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Abstract

Generalized Independent Components Analysis Over Finite Alphabets

by Amichai Painsky

Independent component analysis (ICA) is a statistical method for transforming an

observable multi-dimensional random vector into components that are as statisti-

cally independent as possible from each other. Usually the ICA framework assumes

a model according to which the observations are generated (such as a linear trans-

formation with additive noise). ICA over finite fields is a special case of ICA in which

both the observations and the independent components are over a finite alphabet.

In this thesis we consider a formulation of the finite-field case in which an obser-

vation vector is decomposed to its independent components (as much as possible)

with no prior assumption on the way it was generated. This generalization is also

known as Barlow’s minimal redundancy representation (Barlow et al., 1989) and is

considered an open problem. We propose several theorems and show that this hard

problem can be accurately solved with a branch and bound search tree algorithm, or

tightly approximated with a series of linear problems (Painsky et al., 2016b). More-

over, we show that there exists a simple transformation (namely, order permutation)

which provides a greedy yet very effective approximation of the optimal solution

(Painsky et al., 2016c). We further show that while not every random vector can be

efficiently decomposed into independent components, the vast majority of vectors

do decompose very well (that is, within a small constant cost), as the dimension
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increases. In addition, we show that we may practically achieve this favorable con-

stant cost with a complexity that is asymptotically linear in the alphabet size. Our

contribution provides the first efficient set of solutions to Barlow’s problem with the-

oretical and computational guarantees.

The minimal redundancy representation (also known as factorial coding (Schmidhu-

ber, 1992)) has many applications, mainly in the fields of neural networks and deep

learning (Becker & Plumbley, 1996; Obradovic, 1996; Choi & Lee, 2000; Bartlett

et al., n.d.; Martiriggiano et al., 2005; Bartlett, 2007; Schmidhuber et al., 2011;

Schmidhuber, 2015). In our work we show that the generalized ICA also applies

to multiple disciplines in source coding (Painsky et al., 2016c). A special atten-

tion is given to large alphabet source coding (Painsky et al., 2015, 2016c,d). We

propose a conceptual framework in which a large alphabet memoryless source is

decomposed into multiple sources with with a much smaller alphabet size that are

“as independent as possible”. This way we slightly increase the average code-word

length as the decomposed sources are not perfectly independent, but at the same

time significantly reduce the overhead redundancy resulted by the large alphabet

of the observed source. Our suggested method is applicable for a variety of large

alphabet source coding setups.



iv

To my father, Moti Painsky, who encouraged me to earn my B.Sc. and get a job





Acknowledgements

First and foremost I would like to express my gratitude and love to my wife Noga and

my new born daughter Ofri, who simply make me happy every single day. Thank

you for taking part in this journey with me.

I wish to express my utmost and deepest appreciation to my advisers, Prof. Sa-

haron Rosset and Prof. Meir Feder, from whom I learned so much, in so many

levels. Coming from different disciplines and backgrounds, Meir and Saharon in-

spired me to dream high, but at the same time stay accurate and rigorous. This

collaboration with two extraordinary experts has led to a fascinating research with

some meaningful contributions. On a personal level, it was a privilege to work with

such exceptional individuals. Looking back five years ago, when I moved back to

Israel to pursue my Ph.D. in Tel Aviv University, I could not dream it up any better.

In the course of my studies I had the opportunity to meet and learn from so many

distinguished individuals. Prof. Felix Abramovich, to whom I owe most of my formal

statistical education. Prof. David Burshtein, who gave me the opportunity to teach

the undergraduate Digital to Signal Processing class for the past four years. Prof.

Uri Erez, who assigned me as a chief of Teaching Assistants in his Random Signals

and Noise class. Dr. Ofer Shayevitz, who (unintentionally) led me to pursue my

Ph.D. in Israel, on top of my offers abroad. Dr. Ronny Luss, who introduced me to

Saharon when I moved back to Israel and guided my first steps in Optimization. My

vi



vii

fellow faculty members and graduate students from both the Statistics and Electri-

cal Engineering departments, Dr. Ofir Harari, Dr. Shlomi Lifshits, Dr. David Golan,

Aya Vituri, Shachar Kaufman, Keren Levinstein, Omer Weissbord, Prof. Rami Za-

mir, Dr. Yuval Kochman, Dr. Zachi Tamo, Dr. Yair Yona, Dr. Anatoly Khina, Dr.

Or Ordentlich, Dr. Ronen Dar, Assaf Ben-Yishai, Eli Haim, Elad Domanovitz, Nir

Elkayam, Uri Hadar, Naor Huri, Nir Hadas, Lital Yodla and Svetlana Reznikov.

Finally I would like to thank my parents, Moti and Alicia Painsky, for their endless

love, support and caring. It has been a constant struggle for the past decade,

explaining what it is that I do for living. Yet it seems like you are quite content with

the results.



Contents

Abstract ii

Acknowledgements vi

1 Introduction 1

2 Overview of Related Work 5

3 Generalized ICA - Combinatorical Approach 9

3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Generalized BICA with Underlying Independent Components . . . . . . 12

3.4 Generalized BICA via Search Tree Based Algorithm . . . . . . . . . . . 15

3.5 Generalized BICA via Piecewise Linear Relaxation Algorithm . . . . . . 17

3.5.1 The Relaxed Generalized BICA as a single matrix-vector multi-

plication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.2 Relaxed Generalized BICA Illustration and Experiments . . . . . 23

3.6 Generalized ICA Over Finite Alphabets . . . . . . . . . . . . . . . . . . . 25

3.6.1 Piecewise Linear Relaxation Algorithm - Exhaustive Search . . . 25

3.6.2 Piecewise Linear Relaxation Algorithm - Objective Descent Search 27

3.7 Application to Blind Source Separation . . . . . . . . . . . . . . . . . . . 30

3.8 discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

viii



CONTENTS ix

4 Generalized ICA - The Order Permutation 33

4.1 Worst-case Independent Components Representation . . . . . . . . . . 35

4.2 Average-case Independent Components Representation . . . . . . . . . 36

4.3 Block-wise Order Permutation . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Generalized Versus Linear BICA 47

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Lower Bound on Linear BICA . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 A Simple Heuristic for Linear BICA . . . . . . . . . . . . . . . . . . . . . 50

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Sequential Generalized ICA 57

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 Generalized Gram-Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.4 Lossy Transformation in the Discrete Case . . . . . . . . . . . . . . . . . 60

6.4.1 The Binary Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.5 Lossless Transformation in the Discrete Case . . . . . . . . . . . . . . . 64

6.5.1 Minimizing B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5.2 The Optimization Problem . . . . . . . . . . . . . . . . . . . . . . 66

