

About the Team

80 Undergraduates

Build engineering expertise

Educational outreach

Projects

Certifications

Competitions

Team organization

Each subsystem is assigned to a subteam:

- Structures
- Recovery
- Payload
- Avionics
- Propulsion
- Ground Support Equipment (GSE)

System engineering is handled by the body of subteam leads and Exec

About this PDR

Goals:

Define Raziel in sufficient depth for a design review

Feedback on each subsystem within its level of maturity

Feedback on a systems level

Spaceport America Cup (SAC)

Experimental Sounding Rocket Association (ESRA)

8.8 lbs (4kg) of payload in CubeSat geometry

10,000 feet target altitude

Student-built hardware emphasis

Target Altitude (AGL)	10,000 feet	30,000 feet
COTS Solid or Hybrid		
SRAD Solid	Team's entry	
SRAD Hybrid or Liquid		

Carryover from 2015-2016

Project Raziel has significant carryover from the 2015-2016 rocket, Therion (pictured)

- Tube diameter
- Motor Impulse & target altitude
- Recovery Scheme
- Rocket Layout
- Pyxida flight computer

Result: subsystems are at different levels of maturity

Action: Flight Test sooner

Upcoming flight test

Flight Test 1 - Recovery Subsystem, Lander Recovery - December 3

Success: Full development Phase in January, February

Failure: Fly again in January/February

Continue development of Payload

Systems Overview

Structures Recovery Payload Avionics Propulsion

GSE

Vehicle Overview

Mass allocations (excluding propellant):

Subsystem	Structures	Propulsion	Avionics	Recovery	Payload	Total
Therion Allocation (kg)	7.0	3.4	0.6	10.0	4.5	25.5
Therion Usage (kg)	6.7	3.3	0.7	5.7	9.1	25.5
Raziel Allocation (kg)	7.0	5.5	1.0	7.0	5.5	26.0

CONOPS

Hii Røcket Team

tructures Recovery Payload Avionics Propulsion GSE

Flight Parameters

Using Cesaroni Technologies (CTI) M3400:

Max Velocity: M 0.9 @ 1500 feet

Descent Velocity targets: ~100 ft/s, <30 ft/s

Rail exit velocity: 89 ft/s \rightarrow 3+ calibers off the rail

Interpolating for custom prop:

Max Acceleration: ~12 G's, design to 15 G's

Risk Matrix

	20%						
	10%						
	5%						
Risk	1%						
	0.1%						
		1	2	3	4	5	
		Impact					
Descrip	otion	Mission not compromised or minor loss of data	Damage to subsystem, substantial loss of data	Loss of subsystem, loss of critical data	Total loss of vehicle, miss major milestone due to schedule slip, loss of all data	Loss of mission, injury to team members, external parties adversely affected	

Structures

Structures Recovery Payload Avionics Propulsion

Requirements - ESRA

Withstand loads

Coupling tubes extend 6"

Closed-eye, forged steel eye bolts

Airframe vented

2+ rail guides for standard rails

Must bear rocket weight

Stable

Requirements - Internal

Ballast location

Av bay reachable on launchpad

Subsystems accessible within 5 minutes

Removable fins

Fabric

9oz, 8-harness satin weave S-glass:

High strength to weight ratio

Radio transparent

Satin weave for unusual shapes

9oz fabric is tightly woven

Fewer plies?

4-harness satin weave

Current Layup Process

5' long, 6" OD aluminum tube mandrel

2' long, 5.85" OD aluminum coupler mandrel

Mylar

10-ply E-glass with epoxy

3:4 epoxy:fiberglass

0-90 plies

Perforated release film

Future Layup Process

Vacuum

Interface with ventilation

Oven (max 300F)

