

Wts ≡ s

(

t − 2r

c

)

h∗ (ts − t)

y (ts) =

∫

dtd3r e jk·rWts (t, r)∆Ne

(

r, t − r

c

)
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Range-Lag Ambiguity Function

When we form ACFs, we take products of samples and average:

〈y (ts2) y∗ (ts1)〉 =
∫

dt1dt2d
3r1d

3r2e
jk·(r2−r1)

〈

∆Ne

(

r2, t2 −
r2

c

)

∆N∗
e

(

r1, t1 −
r1

c

)〉

Wts2 (t2, r2)W
∗
ts1 (t1, r1)

Change variables t1 = t t2 = t + τ r1 = r r2 = r + r′

Perform r′ integral and take expected value

〈y (ts2) y∗ (ts1)〉 =
∫

dτd3rR (k, τ, r)

∫

dt Wts2 (t + τ, r)W ∗
ts1 (t, r)

︸ ︷︷ ︸

Wts1,ts2 (τ,r)

The measured lag-product is the ISR ACF we want R (k, τ, r) blurred the
the range-lag ambiguity function Wts1,ts2 (τ, r)
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2-D Range-lag Ambiguity Function of Long Pulse

Ambiguity function with a boxcar filter. 480 µs long pulse, 30 µs sampling.
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Theoretical Long Pulse Examples

A particular exaggerated example using 1.5 ms long pulses and a profile
with a sharp Te gradient at 500 km.
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Random Codes and Alternating Codes

a0a1v0v
∗
1 =a0(a0s

t
h + a1s

t+ 1
2

h−1 + a2s
t+1
h−2 + a3s

t+ 3
2

h−3 )×

a1(a0s
t+ 1

2
h+1 + a1s

t+1
h + a2s

t+ 3
2

h−1 + a3s
t+2
h−2)

∗

E {a0a1v0v∗1 } =E
{
sths

∗t+1
h

}
+ a0a2E

{

s
t+ 1

2
h−1 s

∗t+ 3
2

h−1

}

+ a0a1a2a3E
{
st+1
h−2s

∗t+2
h−2

}
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Range-lag Ambiguity Function of Alternating Codes

Ambiguity function for a boxcar filter. 480 µs (16-baud, 30 µs baud, 32 pulse).
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Canonical ISR Experiments

D-region: Underspread pulse-to-pulse processing

Perpendicular to B drifts (Jicamarca): Underspread pulse-to-pulse
processing

E-region: Alternating codes, overspread processing

F-region and topside: Uncoded long pulse, overspread processing

Active area of research: Combination modes that compute lags both
within the pulse (overspread) and pulse-to-pulse (underspread) in order to
estimate the properties of the D-, E-, and F-regions simultaneously.
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