6.5.3 Mixed Integer Problem Formulation . . . . . . . . . . . . . . . . . 66

6.5.4 Mixed Integer Problem Discussion . . . . . . . . . . . . . . . . . 68

6.5.5 An Exhaustive Solution . . . . . . . . . . . . . . . . . . . . . . . 69

6.5.6 Greedy Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5.7 Lowest Entropy Bound . . . . . . . . . . . . . . . . . . . . . . . . 70

6.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.6.1 The IKEA Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.6.2 Mixed Integer Quadratic Programming Formulation . . . . . . . . 72



CONTENTS x

6.6.3 Minimizing the Number of Shelves . . . . . . . . . . . . . . . . . 73

6.7 Memoryless Representation and its Relation to the Optimal Transporta-

tion Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.7.1 The Optimal Transportation Problem . . . . . . . . . . . . . . . . 74

6.7.2 A Design Generalization of the Multi-marginal Optimal Trans-

portation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 ICA Application to Data Compression 79

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3 Large Alphabet Source Coding . . . . . . . . . . . . . . . . . . . . . . . 87

7.4 Universal Source Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.4.1 Synthetic Experiments . . . . . . . . . . . . . . . . . . . . . . . . 94

7.4.2 Real-world Experiments . . . . . . . . . . . . . . . . . . . . . . . 96

7.5 Adaptive Entropy Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.5.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.6 Vector Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.6.1 Entropy Constrained Vector Quantization . . . . . . . . . . . . . 103

7.6.2 Vector Quantization with Fixed Lattices . . . . . . . . . . . . . . 107

7.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Appendix A 113

Appendix B 115

Appendix C 117

C.1 The Uniform Distribution Case . . . . . . . . . . . . . . . . . . . . . . . 118

C.1.1 Uniqueness of Monotonically Increasing Transformations . . . . 118

C.1.2 Non Monotonically Increasing Transformations . . . . . . . . . . 121

C.1.3 The Existence of a Monotonically Increasing Transformation . . . 122



CONTENTS 0

C.2 The Non-Uniform Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendix D 125

Appendix E 127

Bibliography 129



Chapter 1

Introduction

Independent Component Analysis (ICA) addresses the recovery of unobserved sta-

tistically independent source signals from their observed mixtures, without full prior

knowledge of the mixing function or the statistics of the source signals. The classical

Independent Components Analysis framework usually assumes linear combinations

of the independent sources over the field of real valued numbers R (Hyvärinen et al.,

2004). A special variant of the ICA problem is when the sources, the mixing model

and the observed signals are over a finite field.

Several types of generative mixing models can be assumed when working over GF(P),

such as modulu additive operations, OR operations (over the binary field) and others.

Existing solutions to ICA mainly differ in their assumptions of the generative mixing

model, the prior distribution of the mixing matrix (if such exists) and the noise model.

The common assumption to these solutions is that there exist statistically independent

source signals which are mixed according to some known generative model (linear,

XOR, etc.).

In this work we drop this assumption and consider a generalized approach which is

applied to a random vector and decomposes it into independent components (as much

as possible) with no prior assumption on the way it was generated. This problem was
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CHAPTER 1. INTRODUCTION 2

first introduced by Barlow et al. (1989) and is considered a long–standing open prob-

lem.

In Chapter 2 we review previous work on ICA over finite alphabets. This includes two

major lines of work. We first review the line of work initiated by Yeredor (2007). In this

work, Yeredor focuses on linear transformations where the assumptions are that the

unknown sources are statistically independent and are linearly mixed (over GF(P)).

Under these constraints, he proved that the there exists a unique transformation ma-

trix to recover the independent signals (up to permutation ambiguity). This work was

later extended to larger alphabet sizes (Yeredor, 2011) and different generative model-

ing assumptions (Šingliar & Hauskrecht, 2006; Wood et al., 2012; Streich et al., 2009;

Nguyen & Zheng, 2011). In a second line of work, Barlow et al. (1989) suggest to

decompose the observed signals “as much as possible”, with no assumption on the

generative model. Barlow et al. claim that such decomposition would capture and

remove the redundancy of the data. However, they do not propose any direct method,

and this hard problem is still considered open, despite later attempts (Atick & Redlich,

1990; Schmidhuber, 1992; Becker & Plumbley, 1996).

In Chapter 3 we present three different combinatorical approaches for independent de-

composition of a given random vector, based on our published paper (Painsky et al.,

2016b). In the first, we assume that the underlying components are completely inde-

pendent. This leads to a simple yet highly sensitive algorithm which is not robust when

dealing with real data. Our second approach drops the assumption of statistically inde-

pendent components and strives to achieve “as much independence as possible” (as

rigorously defined in Section 3.2) through a branch-and-bound algorithm. However,

this approach is very difficult to analyze, both in terms of its accuracy and its com-

putational burden. Then, we introduce a piece-wise linear approximation approach,

which tightly bounds our objective from above. This method shows how to decom-

pose any given random vector to its “as statistically as possible” components with a



CHAPTER 1. INTRODUCTION 3

computational burden that is competitive with any known benchmarks.

In Chapter 4 we present an additional, yet simpler approach to the generalized ICA

problem, namely, order permutation. Here, we suggest to represent the ith least prob-

able realization of a given random vector with the number i (Painsky et al., 2016c).

Despite its simplicity, this method holds some favorable theoretical properties. We

show that on the average (where the average is taken over all possible distribution

functions of a given alphabet size), the order permutation is only a small constant

away from full statistical independence, even as the dimension increases. In fact, this

result provides a theoretical guarantee on the “best we can wish for”, when trying to

decompose any random vector (on the average). In addition, we show that we may

practically achieve the average accuracy of the order permutation with a complexity

that is asymptotically linear in the alphabet size.

In Chapter 5 we focus on the binary case and compare our suggested approaches

with linear binary ICA (BICA). Although several linear BICA methods were presented

in the past years (Attux et al., 2011; Silva et al., 2014b,a), they all lack theoretical

guarantees on how well they perform. Therefore, we begin this section by introduc-

ing a novel lower bound on the generalized BICA problem over linear transformations.

In addition, we present a simple heuristic which empirically outperforms all currently

known methods. Finally, we show that the simple order permutation (presented in the

previous section) outperforms the linear lower bound quite substantially, as the alpha-

bet size increases.

Chapter 6 discusses a different aspect of the generalized ICA problem, in which we

limit ourselves to sequential processing (Painsky et al., 2013). In other words, we as-

sume that the components of a given vector (or process) are presented to us one after

the other, and our goal is to represent it as a process with statistically independent

components (memoryless), in a no-regret manner. In this chapter we present a non-

linear method to generate such memoryless process from any given process under
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varying objectives and constraints. We differentiate between lossless and lossy meth-

ods, closed form and algorithmic solutions and discuss the properties and uniqueness

of our suggested methods. In addition, we show that this problem is closely related to

the multi-marginal optimal transportation problem (Monge, 1781; Kantorovich, 1942;

Pass, 2011).