Space heater

Arduino for temperature control

Oven-safe epoxy

S-glass

Easier to release from mandrel

Higher glass transition temperature

Nose Cone Shape

Von Karman

Lowest drag for speed

5.5:1 fineness ratio

Increased fineness ratio has minimal effect

No blunting

High fineness ratio

Nose Cone Layup

Fiberglass mold is inexact > route MDF mold

Five plies on each mold half

Bolt together

Strips on inside, outside to attach

Test

Avionics Bay

1/4" polycarbonate

Stepped bulkheads for seal

Shelf to separate CO2 canister

Mounts for avionics

Bulkheads

Payload/recovery: plywood, 2-ply fiberglass sandwich panel

Avionics: polycarbonate

Can withstand flight loads

Tube Attachment

8-32 nut plates

4-40 shear pins at separation

Tapped into fiberglass

Tubes are significantly stronger than expected shear loads

Fin Can

Legacy design

Removable fins

Analysis to cut weight

Rail buttons in lower centering ring, motor

retention plate

3/8" centering ring plates

7/16" thrust plate

Will support rocket weight

Fins

Stable off the rail

Tapered - will not hit ground first

Shorter than other designs

Two ply carbon fiber over DOW Blue

Foam

Hir Røcket Team

Just foam will withstand max Q

Need CFD to accurately model shock

forces

Risk Matrix

	20%					
Risk	10%					
	5%		1		5	3
	1%			7	8	
	0.1%			2		4, 6
		1	2	3	4	5
Structures				Impact		

Risks

Similar design, similar flight profile

Update simulations

	Risk	Risk Reduction Plan
3.	Separation Failure	Test that all couplers fit without sticking under flight-accurate transverse loads (with safety margin) and that shear pins sized properly for charge size. These tests will reduce the risk to 0.1%.
5.	Delamination or Other Damage to Fiberglass	Test fiberglass under in-flight loads, and handle tubes with caution to avoid damaging the structure before flight
8.	Recovery loads pull out bulkheads	Previously tested bulkhead under similar conditions; run calculations based on recovery loads

Going Forward Plan

	December	January	February	March	April	Мау
Composites oven						
Test plans						
Structural testing						
Build Raziel 2						
Test Raziel 2						
Build Raziel 3						
Test Raziel 3						
Build Raziel 4						

Recovery

Structures

Recovery P

Avionics Propu

Overview of Requirements

- Dual-event CONOPS
 - Drogue and main parachute
- Successful ground and flight test(s)
- Safe energetics

Design Process

- CO₂ system chosen primarily to accompany altitude increase
 - Less human error
 - No damaging residue

Technical Design and Analysis: CO₂ System

Technical Design and Analysis: Parachutes

- Semi-ellipsoidal design
 - Achieve desirable drag with less fabric
 - 2 ft, 8 panel drogue
 - 9.5 ft, 16 panel main

Technical Design and Analysis: Nichrome Pin Release

- Spring held under compression by wire.
- Released with current from avionics

Interfaces: Payload

• "Pressure Bulkhead" between recovery and payload tubes

Interfaces: Avionics

- Easy access to interchange CO₂ canisters through the Avionics bay
- Necessitates an appropriately sized hole in the Recovery-Avionics bulkhead

Key Technical Issues/Risks

Test Plan

- Testing will allow us to converge on more realistic risk values
- Upcoming/Planned Tests:
 - Nichrome Pin Test
 - Ground Test
 - Flight Test
 - Parachute Construction Test

Moving Forward Plan

	Nov.	Dec.	Jan.	Feb.	Mar.	April	Мау
Fabrication, Ground and Flight Test 1							
Address flight problems, CD3 improvements							
Parachute fabrication and research							
Ground and Flight Test 2							
Ground and Flight Test 3							
SAC Preparation							

Payload

Structures

Recovery

Payload Avionics

Official Requirements

Official Requirement and Jurisdiction	Description
2.3.1, Rover	Payload shall weigh at least 8.8 lbs.
2.3.3, Rover	Payload shall be removable from rocket.
2.3.4, Rover	Payload shall stow within a CubeSat Standard geometry (1U, 2U, 3U, etc.), and mechanically approximate a cubesat while stowed (i.e. roughly cuboidal.
2.3.5, Rover	Any radioactive substances within Payload shall be encapsulated and limited to 1μ C or less of radioactivity.
2.3.3, Lander	Deployable payloads shall comply with recovery requirements 5.1-5.7.

Internal Payload Requirements

Illii Rocket Team

Jurisdiction	Description
Rover	Rover shall exit Lander and land safely on ground.
Rover	Rover shall withstand pad and launch environments.
Rover	Rover shall store data and should transmit data.
Rover	Rover should make environmental and ground measurements.
Rover	Rover should drive at least 5ft.
Lander	Lander shall allow rover to exit and land safely on ground.
Lander	Lander shall incorporate and recover nosecone.
Lander	Lander shall be attached to the recovery tube by #4-40 nylon bolts, and shall provide at least 0.25 in^2 of <i>ledge</i> within the body tube for the payload-recovery bulkhead to rest on.

