NSE Nuclear Science and Engineering

science : systems : society

1977

Nuclear Science and Engineering

Ť

Sea

"Thermal-Hydraulics"

Jacopo BUONGIORNO

Matteo

BUCCI

LESTER

Emilio BAGLIETTO

Neil E. TODREAS

"Nuclear Reactor & Systems Design"

Charles W. FORSBERG Michael J. DRISCOLL

"Reactor Physics and Advanced Computing"

"Energy Studies"

Michael W. GOLAY

Center for Advanced Nuclear Energy Systems (CANES) ** A MITEI Low-Carbon Energy Center **

NSE Nuclear Science and Engineering

science : systems : society

CANES Research Sponsors

Engineered surface nano- and micro-scale features (coatings, pores, posts, patterns, ...) enhance CHF

Increases design-basis and beyond-design-basis safety margins and/or enables power uprates in LWRs

Profs. Buongiorno and Bucci

Nano-engineered coating accelerates quenching in reactor - like rodlets

Stainless steel rodlets (4.8 mm x 40 mm), initial temperature 1000°C, quenched in wat er at atmospheric pressure and 80°C

Reduction of Peak Cladding Temperature (PCT) by up to 150-200°C

Clean surface

Quench front speed:

~7 mm/sec

Thin porous layer of hydrophilic nanoparticles on surface

~5000 mm/sec

Profs. Buongiorno and Bucci

High-fidelity simulations of coolant flow in reactor core

Use a hybrid turbulence model in selected flow structures

of low mean deformation

Objective: *High fidelity flow-thermal simulations of reactor cores* **Challenge:** *Complex turbulence / computational requirements* **Approach:** *STRUCTure-based hybrid turbulence modeling*

Use a nonlinear URANS model in regions

Fluoride-Salt-Cooled High-Temperature Reactor (FHR)

Fuel: TRISO particle fuel, no failure up to ~1650°C, strongly negative Doppler feedback

Coolant: FLiBe liquid salt, low-pressure, chemically inert, large margin to boiling (1430°C), high heat capacity, enables power density up to 10x gas-cooled reactors

Power Cycle: Modified natural-gas air

GE Power Systems MS7001FB

Drs. Forsberg and Hu

Air

Compressor

Heat Recovery SG

Reactor Salt-to-Air Heaters

Turbines

Generator

-Gas co-firing

Unloading vent

- Highest efficiency conversion of NG to electricity
- Very fast response because peak power off base load
- 50 to 100% greater revenues than base-load plant

Dr. Forsberg

High-fidelity Reactor Neutronics Simulations

•

TREAT Reactor

- High performance computing in particle transport, improved physical models, and open source software:
 - Time-dependent Monte Carlo
 - Multi-physics coupling
 - Acceleration and convergence analysis
 - Efficient parallelization algorithms
 - On-the-fly Doppler Broadening

Profs. Forget and Smith

Coupling from MC mesh to FEM using orthogonal basis

Integration in multi-physics environment

MIT Graphite Exponential Pile: "Hands-on" Reactor Physics

25. MT of Reactor Grade Graphite2.5 MT of Natural Uranium Metal Fuel

Reactor Physics Labs Experiments

- Measure approach-to-critical fuel loadings
- Measure neutron flux spatial distributions
- Measure fuel rod spatial self-shielding
- Measure control rod worths

Reactor Physics Research

- Testing of graphite thermal scattering kernels
- Measure neutron streaming in voids
- Validate high-fidelity neutron physics codes

Profs. Forget and Smith

Offshore floating nuclear power plant (OFNP)

• Entirely built and decommissioned in a shipyard: faster and cost-effective plant construction (<36 months)

12

- Reduced capital cost (>90% cut in reinforced concrete)
- Transported to the site, moored 5-12 miles offshore, in relatively deep water (~100 m): insensitive to earthquakes and tsunamis
- Submarine AC cable connects to grid
- Reactor could be large LWR (1100 MWe), SMR (300 MWe) or other designa
- Nuclear island underwater: ocean heat sink ensures indefinite passive decay heat removal (no Fukushima scenario)

Profs. Buongiorno, Golay, Todreas

How to Reduce NPP Capital Cost

Most of the cost is installation and financing, not equipment

Drs. Buongiorno and Forsberg

Educating the Community and Informing Public Policy

The Future of the Nuclear **Fuel Cycle** AN INTERDISCIPLINARY MIT STUDY

Profs . Buongiorno, Lester, Golay, Forsberg,