In Chapter 7 we apply our methodology to multiple data compression problems. Here,

we propose a conceptual framework in which a large alphabet memoryless source is

decomposed into multiple “as independent as possible sources with a much smaller al-

phabet size (Painsky et al., 2015, 2016c,d). This way we slightly increase the average

code-word length as the compressed symbols are no longer perfectly independent, but

at the same time significantly reduce the redundancy resulted by the large alphabet of

the observed source. Our proposed algorithm, based on our solutions to the Barlow’s

problem, shows to efficiently find the ideal trade-off so that the overall compression

size is minimal. We demonstrate our suggested approach in a variety of lossless and

lossy source coding problems. This includes the classical lossless compression, uni-

versal compression and high-dimensional vector quantization. In each of these setups,

our suggested approach outperforms most commonly used methods. Moreover, our

proposed framework is significantly easier to implement in most of these cases.

This thesis provides a comprehensive overview of the following publications (Painsky

et al., 2013, 2014, 2015, 2016a,b,d) and a currently under–review manuscript (Painsky

et al., 2016c).



Chapter 2

Overview of Related Work

In his work from 1989, Barlow et al. (1989) presented a minimally redundant represen-

tation scheme for binary data. He claimed that a good representation should capture

and remove the redundancy of the data. This leads to a factorial representation/ en-

coding in which the components are as mutually independent of each other as pos-

sible. Barlow suggested that such representation may be achieved through minimum

entropy encoding: an invertible transformation (i.e., with no information loss) which

minimizes the sum of marginal entropies (as later presented in (3.2)). Barlow’s repre-

sentation is also known as Factorial representation or Factorial coding.

Factorial representations have several advantages. The probability of the occurrence

of any realization can be simply computed as the product of the probabilities of the

individual components that represent it (assuming such decomposition exists). In ad-

dition, any method of finding factorial codes automatically implements Occam’s razor

which prefers simpler models over more complex ones, where simplicity is defined as

the number of parameters necessary to represent the joint distribution of the data. In

the context of supervised learning, independent features can also make later learning

easier; if the input units to a supervised learning networks are uncorrelated, than the

Hessian of its error function is diagonal, allowing accelerated learning abilities (Becker

& Le Cun, 1988). There exists a large body of work which demonstrates the use of

5
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factorial codes in learning problems. This mainly includes Neural Networks (Becker &

Plumbley, 1996; Obradovic, 1996) with application to facial recognition (Choi & Lee,

2000; Bartlett et al., n.d.; Martiriggiano et al., 2005; Bartlett, 2007) and more recently,

Deep Learning (Schmidhuber et al., 2011; Schmidhuber, 2015).

Unfortunately Barlow did not suggest any direct method for finding factorial codes.

Later, Atick & Redlich (1990) proposed a cost function for Barlow’s principle for linear

systems, which minimize the redundancy of the data subject to a minimal informa-

tion loss constraint. This is closely related to Plumbey’s objective function (Plumbley,

1993), which minimizes the information loss subject to a fixed redundancy constraint.

Schmidhuber (1992) then introduced several ways of approximating Barlow’s minimum

redundancy principle in the non–linear case. This naturally implies much stronger re-

sults of statistical independence. However, Schmidhuber’s scheme is rather complex,

and appears to be subject to local minima (Becker & Plumbley, 1996). To our best

knowledge, the problem of finding minimal redundant codes, or factorial codes, is still

considered an open problem. In this work we present what appears to be the first

efficient set of methods for minimizing Barlow’s redundancy criterion, with theoretical

and computational complexity guarantees.

In a second line of work, we may consider our contribution as a generalization of the

BICA problem. In his pioneering BICA work, Yeredor (2007) assumed linear XOR

mixtures and investigated the identifiability problem. A deflation algorithm is proposed

for source separation based on entropy minimization. Yeredor assumes the number

of independent sources is known and the mixing matrix is a d-by-d invertible matrix.

Under these constraints, he proves that the XOR model is invertible and there exists a

unique transformation matrix to recover the independent components up to permuta-

tion ambiguity. Yeredor (2011) then extended his work to cover the ICA problem over

Galois fields of any prime number. His ideas were further analyzed and improved by

Gutch et al. (2012).
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Šingliar & Hauskrecht (2006) introduced a noise-OR model for dependency among

observable random variables using d (known) latent factors. A variational inference

algorithm is developed. In the noise-OR model, the probabilistic dependency between

observable vectors and latent vectors is modeled via the noise-OR conditional distri-

bution. Wood et al. (2012) considered the case where the observations are generated

from a noise-OR generative model. The prior of the mixing matrix is modeled as the

Indian buffet process (Griffiths & Ghahramani, n.d.). Reversible jump Markov chain

Monte Carlo and Gibbs sampler techniques are applied to determine the mixing ma-

trix. Streich et al. (2009) studied the BICA problem where the observations are either

drawn from a signal following OR mixtures or from a noise component. The key as-

sumption made in that work is that the observations are conditionally independent

given the model parameters (as opposed to the latent variables). This greatly reduces

the computational complexity and makes the scheme amenable to a objective descent-

based optimization solution. However, this assumption is in general invalid. Nguyen

& Zheng (2011) considered OR mixtures and propose a deterministic iterative algo-

rithm to determine the distribution of the latent random variables and the mixing matrix.

There also exists a large body of work on blind deconvolution with binary sources in

the context of wireless communication (Diamantaras & Papadimitriou, 2006; Yuanqing

et al., 2003) and some literature on Boolean/binary factor analysis (BFA) which is also

related to this topic (Belohlavek & Vychodil, 2010).





Chapter 3

Generalized Independent Component

Analysis - Combinatorical Approach

The material in this Chapter is partly covered in (Painsky et al., 2016b).

3.1 Notation

Throughout the following chapters we use the following standard notation: underlines

denote vector quantities, where their respective components are written without un-

derlines but with index. For example, the components of the d-dimensional vector X

are X1, X2, . . . Xd. Random variables are denoted with capital letters while their real-

izations are denoted with the respective lower-case letters. PX (x
¯
) , P(X1 = x1, X2 =

x2, . . . ) is the probability function of X while H (X) is the entropy of X. This means

H (X) = −∑x
¯

PX (x
¯
) log PX (x

¯
) where the log function denotes a logarithm of base

2 and limx→0 x log (x) = 0. Further, we denote the binary entropy of the Bernoulli

parameter p as hb(p) = −p log p− (1− p) log (1− p).

9
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3.2 Problem Formulation

Suppose we are given a random vector X ∼ Px
¯
(x
¯
) of dimension d and alphabet size

q for each of its components. We are interested in an invertible, not necessarily linear,

transformation Y = g(X) such that Y is of the same dimension and alphabet size,

g : {1, . . . , q}d → {1, . . . , q}d. In addition we would like the components of Y to be as

”statistically independent as possible”.