Payload

Rover

Chassis:

- Hexagonal prism chassis
 - Maximizes available area
 - Landing orientation
 - 1/16" Aluminum sheet metal

Rover Chassis Endcap Prototype

Rover Hexagonal Chassis Prototype

Rover

Wheels:

- Custom 3D Printed wheels
 - Flexible filament will absorb shock on impact
 - Attach directly to motor
 - Custom design will maximize wheel size as permitted by cubesat dimensions
 - Easy to switch to commercial solution

Motors:

- DC motor for actuating drive conditions
- Lower mass than servos, do not need the precise positional control
- In the process of specing motors

Rover: Risk Assessment and Mitigation

Chassis			2	Impa	ct	12	
		1	2	3	4	5	
Risk	0.1%			2			
	1%						
	5%						
	10%		1				
	20%						

	Risk	Risk Reduction Plan
1	The get stucks on pebbles, loose sand, low vegetation, etc.	Drive around significant obstacles. If stuck, back up.
2	Rover does not survive launch or landing	Test by dropping the rover.

Computer

Microcontrollers;

- Considered Arduino Due and Teensy 3.1
 - Selected Teensy for cost and efficiency

Teensy can use 'C'

Smartphone::

• Used for nuclear experiment data processing

Teensy Microcontroller

Environmental Sensing

Camera:

- COTS camera attached to rover to take pictures of surroundings upon landing
 - Must withstand launch conditions
 - Must meet rover power requirements

Sensors:

- Atmospheric sensors
 - Temperature
 - Pressure
 - Humidity

X-Ray Fluorescence Instrument

Hii Rocket Team

The XRF instrument characterizes soil composition

- Uses a beam of beta particles from a sealed source to excite XRF in soil beneath the rover
- Observes emitted x-rays using a Nal or LYSO scintillator with a collimator
 - Pulses are amplified and histogrammed by an onboard multichannel analyzer, and this data is transmitted back to the bse station

Monte Carlo simulations show instrument feasibility

Testing of a prototype shows favorable behavior

Next steps

- Miniaturize the processing (switch to a soundcard/cell phone?)
- More MCNP simulations to verify behavior
- Begin building collimators and shields
 - Acquire beta source

Lander

Rocket Body Interface:

• Provides interface to Recovery section and nosecone

• Deploys parachute to recover Payload and nosecone sections Flight Computer:

• Will use Avionics' Pyxida design

Rover Interface:

• Provide structural interface to release mechanism

Lander

Hir Rocket Team

Rover Interface:

- Bulkhead for parachute attachment
- Release Mechanism support
 - Guide Rails
 - Ejection Spring

Lander Isometric View

Lander: Risk Assessment and Mitigation

Payload Segment				Impa	ct		
		1	2	3	4	5	
Risk	0.1%						
	1%				2		
	5%		1		ĺ.		
	10%						
	20%						

	Risk	Risk Reduction Plan
1	Failure to deploy payload at desired altitude	Ground test system.
2	Failure to deploy parachute	Use redundant flight computers, separated from high pressures and vented to atmosphere. Ground test system. Pack parachute carefully. Pack black powder carefully

Dual Event Separation

- First event at 200 ft
- Second event at touchdown

Stowed configuration

Exploded view

Lander interface assembly

Nichrome pin release module

First event

Hir Rocket Team

tructures Recovery Payload Avionics Propulsion GS

Rover Shell

- Provides support for rover while stowed in lander
- Fits into cubesat rails on lander

Mechanical Release: Risk Assessment and Mitigation

Rover: Mechanical Release				Impa	ct	
		1	2	3	4	5
Risk	0.1%					
	1%			2		
	5%			1		
	10%					
	20%					

	Risk	Risk Reduction Plan
1	Wire does not break	The mechanism and flight computer should be tested extensively.
2	Rocket spinning jam rails	Tabs should be rigid.

