Basic Radar 3: Statistical Properties of Radar Signals

Roger H. Varney

¹Center for Geospace Studies SRI International

July 25, 2017

- ¶ Fundamentals of Probability Theory
- ISR Power
- Stochastic Processes

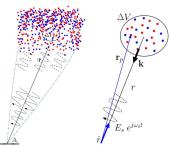
4 Estimating ISR Autocorrelation Functions

July 25, 2017

3 / 26

The Need for Statistical Descriptions of ISR Signals

If I knew the positions of every single electron in the scattering volume, I would know the received voltage exactly:



Exact expression for scattered electric field as a superposition of Thompson scatterers:

$$E_s = -\frac{r_e}{r} E_0 \sum_{p=1}^{N_0 \Delta V} e^{j\mathbf{k} \cdot \mathbf{r}_p}$$

ISR theory predicts statistical aspects of the scattered signal:

Scattered Power: $\langle |E_s|^2 \rangle$ Autocorrelation Function: $\langle E_s(t)E_s^*(t-\tau) \rangle$

These statistical properties are functions of macroscopic properties of the plasma: N_e , T_e , T_i , u_{los} .

R. H. Varney (SRI) Radar Statistics

Random Variables

A **random variable** is a variable whose numerical value depends on the outcome of a probabilistic phenomenon.

Probability Density Function:

$$P(x_1 < X < x_2) = \int_{x_1}^{x_2} p_X(x) dx$$

Expected Values:

$$E\left\{g\left(X\right)\right\} = \int_{-\infty}^{\infty} g(x)p_X(x) dx$$

Mean:

$$Mean\{X\} = E\{X\}$$

Variance:

$$Var \{X\} = E \{(X - E \{X\})^2\} = E \{X^2\} - (E \{X\})^2$$

R. H. Varney (SRI) Radar Statistics

4 / 26

Collections of Random Variables

Multiple RVs must be described by joint-PDFs:

$$P(x_0 < X < x_1 \cup y_0 < Y < y_1) = \int_{x_0}^{x_1} \int_{y_0}^{y_1} p_{XY}(x, y) dy dx$$

Stochastic Processes

If X and Y are **independent**:

$$p_{XY}(x,y) = p_X(x)p_Y(y)$$
 $p_{X|Y}(x|y) = p_X(x)$

Relationships between RVs are defined through covariances:

$$Cov \{X, Y\} = E \{(X - E\{X\})(Y - E\{Y\})\}$$

Uncorrelated RVs have $Cov\{X, Y\} = 0$ Independent RVs are uncorrelated, but uncorrelated RVs are not necessarily independent.

Gaussian Distribution

A Gaussian random variable X has the following probability density function (Normal Distribution):

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{x-\mu}{2\sigma^2}\right\}$$

$$E\{X\} = \mu \qquad Var\{X\} = \sigma^2$$

$$E\left\{(X-\mu)^4\right\} = 3\sigma^4$$

A jointly-Gaussian vector of random variables

$$\mathbf{X} = [X_0, X_1, X_2, \cdots, X_{N-1}]^T$$
 has the joint pdf:

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{\frac{N}{2}} |C|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2} [\mathbf{x} - \mu]^T C^{-1} [\mathbf{x} - \mu]\right\}$$

$$E\{\mathbf{X}\} = \mu$$

$$Cov\{\mathbf{X}\} = E\left\{ [\mathbf{X} - \mu] [\mathbf{X} - \mu]^T \right\} = C$$

R. H. Varney (SRI) Radar Statistics

6 / 26

Properties of Jointly Gaussian Random Variables

Linear combinations:

$$Z = \alpha X + \beta Y + \gamma \quad E\{Z\} = \alpha E\{X\} + \beta E\{Y\} + \gamma$$

$$Var\{Z\} = \alpha^2 Var\{X\} + \beta^2 Var\{Y\} + 2\alpha\beta Cov\{X,Y\}$$

Matrix generalization:

$$\mathbf{Y} = \mathbf{AX} + \mathbf{b}$$
 $E\{\mathbf{Y}\} = \mathbf{AX} + \mathbf{b}$ $Cov\{\mathbf{Y}\} = \mathbf{A}Cov\{\mathbf{X}\}\mathbf{A}^T$

Special cases for zero mean random variables:

Odd moments are zero:

$$E\{V_1\} = E\{V_1V_2V_3\} = E\{V_1V_2V_3V_4V_5\} = \cdots = 0$$

- Fourth moment theorem: $E\{V_1V_2V_3V_4\} =$ $E\{V_1V_2\}E\{V_3V_4\}+E\{V_1V_3\}E\{V_2V_4\}+E\{V_1V_4\}E\{V_2V_3\}$
- General even moment theorem (Isserlis' Theorem) $E\{V_1V_2\cdots V_{2n-1}V_{2n}\} = \sum \prod E\{V_iV_i\}$

Central Limit Theorem

Given a set of finite-variance, independent and identically distributed RV, $[X_0, X_1, \cdots, X_{K-1}]$, the distribution function of the average:

$$\hat{X} = \frac{1}{K} \sum_{n=0}^{K-1} X_n$$

will asymptotically approach a Gaussian distribution as K increases.

$$E\left\{\hat{X}\right\} = E\left\{X_n\right\} \qquad Var\left\{\hat{X}\right\} = \frac{1}{K}Var\left\{X_n\right\}$$

This is an amazingly useful theorem:

- Only the mean and variances of the intermediate quantities need to be calculated to predict the distribution of the final averaged result.
- Distribution functions of intermediate quantities do not need to be calculated in detail since the final averaged result will just be Gaussian.

Statistical Properties of ISR Voltages

Radar signals are complex-valued, zero-mean, Gaussian random vaiables with variances related to their power P:

$$V = V_R + jV_I$$

$$E\{V_R\} = E\{V_I\} = 0$$

$$E\{V_R^2\} = E\{V_I^2\} = \frac{1}{2}P \qquad E\{V_RV_I\} = 0$$

$$E\{|V|^2\} = E\{V_R^2 + V_I^2\} = P$$

$$E\{V_R^4\} = E\{V_I^4\} = \frac{3}{4}P^2 \qquad E\{V_R^2V_I^2\} = E\{V_R^2\}E\{V_I^2\} = \frac{1}{4}P^2$$

$$Var\{|V|^2\} = E\{(|V|^2)^2\} - (E\{|V|^2\})^2$$

$$= E\{V_R^4 + V_I^4 + 2V_R^2V_I^2\} - (E\{V_R^2 + V_I^2\})^2$$

$$= 2P^2 - P^2 = P^2$$

Power Estimation

Given K voltage samples with unknown signal power S, a known noise power N, and total power P = S + N, an estimate of the signal power is:

$$\hat{S} = \frac{1}{K} \sum_{n=0}^{K-1} |V_n|^2 - N$$

Expected Value: $E\left\{\hat{S}\right\} = \frac{1}{K} \sum_{n=0}^{K-1} E\left\{\left|V_n\right|^2\right\} - N = P - N = S$ Variance (Invoke the Central Limit Theorem):

ISR Power

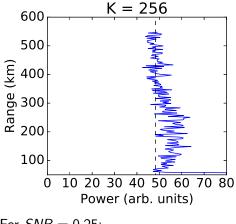
$$Var\left\{\hat{S}\right\} = Var\left\{\frac{1}{K}\sum_{n=0}^{K-1}|V_n|^2\right\} = \frac{1}{K}Var\left\{|V_n|^2\right\} = \frac{1}{K}P^2 = \frac{1}{K}(S+N)^2$$

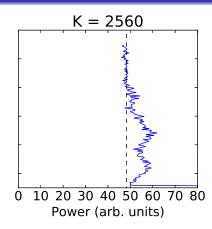
Relative Error:

$$\frac{\sqrt{\textit{Var}\left\{\hat{S}\right\}}}{\textit{S}} = \frac{1}{\sqrt{\textit{K}}} \frac{\textit{S} + \textit{N}}{\textit{S}} = \frac{1}{\sqrt{\textit{K}}} \left(1 + \frac{1}{\textit{S}/\textit{N}}\right)$$