The common ICA setup is not limited to invertible transformations (hence Y and X may

be of different dimensions). However, in our work we focus on this setup as we would

like Y = g(X) to be “lossless” in the sense that we do not lose any information. Further

motivation to this setup is discussed in (Barlow et al., 1989; Schmidhuber, 1992) and

throughout Chapter 7.

Notice that an invertible transformation of a vector X, where the components {Xi}d
i=1

are over a finite alphabet of size q, is actually a one-to-one mapping (i.e., permutation)

of its qn words. For example, if X is over a binary alphabet and is of dimension d, then

there are 2d! possible permutations of its words.

To quantify the statistical independence among the components of the vector Y we

use the well-known total correlation measure, which was first introduced by Watanabe

(1960) as a multivariate generalization of the mutual information,

C(Y) =
d

∑
j=1

H(Yj)− H(Y). (3.1)

This measure can also be viewed as the cost of coding the vector Y component-

wise, as if its components were statistically independent, compared to its true entropy.

Notice that the total correlation is non-negative and equals zero iff the components of

Y are mutually independent. Therefore, “as statistically independent as possible” may

be quantified by minimizing C(Y). The total correlation measure was considered as

an objective for minimal redundency representation by Barlow et al. (1989). It is also



CHAPTER 3. GENERALIZED ICA - COMBINATORICAL APPROACH 11

not new to finite field ICA problems, as demonstrated by Attux et al. (2011). Moreover,

we show that it is specifically adequate to our applications, as described in Chapter

7. Note that total correlation is also the Kullback-Leibler divergence between the joint

probability and the product of its marginals (Comon, 1994).

Since we define Y to be an invertible transformation of X we have H(Y) = H(X)

and our minimization objective is

d

∑
j=1

H(Yj)→ min. (3.2)

In the following sections we focus on the binary case. The probability function of the

vector X is therefore defined by P(X1, . . . , Xd) over m = 2d possible words and our

objective function is simply

d

∑
j=1

hb(P(Yj = 0))→ min. (3.3)

We notice that P(Yj = 0) is the sum of probabilities of all words whose jth bit equals 0.

We further notice that the optimal transformation is not unique. For example, we can

always invert the jth bit of all words, or shuffle the bits, to achieve the same minimum.

Any approach which exploits the full statistical description of the joint probability distri-

bution of X would require going over all 2d possible words at least once. Therefore, a

computational load of at least O(2d) seems inevitable. Still, this is significantly smaller

(and often realistically far more affordable) than O(2d!), required by brute-force search

over all possible permutations. Indeed, the complexity of the currently known binary

ICA (and factorial codes) algorithms falls within this range. The AMERICA algorithm

(Yeredor, 2011), which assumes a XOR mixture, has a complexity of O(d2 · 2d). The

MEXICO algorithm, which is an enhanced version of AMERICA, achieves a complex-

ity of O(2d) under some restrictive assumptions on the mixing matrix. In (Nguyen &

Zheng, 2011) the assumption is that the data was generated over OR mixtures and

the asymptotic complexity is O(d · 2d). There also exist other heuristic methods which
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avoid an exhaustive search, such as (Attux et al., 2011) for BICA or (Schmidhuber,

1992) for factorial codes. These methods, however, do not guarantee convergence to

the global optimal solution.

Looking at the BICA framework, we notice two fundamental a-priori assumptions:

1. The vector X is a mixture of independent components and there exists an inverse

transformation which decomposes these components.

2. The generative model (linear, XOR field, etc.) of the mixture function is known.

In this work we drop these assumptions and solve the ICA problem over finite alpha-

bets with no prior assumption on the vector X. As a first step towards this goal, let us

drop Assumption 2 and keep Assumption 1, stating that underlying independent com-

ponents do exist. The following combinatorial algorithm proves to solve this problem,

over the binary alphabet, in O(d · 2d) computations.

3.3 Generalized BICA with Underlying Independent Components

In this section we assume that underlying independent components exist. In other

words, we assume there exists a permutation Y = g(X) such that the vector Y is sta-

tistically independent P(Y1, . . . , Yd) = ∏d
i=1 P(Yj). Denote the marginal probability of

the jth bit equals 0 as πj = P(Yj = 0). Notice that by possibly inverting bits we may

assume every πj is at most 1
2 and by reordering we may have, without loss of gener-

ality, that πd ≤ πd−1 ≤ · · · ≤ π1 ≤ 1/2. In addition, we assume a non-degenerate

setup where πd > 0. For simplicity of presentation, we first analyze the case where

πd < πd−1 < · · · < π1 ≤ 1/2. This is easily generalized to the case where several πj

may equal, as discussed later in this section.

Denote the m = 2d probabilities of P(Y = y) as p1, p2, . . . , pm, assumed to be ordered

so that p1 ≤ p2 ≤ · · · ≤ pm. We first notice that the probability of the all-zeros word,



CHAPTER 3. GENERALIZED ICA - COMBINATORICAL APPROACH 13

P(Yd = 0, Yd−1 = 0, . . . , Y1 = 0) = ∏d
j=1 πj is the smallest possible probability since all

parameters are not greater than 0.5. Therefore we have p1 = ∏d
j=1 πj.

Since π1 is the largest parameter of all πj, the second smallest probability is just

P(Yd = 0, . . . , Y2 = 0, Y1 = 1) = πd · πd−1 · . . . · π2 · (1− π1) = p2. Therefore we can

recover π1 from 1−π1
π1

= p2
p1

, leading to π1 = p1
p1+p2

. We can further identify the third

smallest probability as p3 = πd ·πd−1 · . . . ·π3 · (1−π2) ·π1. This leads to π2 = p1
p1+p3

.

However, as we get to p4 we notice we can no longer uniquely identify its compo-

nents; it may either equal πd · πd−1 · . . . · π3 · (1− π2) · (1− π1) or πd · πd−1 · . . . · (1−

π3) · π2 · π1. This ambiguity is easily resolved since we can compute the value of

πd · πd−1 · . . . · π3 · (1− π2) · (1− π1) from the parameters we already found and com-

pare it with p4. Specifically, If πd · πd−1 · . . . · π3 · (1 − π2) · (1 − π1) 6= p4 then we

necessarily have πd · πd−1 · . . . · (1− π3) · π2 · π1 = p4 from which we can recover π3.

Otherwise πd · πd−1 · . . . · (1− π3) · π2 · π1 = p5 from which we can again recover π3

and proceed to the next parameter.

Let us generalize this approach. Denote Λk as a set of probabilities of all words whose

(k + 1)th, . . . , dth bits are all zero.