Going Forward Plan

- Prototype all components individually by end of semester
 - Fly Lander on first test in December
- Assemble complete rover over IAP
- Test full rover deployment in February
- Continue iterating through April

Avionics

Structures

lecovery

ad Avionics

Requirements

- Build a flight computer and select a COTS system, both of which must:
 - Gather, log, and transmit data
 - Control flight events
- Aid in the design and assembly of the avionics bay

Last Year's Hardware

- BeagleBone Microcomputer
 - Power for parafoil calculations
- Custom-designed cape (Pyxida 1.0)
 - Beaglebone-centric form factor
 - Sensors
 - Onboard microcontroller

Current Hardware

- Stripped out BeagleBone
 - System too complicated
 - Power not needed
- Cape converted to standalone flight computer (Pyxida 2.0)
 - Easier to develop for
 - Compact

Hir Røcket Team

- All sensors included
- Onboard memory for logging and saving settings
- Useable in variety of rockets

Devices

- Microcontroller: Freescale MK20DX256
 - 96 MHz, ARM, Arduino-compatible
- Barometer: Bosch BMP180
- GPS: U-Blox Max-6
- Accelerometer: ADXL375
 - 250 G limit
- IMU: InvenSense MPU-9250
 - 9 DOF, 12 G limit
- Radio: XBee-Pro 900 XSC S3B
- Storage: Micron N25Q256A
 - 256 Mb capacity

Last Year's Software

- Implemented base functionality for software and firmware
- Two main code bases
 - Ground station
 - Pyxida firmware
- Ground station displays telemetric data and sends flight commands
- Firmware focused on data collection, telemetry, and flight state transitions

Firmware

- Much of last year's code base is still relevant
- Improvements:
 - Streamlined data logging
 - XBee telemetry protocol
 - More precise telemetry via Kalman filter
 - Intuitive altimeter configurability

Ground Station

- Used pre-flight to set parameters
- Receives and displays data from rocket during flight
- Supports sending commands to rocket
- Renders graphs of flight data post-flight

	Risk		Unmitigated Risk Table							
1.	Failure to initiate flight		20%							
	event		10%							
2.	Sensor failure		5%			2		1		
		Risk	1%					3		
3.	Early initiation of flight		0.1%							
				1	2	3	4	5		
Avionics			S			Impact				

Testing

	Risk		Mitigated Risk Table					
1.	Failure to initiate flight		20%					
	event		10%					
2.	Sensor failure		5%					
		Risk	1%					
3.	Early initiation of flight		0.1%			2	1	3
				1	2	3	4	5
		Avionics Impact						

Going Forward

- This semester:
 - Finish firmware support for all devices on the latest revision of the PCB
 - Add all critical features to the Ground Station
 - Map
 - Configuration
 - Data display
 - Build avionics bay
- IAP
 - Assemble final version of hardware
- Next semester
 - Test system in as many flights as possible
 - Freeze firmware development before the end of the semester
 - Polish Ground Station
 - Revise avionics bay

Propulsion

Structures R

ecovery F

load Avionic

Overview of Requirements

6.0	RRD 2.0	Raziel shall achieve an apogee of 10,000 feet +/- 300 feet.	Propulsion
6.1	Internal	Propulsion shall be single-stage.	Propulsion
6.2	DTEG 2.1	Propulsion shall use non-toxic propellants.	Propulsion
6.3.1	DTEG 2.2.1	Propulsion shall have a two-step arming system which can only be armed when all personnel are at least 50 feet from the Rocket.	Propulsion
6.3.2	DTEG 9.2	Ignition system shall require no more than 15A at 12V to function.	Propulsion
6.4.1	DTEG 2.4	Propulsion testing shall comply with ESRA requirements.	Propulsion, GSE
6.4.2	DTEG 4.2.4.1	The combustion chamber shall be designed for at least twice the maximum chamber pressure. The chamber shall be tested to at least 1.5 times the maximum chamber pressure.	Propulsion
6.5	DTEG 2.4.3	Propulsion shall have a successful static fire test prior to a test launch. Propulsion should have two successful static fires prior to a launch.	Propulsion, GSE

Illii Rocket Team

Propellant Formulation

Component	Role
Ammonium Perchlorate	Oxidizer
Hydroxyl Terminated Polybutadiene	Binder
HX-752	Matrix Stabilizer
CAO	Antioxidant
Isodecyl Pelargonate	Plasticizer
Modified MDI	Curative
Aluminum Powder	Fuel
Copper Chromite	Catalyst
Copper Oxychloride	Colorant/catalyst
Castor Oil	Cross-linking promoter
Polydimethylsiloxane	Surfactant
Triton X-100	Surfactant