R. H. Varney (SRI) Radar Statistics

Statistical Uncertainty And SNR Are Different Concepts



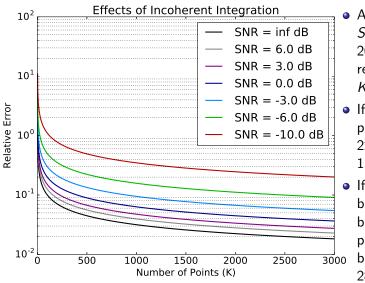


For SNR = 0.25:

$$K = 256 \rightarrow \text{Relative Error} = 31.25\%$$

$$K=2560 \rightarrow \text{Relative Error} = 9.88\%$$

Required Integration Times



ISR Power

- Αt SNR = -3 dB. 20% error requires K = 225.
- If the inter-pulse period is 5 ms, 225 pulses takes 1.125 s.
- If you cycle between 25 beams, 225 pulses in all beams takes 28.125 s.

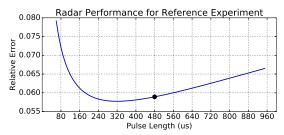
12 / 26

Optimal Pulse Lengths (Typical Sondrestrom Numbers)

Reference experiment gives $SNR_0=1.5$ with a $\tau_{p0}=480~\mu \mathrm{s}$ pulse, $IPP=16~\mathrm{ms}$ ($DC_0=3\%$ duty cycle). In 12.8 s of integration you get K=800 samples and relative error of 5.9%.

- SNR increases linearly with pulse length: SNR = SNR $_0 au_p/ au_{p0}$
- Constant duty cycle constraint: $IPP = \tau_p/DC_0$
- Number of pulses integrated in a time T: K = T/IPP

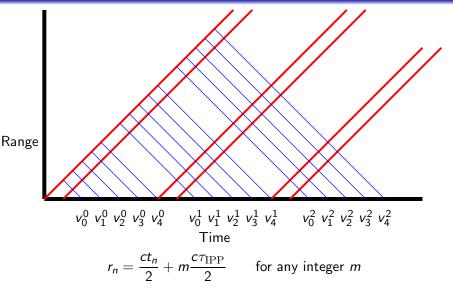
Relative Error:
$$\sqrt{\frac{ au_p}{DC_0T}}\left(1+\frac{ au_{p0}}{SNR_0 au_p}\right)$$



R. H. Varney (SRI)

Radar Statistics

Problem with Short IPP: Range Aliasing



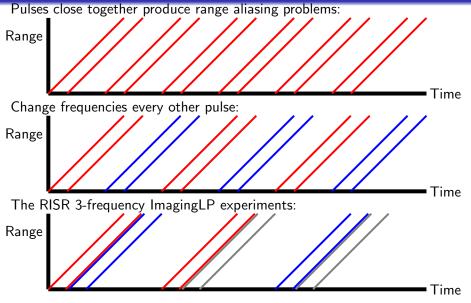
R. H. Varney (SRI)

Fundamentals of Probability Theory

Radar Statistics

July 25, 2017

Exploiting Frequency Diversity



Stochastic Processes: Definitions and Terminology

- Stochastic Process (aka Random Process): V(t) where value at every time is a random variable
- Gaussian Stochastic Process:
 - PDF of each V(t) is a Gaussian distribution (aka normal distribution)
 - Joint PDF of any subset of samples of V(t) is a jointly Gaussian distribution (aka Multivariate Normal Distribution)
- Moments of a Stochastic Process:
 - Mean: $\bar{V}(t) = E\{V(t)\}$
 - Autocorrelation: $R_V(t, t \tau) = E\{V(t)V^*(t \tau)\}$
 - Autocovariance:

$$C_{V}(t, t - \tau) = E\left\{ \left[V(t) - \bar{V}(t) \right] \left[V^{*}(t - \tau) - \bar{V}^{*}(t - \tau) \right] \right\} = R(t, t - \tau) - \bar{V}(t)\bar{V}^{*}(t - \tau)$$

- (Wide Sense) Stationary Stochastic Process
 - $\bar{V}(t) = \bar{V}$ is independent of t
 - $R(t, t \tau) = R(\tau)$ is independent of t
- ISR signals are Gaussian, zero mean, and stationary as long as the ionospheric state parameters are constant.