Theorem 1. Let i be an arbitrary index in {1, 2, . . . , m}. Assume we are given that pi, the ith

smallest probability in a given the set of probabilities, satisfies the following decomposition

pi = πd · πd−1 · . . . · πk+1 · (1− πk) · πk−1 · . . . · π1.

Further assume the values of Λk−1 are all given in a sorted manner. Then the complexity

of finding the value of πd · πd−1 · . . . · πk+2 · (1− πk+1) · πk · . . . · π1, and calculating and

sorting the values of Λk is O(2k).

Proof. Since the values of Λk−1 and πk are given we can calculate the values which are still

missing to know Λk entirely by simply multiplying each element of Λk−1 by 1−πk
πk

. Denote this
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set of values as Λ̄k−1. Since we assume the set Λk−1 is sorted then Λ̄k−1 is also sorted and the

size of each set is 2k−1. Therefore, the complexity of sorting Λk is the complexity of merging

two sorted lists, which is O(2k).

In order to find the value of πd · πd−1 · . . . · πk+2 · (1− πk+1) · πk · . . . · π1 we need to go

over all the values which are larger than pi and are not in Λk. However, since both the list of

all m probabilities and the set Λk are sorted we can perform a binary search to find the smallest

entry for which the lists differ. The complexity of such search is O(log (2k)) = O(k) which

is smaller than O(2k). Therefore, the overall complexity is O(2k)

Our algorithm is based on this theorem. We initialize the values p1, p2 and Λ1, and

for each step k = 3 . . . d we calculate πd · πd−1 · . . . · πk+1 · (1− πk) · πk−1 · . . . · π1 and

Λk−1.

The complexity of our suggested algorithm is therefore ∑d
k=1 O(2k) = O(d · 2d). How-

ever, we notice that by means of the well-known quicksort algorithm (Hoare, 1961),

the complexity of our preprocessing sorting phase is O(m log (m)) = O(d · 2d). There-

fore, in order to find the optimal permutation we need O(d · 2d) for sorting the given

probability list and O(2d) for extracting the parameters of P(X1, . . . , Xd).

Let us now drop the assumption that the values of πj’s are non-equal. That is, πd ≤

πd−1 ≤ · · · ≤ π1 ≤ 1/2. It may be easily verified that both Theorem 1 and our

suggested algorithm still hold, with the difference that instead of choosing the single

smallest entry in which the probability lists differ, we may choose one of the (possibly

many) smallest entries. This means that instead of recovering the unique value of πk

at the kth iteration (as the values of πj’s are assumed non-equal), we recover the kth

smallest value in the list πd ≤ πd−1 ≤ · · · ≤ π1 ≤ 1/2.

Notice that this algorithm is combinatorial in its essence and is not robust when dealing
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with real data. In other words, the performance of this algorithm strongly depends on

the accuracy of P(X1, . . . , Xd) and does not necessarily converge towards the optimal

solution when applied on estimated probabilities.

3.4 Generalized BICA via Search Tree Based Algorithm

We now turn to the general form of our problem (3.1) with no further assumption on

the vector X.

We denote Πj= {all words whose jth bit equals 0}. In other words, Πj is the set of

words that “contribute” to P(Yj = 0). We further denote the set of Πj that each word is

a member of as Γi for all i = 1 . . . m words. For example, the all zeros word {00 . . . 0}

is a member of all Πj hence Γ1 = {Π1, . . . , Πd}. We define the optimal permutation as

the permutation of the m words that achieves the minimum of C(Y) such that πj ≤ 1/2

for every j.

Let us denote the binary representation of the ith word with y(i). Looking at the m

words of the vector Y we say that a word y(i) is majorant to y(l) (y(i) � y(l)) if

Γl ⊂ Γi. In other words, y(i) is majorant to y(l) iff for every bit in y(l) that equals

zeros, the same bit equals zero in y(i). In the same manner a word y(i) is minorant to

y(l) (y(i) � y(l)) if Γi ⊂ Γl, that is iff for every bit in y(i) that equals zeros, the same

bit equals zero in y(l). For example, the all zeros word {00 . . . 0} is majorant to all the

words, while the all ones word {11 . . . 1} is minorant to all the word as non of its bits

equals zeros.

We say that y(i) is a largest minorant to y(l) if there is no other word that is minorant

to y(l) and majorant to y(i). We also say that there is a partial order between y(i) and

y(l) if one is majorant or minorant to the other.
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Theorem 2. The optimal solution must satisfy P(y(i)) ≥ P(y(l)) for all y(i) � y(l).

Proof. Assume there exists y(i) � y(l), i 6= l such that P(y(i)) < P(y(l)) which achieves

the lowest (optimal) C(Y). Since y(i) � y(l) then, by definition, Γi ⊂ Γl . This means there

exists Πj∗ which satisfies Πj∗ ∈ Γl \ Γi. Let us now exchange (swap) the words y(i) and y(l).

Notice that this swapping only modifies Πj∗ but leaves all other Πj’s untouched. Therefore this

swap leads to a lower C(Y) as the sum in (3.3) remains untouched apart from its j∗th summand

which is lower than before. This contradicts the optimality assumption

We are now ready to present our algorithm. As a preceding step let us sort the prob-

ability vector p (of X) such that pi ≤ pi+1. As described above, the all zeros word is

majorant to all words and the all ones word is minorant to all words. Hence, the small-

est probability p1 and the largest probability pm are allocated to them respectively, as

Theorem 2 suggests. We now look at all words that are largest minorants to the all

zeros word.

Theorem 2 guarantees that p2 must be allocated to one of them. We shall therefore

examine all of them. This leads to a search tree structure in which every node corre-

sponds to an examined allocation of pi. In other words, for every allocation of pi we

shall further examine the allocation of pi+1 to each of the largest minorants that are

still not allocated. This process ends once all possible allocations are examined.

The following example (Figure 3.1) demonstrates our suggested algorithm with d = 3.

The algorithm is initiated with the allocation of p1 to the all zeros word. In order to

illustrate the largest minorants to {000} we use the chart of the partial order at the

bottom left of Figure 3.1. As visualized in the chart, every set Πj is encircled by

a different shape (e.g. ellipses, rectangles) and the largest minorants to {000} are

{001}, {010} and {100}. As we choose to investigate the allocation of p2 to {001} we

notice that remaining largest minorants, of all the words that are still not allocated, are

{010} and {100}. We then investigate the allocation of p3 to {010}, for example, and
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continue until all pi are allocated.

}000{1P

}010{2 P}100{2 P }001{2 P

}010{3 P }100{3 P

}100{4 P }011{4 P

000

001

010

011

100

101

110

111

 

Figure 3.1: Search tree based algorithm with d = 3

This search tree structure can be further improved by introducing a depth-first branch

and bound enhancement. This means that before we examine a new branch in the

tree we bound the minimal objective it can achieve (through allocation of the smallest

unallocated probability to all of its unallocated words for example).