Grain Geometry

4 BATES geometry Grains

Cylindrical, slightly tapered core

Length	7 inches
Core Diameter	1.25 inches
Outer Diameter	3.27 inches
Core Taper	.5 degrees
Impulse	10200 Ns
Average Thrust	3300 N
Burn Time	3.1s
Propellant Density	1500 kg/m ³
Expected I _{sp}	185 s

Fabrication - Mixing

Uses a 5-quart mixing bowl and KitchenAid mixer

Mixing order:

- 1. HTPB
- 2. AP
- 3. Copper Chromite, Copper Oxychloride, Aluminum, Plasticizer, Castor Oil
- 4. Surfactants and Curative

Fabrication - Vacuum Processing

Air bubbles are introduced during mixing and casting.

- Small distributed bubbles are introduced in mixing
- Large bubbles are introduced by folds in the propellant during casting

Process the propellant under vacuum twice

- Before casting, process in a wide, flat pan to eliminate mixing bubbles
- After casting, vacuum in the mold to remove casting bubbles.

Fabrication - Casting

Commercial casting tubes

• Also serves as outer wall inhibitor

Polished Aluminum caps

• Center the coring rod and keep the propellant in the mold

Teflon Coring Rod

Hir Røcket Team

• Tapered for easy release

Motor Casing

Consists of

- Case Wall
- Forward Retention Ring
- Forward Closure
- Nozzle
- Nozzle Carrier
- Thrust Ring

Motor Casing - Case Wall

Case Thickness	.13"
Inner Diameter	3.675"
Outer Diameter	3.88"
Case Length	33"
Upper Thread	3.75"-10 UN
Lower Thread	4"-8 UN
Material	6061-T6 Aluminum

Motor Casing - Forward Retention

Inner Diameter	2.62"
Thickness	1"
Thread	3 ¾" -10
Material	6061-T6 Aluminum

Motor Casing - Forward Closure

Thickness	.5"
Stem Height	4"
Outer Diameter	3.62"
Material	6061-T6 Aluminum

Motor Casing - Nozzle

Nozzle Component	Dimension
Throat Diameter	0.95"
Exit Diameter	2.62"
Length	4.24"
Inlet Diameter	3.2"
Material	Graphite

Motor Casing - Nozzle Carrier

Length	0.93"
Inner diameter	2.88"
Outer diameter	3.62"
Inner Step diameter	3.4"
Material	6061-T6 Aluminum
O-Ring Material	Silicone

Motor Casing - Thrust Ring

Outer Diameter	4.25"
Threads	4"-8 UN
Inner Diameter	2.88"
Base Thickness	.42"
Thread Height	1"
Material	6061-T6 Aluminum

Insulation - Liner

Phenolic Composite Liner

- Commercially Bought
- Protects the case wall

Outer Diameter	3.61"
Inner Diameter	3.375"
Length	29"
Thickness	.118"
Material	Convolute-Wound Cotton/Phenolic Composite

Insulation - Forward Disk

Forward Insulation Disk

- Cement Board
- Protects Forward Closure
- Burn-Through Time of 90s

Thickness	.25"	
Outer Diameter	3.37"	-

Motor Ignition

Internal Ignition System

- Starter inserted through the nozzle throat
- Ignition wires run outside the motor case through the centering rings
- Mechanical disconnect, allowing starter installation on the pad.
- Onboard avionics fires the starter when the vehicle is ready to be launched.

External Ignition System

- Need to be able to use due to launch field safety requirements.
- Starter connects to a relay controlled at the launch line.