R. H. Varney (SRI) Radar Statistics July 25, 2017 16 / 26

Power Spectra of Deterministic Signals

ISR Power

Given a signal f(t) and its fourier transform $F(\omega) = \mathcal{F}\{f(t)\} = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$, the power spectrum is:

$$S_{F}(\omega) = |F(\omega)|^{2} = F^{*}(\omega)F(\omega)$$

$$= \mathcal{F}\left\{f(-t') * f(t')\right\}$$

$$= \mathcal{F}\left\{\int_{-\infty}^{\infty} f(t')f(t'-t) dt'\right\}$$

When you filter a signal:

$$g(t) = h(t) * f(t)$$

$$G(\omega) = H(\omega)F(\omega)$$

$$S_G(\omega) = |H(\omega)|^2 S_F(\omega)$$

R. H. Varney (SRI)

July 25, 2017

18 / 26

Power Spectra of Stochastic Signals

ISR Power

Fourier transforms of stationary random processes do not exist. Fourier transforms of ACFs will exist, and are the power spectra:

$$S_V(\omega) = \int_{-\infty}^{\infty} R_V(\tau) e^{-j\omega\tau} d\tau = \int_{-\infty}^{\infty} E\{V(t)V^*(t-\tau)\} e^{-j\omega\tau} d\tau$$

Properties:

- $S(\omega)$ is real and $S(\omega) > 0$

•
$$\int_{-\infty}^{\infty} S_V(\omega) d\omega = R(0) = E\{|V|^2\}$$
 (total power)

• If
$$U = h * V$$
, $S_U(\omega) = |H(\omega)|^2 S_V(\omega)$

Intuitive interpretation: $\int_{\omega_1}^{\omega_2} S_V(\omega) d\omega$ is the power in the frequency band from ω_1 to ω_2 .

R. H. Varney (SRI) Radar Statistics

Example: Running Average of White Noise

Continuous white noise:

Fundamentals of Probability Theory

$$E\{W(t)\}=0$$
 $S_W(\omega)=S_0$ $R_W(\tau)=S_0\delta(\tau)$

Running average of white noise:

$$V(t) = \frac{1}{T} \int_{t-T/2}^{t+T/2} W(t') dt'$$

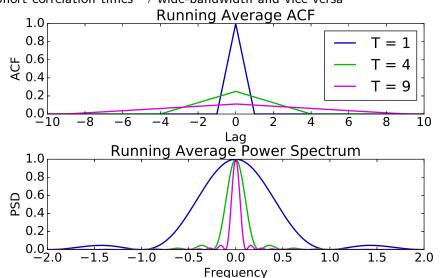
$$R_{V}(\tau) = E \left\{ \frac{1}{T} \int_{t-T/2}^{t+T/2} W(t') dt' \frac{1}{T} \int_{t+\tau-T/2}^{t+\tau+T/2} W(t'') dt'' \right\}$$

$$= \frac{1}{T^{2}} \int_{t-T/2}^{t+T/2} \int_{t+\tau-T/2}^{t+\tau+T/2} S_{0} \delta\left(t'-t''\right) dt'' dt'$$

$$= \begin{cases} S_{0} \frac{T-|\tau|}{T^{2}} & |\tau| < T \\ 0 & |\tau| > T \end{cases} \Rightarrow S_{V}(\omega) = S_{0} \left(\frac{\sin(\omega T/2)}{\omega T/2}\right)^{2}$$

Correlation Time and Bandwidth

Short correlation times \rightarrow wide-bandwidth and vice versa



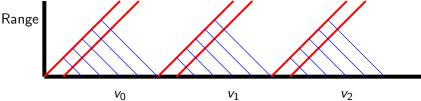
R. H. Varney (SRI)

Radar Statistics

July 25, 2017

ACF Estimation (Pulse-to-Pulse)

Assume pulses are taken close together and are correlated.



Time

Unbiased Estimator: Biased Estimator: Zero-padded Periodogram

$$\hat{R}_{\ell} = \frac{1}{K - \ell} \sum_{n=\ell}^{K-1} v_{n} v_{n-\ell}^{*} \qquad \tilde{R}_{\ell} = \frac{1}{K} \sum_{n=\ell}^{K-1} v_{n} v_{n-\ell}^{*} \qquad \tilde{S}_{n} = \left| \sum_{k=0}^{K-1} v_{k} e^{-2\pi j \frac{nk}{2K}} \right|^{2}$$

$$E\left\{\hat{R}_{\ell}\right\} = R_{\ell} \qquad E\left\{\tilde{R}_{\ell}\right\} = \frac{K - \ell}{K} R_{\ell} \qquad \tilde{R}_{\ell} = \frac{1}{2K} \sum_{n=0}^{2K-1} \tilde{S}_{n} e^{2\pi j \frac{n\ell}{2K}}$$

Biased ACF estimator equals the iFFT of the zero-padded periodogram.