The asymptotic computational complexity of this branch and bound search tree is quite

involved to analyze. However, there are several cases where a simple solution exists

(for example, for d = 2 it is easy to show that the solution is to allocate all four proba-

bilities in ascending order).

3.5 Generalized BICA via Piecewise Linear Relaxation Algorithm

In this section we present a different approach which bounds the optimal solution from

above as tightly as we want in O(dk · 2d) operations, where k defines how tight the

bound is. Throughout this section we assume that k is a fixed value, for complexity

analysis purposes.

Let us first notice that the problem we are dealing with (3.3) is a concave minimization
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problem over a discrete permutation set which is hard. However, let us assume for

the moment that instead of our “true” objective (3.3) we have a simpler linear objective

function. That is,

L(Y) =
d

∑
j=1

ajπj + bj =
m

∑
i=1

ciP(Y = y(i)) + d (3.4)

where the last equality changes the summation from over d components to a summa-

tion over all m = 2d words (this change of summation is further discussed in Section

3.5.1).

In order to minimize this objective over the m = 2d given probabilities p we simply

sort these probabilities in a descending order and allocate them such that the largest

probability goes with the smallest coefficient ci and so on. Assuming both the coeffi-

cients and the probabilities are known and sorted in advance, the complexity of this

procedure is linear in m.

We now turn to the generalized binary ICA problem as defined in (3.3). Since our

objective is concave we would first like to bound it from above with a piecewise lin-

ear function which contains k pieces, as shown in Figure 3.2. In this work we do not

discuss the construction of such upper-bounding piecewise linear function, nor tuning

methods for the value of k, and assume this function is given for any fixed k. Notice

that the problem of approximating concave curves with piecewise linear functions is

very well studied (for example, by Gavrilović (1975)) and may easily be modified to the

upper bound case. We show that solving the piecewise linear problem approximates

the solution to (3.3) as closely as we want, in significantly lower complexity.

From this point on we shall drop the previous assumption that πd ≤ πd−1 ≤ · · · ≤ π1,

for simplicity of presentation. First, we notice that all π′js are equivalent (in the sense

that we can always interchange them and achieve the same result). This means we

can find the optimal solution to the piecewise linear problem by going over all possible
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Figure 3.2: piecewise linear (k = 4) relaxation to the binary entropy

combinations of placing the d variables πj in the k different regions of the piecewise

linear function. For each of these combinations we need to solve a linear problem

(such as in (3.4), where the minimization is with respect to allocation of the m given

probabilities p) with additional constraints on the ranges of each πj. For example,

assume d = 3 and the optimal solution is such that two π′js (e.g. π1 and π2) are at

the first region, R1, and π3 is at the second region, R2. Then, we need to solve the

following constrained linear problem,

minimize a1 · (π1 + π2) + 2b1 + a2 · π3 + b2

subject to π1, π2 ∈ R1, π3 ∈ R2

(3.5)

where the minimization is over the allocation of the given {pi}m
i=1, which determine the

corresponding πj’s, as demonstrated in (3.4). This problem is again hard. However, if

we attempt to solve it without the constraints we notice the following:

1. If the collection of π′js which define the optimal solution to the unconstrained

linear problem happens to meet the constraints then it is obviously the optimal

solution with the constraints.

2. If the collection of π′js of the optimal solution do not meet the constraints (say,

π2 ∈ R2) then, due to the concavity of the entropy function, there exists a dif-
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ferent combination with a different constrained linear problem (again, over the

allocation of the m given probabilities p),

minimize a1π1 + b1 + a2(π2 + π3) + 2b2

subject to π1 ∈ R1 π2, π3 ∈ R2

in which this set of π′js necessarily achieves a lower minimum (since a2x + b2 <

a1x + b1 ∀x ∈ R2).

Therefore, in order to find the optimal solution to the piecewise linear problem, all we

need to do is to go over all possible combinations of placing the π′js in the k different

regions, and for each combination solve an unconstrained linear problem (which is

solved in a linear time in m). If the solution does not meet the constraint then it means

that the assumption that the optimal πj reside within this combination’s regions is false.

Otherwise, if the solution does meet the constraint, it is considered as a candidate for

the global optimal solution.

The number of combinations is equivalent to the number of ways of placing d identical

balls in k boxes, which is for a fixed k, d + k− 1

n

 =

 d + k− 1

k− 1

 ≤ (d + k− 1)k−1

(k− 1)!
= O(dk). (3.6)

Assuming the coefficients are all known and sorted in advance, for any fixed k the over-

all asympthotic complexity of our suggested algorithm, as d→ ∞, is simply O(dk · 2d).

3.5.1 The Relaxed Generalized BICA as a single matrix-vector multiplication

It is important to notice that even though the asymptotic complexity of our approxima-

tion algorithm is O(dk · 2d), it takes a few seconds to run an entire experiment on a

standard personal computer for as much as d = 10, for example. The reason is that

the 2d factor refers to the complexity of sorting a vector and multiplying two vectors,
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operations which are computationally efficient on most available software. Moreover,

if we assume that the coefficients in (3.4) are already calculated, sorted and stored

in advance, we can place them in a matrix form A and multiply the matrix with the

(sorted) vector p. The minimum of this product is exactly the solution to the linear

approximation problem. Therefore, the practical complexity of the approximation algo-

rithm drops to a single multiplication of a (dk × 2d) matrix with a (2d × 1) vector.

Let us extend the analysis of this matrix-vector multiplication approach. Each row of

the matrix A corresponds to a single coefficient vector to be sorted and multiplied with

the sorted probability vector p. Each of these coefficient vectors correspond to one

possible way of placing d components in k different regions of the piecewise linear

function. Specifically, in each row, each of the d components is assumed to reside in

one of the k regions, hence it is assigned a slope aj as indicated in (3.4). For each

row, our goal is to minimize L(Y). Since this minimization is solved over the vector

p we would like to change the summation accordingly. To do so, each entry of the

coefficient vector (denoted as ci in (3.4)) is calculated by summing all the slopes that

correspond to each πj. For example, let us assume d = 3 where π1, π2 ∈ R1, with

a corresponding slope a1 and intercept b1, while the π3 ∈ R2 with a2 and b2. We use

the following mapping: P(Y = 000) = p1, P(Y = 001) = p2, . . . , P(Y = 111) = p8.