Starters

Hand-Dipped Starters with Commercial Pyrogen and Electric Matches

2 dips used for development motors

More can be used for large motors if needed

Overview of Major Risks

	20%					
Risk	10%		4		2	
	5%	7		6		5
	1%			3	1	
	0.1%					
		1	2	3	4	5

Risk ID	Risk Description
1	Erosive burning causes motor failure
2	Propellant density variation over/underpowers the motor
3	Propellant density variation causes motor failure
4	Equipment exposure to HCI
5	Personnel exposure to HCI
6	Heat transfer from the nozzle causes the threads to fail
7	Igniter does not fire

Risk Mitigation

Simulations

Verification of Motor Manufacturing

Careful Testing with rigorous safety procedures

Replacement Components

	20%					
	10%	4				
Risk	5%	7				
	1%			6		
	0.1%			1, 3	2	5
		1	2	3	4	5

Test Plan

4 stages of development

- 1. Strand Burning
 - Propellant Characterization
- 2. 54mm Development Motor
 - Verify propellant behavior in a motor test.
- 3. 98mm 1G Development Motor
 - Verify case design, and fine-tune propellant manufacturing procedures
- 4. Flight-like Motor Static Testing
 - Test that the motor meets the requirements

Week of	11/13	11/20	11/27	12/4	12/11	FINALS	1/8	1/15	1/22	1/29
Strand Testing										
54mm 1 grain										
98mm 1 grain										
Flight-like motor										

GSE

ires Recovery Payload A

Overview of Requirements

- The launch-ready pad lifetime of Raziel shall be at least 2 hours.
- Propulsion testing shall comply with ESRA requirements.
- Propulsion shall have a successful static fire test prior to a test launch.
- Propulsion should have two successful static fires prior to a launch.
- All Ground Support Equipment shall be man-portable over a short distance (~500 feet).

Main projects:

- Solid motor test stand
 - o DAQ
 - Ignition system
- Antenna tracker
- Rocket cooling system
- Trailer for storage and launch operations (pending parking)

Design Process

- Literature review for solid motor examples
- Needs for test stand:
 - Vertical firing for flight-like tests and safety reasons
 - Adaptable (one stand for several sizes)
 - Redundant data logging (on SD card and live streaming)
 - Pressure, temperature and force measurements
 - Remote ignition system
- Needs for antenna tracking:
 - Autonomously follow rocket's trajectory
- Needs for ignition system:
 - 2-step starting mechanism
 - Ignition remotely from max. 500 feet

Test stand inspired by above design by Dewayne Doug (http://aeroconsystems.com/cart/teststand-pictorial)

Technical Design and Analysis

Test Stand:

- Welded steel body
- Aluminum centering rings and load cell plate
 - (x2) 54 mm centering rings
 - (x2) 98 mm centering rings
 - Placed about 1.5" from ends of case
- 2' tall, 2' square base, 5.05" ID
- Test in Building 37 blast chamber and experimental outdoor launches (URRG)
 - Pursuing test location at Crow Island, Stow, MA

Technical Design and Analysis, Continued

DAQ:

- Arduino Leonardo
 - amplifiers and breakout boards for sensors
 - XBee radio to transmit data
 - SD card to log data
- Currently using Logger Pro for convenience due to faulty parts

Technical Design and Analysis, Continued

Ignition System:

- 2-step start
 - LED toggle switch and spring loaded button
- Toggle switch is also continuity test
- Powered by 12V battery

Antenna Ground Station:

- Aluminum and stainless steel construction
- 2 DOF gimbal with 2 Yagi antennas
- Tracking using reported live telemetry from rocket and simulation data passed through unscented Kalman filter

Hii Rocket Team

Key Technical Issues and Risks

	Unmitigated Operational Risk Table: General Operations									
	20%									
	10%	Cooling system: retraction failure	AGS: Degraded vertical slew, Downlink failure							
Risk	5%		AGS: Degraded vertical slew or horizontal slew	Controller failure	Trailer mechanical failure					
	1%		AGS: Degraded horizontal slew failure							
	0.1%			Cooling system: structural failure	Cooling System: simultaneous retraction and interlock failure	Trailer structural failure				
		1	2	3	4	5				
				Impact						

Cooling System Mitigations: safety interlock to interrupt ignitor continuity or ground station process flow **Antenna Ground Station (AGS) Mitigations:**

- Quick-disconnect pins so gimbal can be pointed manually
- Independent flight model to reacquire signal in the event of downlink failure

Trailer Mitigations: Thorough inspection before departure and during stops en route to launch sites

Key Technical Issues and Risks

	Unmitigated Test Risk Table: Solid Test Stand During Test Firing								
	20%								
Risk	10%	Igniter malfunction: failure to ignite		DAQ failure					
	5%					Igniter malfunction: unintended ignite			
	1%			Sensor failure					
	0.1%				Internal structure failure	Superstructure failure			
		1	2	3	4	5			