R. H. Varney (SRI) Radar Statistics July 25, 2017

21 / 26

Underspread vs Overpread Targets

- If the IPP is short compared to the correlation time of the signal (inverse bandwidth), pulse-to-pulse processing works great.
- If the IPP is long compared to the correlation time, all pulse-to-pulse lag products give ≈ 0 .
- Shortening the IPP is not always an option due to range aliasing.

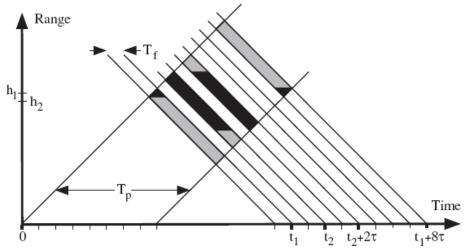
Terminology:

Fundamentals of Probability Theory

- Underspread target: There exists an IPP that is short compared to the correlation time but long enough to avoid range aliasing.
 - D-region ISR
 - Perpendicular to B ISR
 - MST radar
- Overspread target: All practical IPP are long compared to the correlation time.
 - Most ISR experiments
 - SuperDARN

Uncoded Long Pulse Experiments

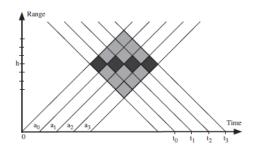
Fundamentals of Probability Theory



Scattered signals from outside the overlap region do not affect the expected value of a lag product, but they do affect the variance

Coded Pulse Experiments

Fundamentals of Probability Theory



Stochastic Processes

$$a_0 a_1 v_0 v_1^* = a_0 \left(a_0 s_h^t + a_1 s_{h-1}^{t+\frac{1}{2}} + a_2 s_{h-2}^{t+1} + a_3 s_{h-3}^{t+\frac{3}{2}} \right) \times$$

$$a_1 \left(a_0 s_{h+1}^{t+\frac{1}{2}} + a_1 s_h^{t+1} + a_2 s_{h-1}^{t+\frac{3}{2}} + a_3 s_{h-2}^{t+2} \right)^*$$

$$F \left(a_1 a_2 v_1 v_1^* \right) = F \left(a_1^t s_1^{t+1} \right) + a_2 s_h^t \left(a_1^t s_1^{t+\frac{1}{2}} s_1^{t+\frac{3}{2}} \right)$$

$$E\left\{a_{0}a_{1}v_{0}v_{1}^{*}\right\} = E\left\{s_{h}^{t}s_{h}^{*t+1}\right\} + a_{0}a_{2}E\left\{s_{h-1}^{t+\frac{1}{2}}s_{h-1}^{*t+\frac{3}{2}}\right\} + a_{0}a_{1}a_{2}a_{3}E\left\{s_{h-2}^{t+1}s_{h-2}^{*t+2}\right\}$$

Self-Clutter Limited Regime

- If the scatter is strong, self-clutter dominates noise.
- Relative error scales with the signal to self-clutter ratio.
- For a code with n_b band, this ratio is $1/(n_b-1)$.
- For a code with n_b band, I get $(n_b \ell)$ lag-products for lag ℓ and $n_b (n_b - 1) / 2$ lag-products total.

Approximate relative error of one lag-product:

$$\frac{1}{\sqrt{K(n_b - \ell)}} \left(1 + \frac{1}{1/(n_b - 1)} \right) = \sqrt{\frac{n_b^2}{K(n_b - \ell)}}$$

Approximate relative error after fitting all lag-products:

$$\frac{1}{\sqrt{\mathit{Kn}_{b}\left(n_{b}-1\right)/2}}\left(1+\frac{1}{1/\left(n_{b}-1\right)}\right)=\sqrt{\frac{n_{b}^{2}}{\mathit{Kn}_{b}\left(n_{b}-1\right)/2}}\approx\sqrt{\frac{2}{\mathit{K}}}$$

Error Propagation Through the ISR Processing Chain