Therefore

π1 = P(Y1 = 0) = p1 + p2 + p3 + p4

π2 = P(Y2 = 0) = p1 + p2 + p5 + p6

π3 = P(Y3 = 0) = p1 + p3 + p5 + p7

. (3.7)

The corresponding coefficients ci are then the sum of rows of the following matrix
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A =



a1 a1 a2

a1 a1 0

a1 0 a2

a1 0 0

0 a1 a2

0 a1 0

0 0 a2

0 0 0



. (3.8)

This leads to a minimization problem

L(Y) =
d

∑
j=1

ajπj + bj = a1(π1 + π2) + a2π3 + 2b1 + b2 = (3.9)

(2a1 + a2)p1 + 2a1 p2 + (a1 + a2)p3 + a1 p4 + (a1 + a2)p5 + a1 p6 + a2 p7 + 2b1 + b2

where the coefficients of pi are simply the sum of the ith row in the matrix A.

Now let us assume that d is greater than k (which is usually the case). It is easy to

see that many of the coefficients ci are actually identical in this case. Precisely, let us

denote by lv the number of assignments for the vth region, where v = {1 . . . k}. Then,

the number of unique ci coefficients is simply

k

∏
v=1

(lv + 1)− 1

subject to ∑k
v=1 lv = d. Since we are interested in the worst case (of all rows of the

matrix A), we need to find the non-identical coefficients. This is obtained when lv is as

”uniform” as possible. Therefore we can bound the number of non-identical coefficients

from above by temporarily dropping the assumption that lv’s are integers and letting

lv = d
k so that

max
k

∏
v=1

(lv + 1) ≤
(

d
k
+ 1
)k

= O(dk). (3.10)

This means that instead of sorting the 2d coefficients for each row of the matrix A, we
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only need to sort O(dk) coefficients.

Now, let us further assume that the data is generated from some known parametric

model. In this case, some probabilities pi may also be identical, so that the probability

vector p may also not require O(d · 2d) operations to be sorted. For example, if we

assume a block independent structure, such that d components (bits) of the data are

generated from d
r independent and identically distributed blocks of of size r, then it can

be shown that the probability vector p contains at most d
r + 2r − 1

d
r

 = O

((
d
r

)2r)
(3.11)

non-identical elements pi. Another example is a first order stationary symmetric Markov

model. In this case there only exists a quadratic number, d · (d− 1) + 2 = O(d2), of

non-identical probabilities in p (see Appendix A).

This means that applying our relaxed generalized BICA on such datasets may only

require O(dk) operations for the matrix A and a polynomial number of operations (in

d) for the vector p; hence our algorithm is reduced to run in a polynomial time in d.

Notice that this derivation only considers the number of non-identical elements to be

sorted through a quicksort algorithm. However, we also require the degree of each

element (the number of times it appears) to eventually multiply the matrix A with the

vector p. This, however, may be analytically derived through the same combinatorical

considerations described above.

3.5.2 Relaxed Generalized BICA Illustration and Experiments

In order to validate our approximation algorithm we conduct several experiments. In

the first experiment we illustrate the convergence of our suggested scheme as k in-
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creases. We arbitrarily choose a probability distribution with d = 10 statistically in-

dependent components and mix its components in a non-linear fashion. We apply

the approximation algorithm on this probability distribution with different values of k

and compare the approximated minimum entropy we achieve (that is, the result of the

upper-bound piecewise linear cost function) with the entropy of the vector. In addition,

we apply the estimated parameters πj on the true objective (3.3), to obtain an even

closer approximation. Figure 3.3 demonstrates the results we achieve, showing the

convergence of the approximated entropy towards the real entropy as the number of

linear pieces increases. As we repeat this experiment several times (that is, arbitrarily

choose a probability distributions and examine our approach for every single value of

k), we notice that the estimated parameters are equal to the independent parameters

for k as small as 4, on the average.

1 2 3 4 5 6
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Figure 3.3: Piecewise linear approximation (solid line), entropy according to the estimated

parameters (dashed-dot line) and the real entropy (horizontal line with the X’s), for a vector

size d = 10 and different k linear pieces

We further illustrate the use of the BICA tool by the following example on ASCII code.

The ASCII code is a common standardized eight bit representation of western letters,
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numbers and symbols. We gather statistics on the frequency of each character, based

on approximately 183 million words that appeared in the New York Times magazine

(Jones & Mewhort, 2004). We then apply the BICA (with k = 8, which is empirically

sufficient) on this estimated probability distribution, to find a new eight bit represen-

tation of characters, such that the bits are ”as statistically independent” as possible.

We find that the entropy of the joint probability distribution is 4.8289 bits, the sum of

marginal entropies using ASCII representation is 5.5284 bits and the sum of marginal

entropies after applying BICA is just 4.8532 bits. This means that there exists a different

eight bit representation of characters which allows nearly full statistical independence

of bits. Moreover, through this representation one can encode each of the eight bit

separately without losing more than 0.025 bits, compared to encoding the eight bits

altogether.

3.6 Generalized ICA Over Finite Alphabets

3.6.1 Piecewise Linear Relaxation Algorithm - Exhaustive Search

Let us extend the notation of the previous sections, denoting the number of compo-

nents as d and the alphabet size as q. We would like to minimize ∑d
j=1 H(Yj) where Yj

is over an alphabet size q. We first notice that we need q− 1 parameters to describe

the multinomial distribution of Yj such that all of the parameters are not greater than

1
2 . Therefore, we can bound from above the marginal entropy with a piecewise linear

function in the range [0, 1
2 ], for each of the parameters of Yj. We refer to a (q− 1)-tuple

of regions as cell. As in previous sections we consider k, the number of linear pieces,

to be fixed. Notice however, that as q and d increase, k needs also to take greater

values in order to maintain the same level of accuracy. As mentioned above, in this

work we do not discuss methods to determine the value of k for given q and d, and

empirically evaluate it.
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Let us denote the number of cells to be visited in our approximation algorithm (Section

3.5) as C. Since each parameter is approximated by k linear pieces and there are q− 1

parameters, C equals at most kq−1. In this case too, the parameters are exchange-

able (in the sense that the entropy of a multinomial random variable with parameters

{p1, p2, p3} is equal to the entropy of a multinomial random variable with parameters

{p2, p1, p3}, for example). Therefore, we do not need to visit all kq−1 cells, but only a

unique subset which disregards permutation of parameters. In other words, the num-

ber of cells to be visited is bounded from above by the number of ways of choosing

q− 1 elements (the parameters) out of k elements (the number of pieces in each pa-

rameter) with repetition and without order. Notice this upper-bound (as opposed to full

equality) is a result of not every combination being a feasible solution, as the sum of

parameters may exceed 1. Assuming k is fixed and as q→ ∞ this equals q− 1 + k− 1

q− 1

 =

 q− 1 + k− 1

k− 1

 ≤ (q− 1 + k− 1)k−1

(k− 1)!
= O(qk). (3.12)

Therefore, the number of cells we are to visit is simply C = min
(
kq−1, O(qk)

)
. For

sufficiently large q it follows that C = O
(
qk). As in the binary case we would like to

examine all combinations of d entropy values in C cells. The number of iterations to

calculate all possibilities is equal to the number of ways of placing d identical balls in

C boxes, which is  d + C− 1

d

 = O
(

dC
)

. (3.13)

In addition, in each iteration we need to solve a linear problem which takes a lin-

ear complexity in qd. Therefore, the overall complexity of our suggested algorithm is

O
(
dC · qd).