Mitigations:

- DAQ wireless transmission provides redundant data
- New data captures saved to new file
- Safety switch on ignition system visually and verbally confirmed in 'safe' position before personnel approach motor

Interfaces

- Solid Test Stand:
 - *Propulsion*: test custom solid rocket motors (all sizes)

• Rocket Cooling System:

- Avionics: protect sensors and cameras from overheating
- *Structures*: keep certain rocket body tubes out of direct sunlight

• Antenna Ground Station:

- Avionics: tracking system helps reliably receive live telemetry from the rocket
- *Recovery*: system will help locate rocket during/after landing for recovery operations

• Trailer:

 All subteams: provides storage and transportation of critical equipment to and from launches and other events

Going Forward Plan

- Solid Test Stand: Ready for 54 mm motor testing; two static fire tests complete!
 - Blast chamber in Building 37
 - Pursuing outdoor test site at Crow Island, Stow, MA
 - DAQ: Currently using borrowed amplifier, our amplifier sent back to manufacturer for repairs

Rocket Cooling System: Currently brainstorming

- $\circ \quad \text{ Sun shade } \quad$
- Clamshell enclosures
- Silo with penetrable cover
- Forced-air cooling (avionics section only)
- Water-cooled fuselage
- Refrigerated modules
- Antenna Ground Station: Currently in design
 - Anticipating construction and testing in January (MIT's IAP Period)

Systems Level Risk

System risks

	Risk	Reduction Plan	
1	Schedule slip	Maintain descope options	
2	Testing opportunities	Test early, maintain options	
3	Loss of rocket	Test early, produce multiple parts	Ris
4	Insufficient funds	If necessary, descope and cut costs	
5	Injury to members	Use PPE and safety plan	

Overview of Systems Level Risks											
	20%				1						
Risk	10%				2	4					
	5%				3						
	1%										
	0.1%					5					
		1	2	3	4	5					
		Impact									

Schedule (1st semester)

Task	9/3/2015	9/10	9/17	9/24	10/1	10/8	10/15	10/22	10/29	11/5	11/12	11/19	11/26	12/3	12/10
Requirements Development															
System Design															
Payload System Design															
Strand Burn Testing															_
54 mm, 1 grain program															
98 mm, 1 grain program															
Flight Motor Testing															
Recovery Deployment Dev															
Recovery Test Plan															
Avionics Test Plan															
PDR															
Raziel 1 Build															
Flight Test #1															
Structures Dev. Testing															
CO2 Deployment Dev.															
Payload Prototyping															
Development Reviews															
Raziel 2 Build															
Flight Test #2															
Flight Test #3															
Preparation for SAC															
SAC															

Schedule (2nd semester)

Task	1/2/2017	1/9	1/16	1/23	1/30	2/6	2/13	2/20	2/27	3/6	3/13	3/20	3/27
Requirements Development													
System Design													
Payload System Design													
Strand Burn Testing													
54 mm, 1 grain program													
98 mm, 1 grain program))									
Flight Motor Testing													
Recovery Deployment Dev													
Recovery Test Plan													
Avionics Test Plan													
PDR													
Raziel 1 Build													
Flight Test #1													
Structures Dev. Testing													
CO2 Deployment Dev.													
Payload Prototyping													
Development Reviews													
Raziel 2 Build													
Flight Test #2													
Raziel 3 Build													
Flight Test #3													
Build Raziel 4													
Preparation for SAC													
SAC													

Task	4/3/2017	4/10	4/17	4/24	5/1	5/8	5/15	5/22	5/29	<mark>6/5-19</mark>	6/20-24
Requirements Development											
System Design											
Payload System Design											
Strand Burn Testing											
54 mm, 1 grain program											
98 mm, 1 grain program											
Flight Motor Testing											
Recovery Deployment Dev											
Recovery Test Plan											
Avionics Test Plan											
PDR											
Raziel 1 Build											
Flight Test #1											
Structures Dev. Testing											
CO2 Deployment Dev.											
Payload Prototyping											
Development Reviews											
Raziel 2 Build											
Flight Test #2											
Raziel 3 Build											
Flight Test #3											
Build Raziel 4											
Preparation for SAC											
SAC											

Thank you!

Structures Recovery Payload Avionics Propulsion GSE