We notice however that for a simple case where only two components are mixed (d =
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2), we can calculate (3.13) explicitly 2 + C− 1

2

 =
C(C + 1)

2
. (3.14)

Putting this together with (3.12), leads to an overall complexity which is polynomial in

q, for a fixed k, (
qk(qk + 1)

2
q2
)
= O

(
q2k+2

)
. (3.15)

Either way, the computational complexity of our suggested algorithm may result in an

excessive runtime, to a point of in-feasibility, in the case of too many components or an

alphabet size which is too large. This necessitates a heuristic improvement to reduce

the runtime of our approach.

3.6.2 Piecewise Linear Relaxation Algorithm - Objective Descent Search

In Section 3.5 we present the basic step of our suggested piecewise linear relaxation to

the generalized binary ICA problem. As stated there, for each combination of placing

d components in k pieces (of the piecewise linear approximation function) we solve a

linear problem (LP). Then, if the solution happens to meet the constraints (falls within

the ranges we assume) we keep it. Otherwise, due to the concavity of the entropy

function, there exists a different combination with a different constrained linear prob-

lem in which this solution that we found necessarily achieves a lower minimum, so we

disregard it.

This leads to the following objective descent search method: instead of searching over

all possible combinations we shall first guess an initial combination as a starting point

(say, all components reside in a single cell). We then solve its unconstrained LP. If the

solution meets the constraint we terminate. Otherwise we visit the cell that meets the

constraints of the solution we found. We then solve the unconstrained LP of that cell

and so on. We repeat this process for multiple random initialization.
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Algorithm 1 Relaxed Generalized ICA For Finite Alphabets via Gradient Search

Require: p = the probability function of the random vector X

Require: d = the number of components of X

Require: C = the number of cells which upper-bound the objective.

Require: I = the number of initializations.

1: opt ← ∞, where the variable opt is the minimum sum of marginal entropies we are

looking for.

2: V ← ∅, where V is the current cells the algorithm is visiting.

3: S← ∞, where S is the solution of the current LP.

4: i← 1.

5: while i ≤ I do

6: V ← randomly select an initial combination of placing d components in C cells

7: S ← LP(V) solve an unconstrained linear prograsm which corresponds to the selected

combination, as appears in (3.4).

8: if the solution falls within the bounds of the cell then

9: if H(S) < opt then

10: opt ← H(S), the sum of marginal entropies which correspond to the parameters

found by the LP

11: end if

12: i← i + 1

13: else

14: V ← the cells in which S reside.

15: goto 7

16: end if

17: end while

18: return opt
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This suggested algorithm is obviously heuristic, which does not guarantee to provide

the global optimal solution. Its performance strongly depends on the number of ran-

dom initializations and the concavity of the searched domain.

The following empirical evaluation demonstrates our suggested approach. In this ex-

periment we randomly generate a probability distribution with d independent and iden-

tically distributed components over an alphabet size q. We then mix its components

in a non-linear fashion. We apply the objective descent algorithm with a fixed num-

ber of initialization points (I = 1000) and compare the approximated minimum sum of

the marginal entropies with the true entropy of the vector. Figure 3.4 demonstrates

the results we achieve for different values of d. We see that the objective descent

algorithm approximates the correct components well for smaller values of d but as d

increases the difference between the approximated minimum and the optimal mini-

mum increases, as the problem becomes too involved.
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Figure 3.4: The real entropy (solid line) and the sum of marginal entropies as discovered by

the objective descent algorithm, for an i.i.d vector over an alphabet size q = 4 and of varying

number of components d
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3.7 Application to Blind Source Separation

Assume there exist d independent (or practically ”almost independent”) sources where

each source is over an alphabet size q. These sources are mixed in an invertible, yet

unknown manner. Our goal is to recover the sources from this mixture.

For example, consider a case with d = 2 sources X1, X2, where each source is over

an alphabet size q. The sources are linearly mixed (over a finite field) such that

Y1 = X1, Y2 = X1 + X2. However, due to a malfunction, the symbols of Y2 are ran-

domly shuffled, before it is handed to the receiver. Notice this mixture (including the

malfunction) is unknown to the receiver, who receives Y1, Y2 and strives to “blindly”

recover X1, X2. In this case any linearly based method such as (Yeredor, 2011) or

(Attux et al., 2011) would fail to recover the sources as the mixture, along with the mal-

function, is now a non-linear invertible transformation. Our method on the other hand,

is designed especially for such cases, where no assumption is made on the mixture

(other than being invertible).

To demonstrate this example we introduce two independent sources X1, X2, over an

alphabet size q. We apply the linear mixture Y1 = X1, Y2 = X1 + X2 and shuffle the

symbols of Y2. We are then ready to apply (and compare) our suggested methods

for finite alphabet sizes, which are the exhaustive search method (Section 3.6.1) and

the objective descent method (Section 3.6.2). For the purpose of this experiment we

assume both X1 and X2 are distributed according to a Zipf’s law distribution,

P(k; s, q) =
k−s

∑
q
i=1 i−s

with a parameter s = 1.6. The Zipf’s law distribution is a commonly used heavy-tailed

distribution. This choice of distribution is further motivated in Chapter 7. We apply our

suggested algorithms for different alphabet sizes, with a fixed k = 8, and with only 100

random initializations for the objective descent method. Figure 3.5 presents the results

we achieve.
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Figure 3.5: BSS simulation results. Left: the lower curve is the joint entropy of Y1, Y2, the

asterisks curve is the sum of marginal entropies using the exhaustive search method (Section

3.6.1) while the curve with the squares corresponds the objective descent method (Section

3.6.2). Right: the curve with the asterisks corresponds to the difference between the exhaustive

search method and the joint entropy while the curve with the squares is the difference between

the objective descent search method and the joint entropy.

We first notice that both methods are capable of finding a transformation for which the

sum of marginal entropies is very close to the joint entropy. This means our suggested

methods succeed in separating the non-linear mixture Y1, Y2 back to the statistically

independent sources X1, X2, as we expected. Looking at the chart on the right hand

side of Figure 3.5, we notice that the difference between the two methods tends to

increase as the alphabet size q grows. This is not surprising since the search space

grows while the number of random initializations remains fixed. However, the differ-

ence between the two methods is still practically negligible, as we can see from the

chart on the left. This is especially important since the objective descent method takes

significantly less time to apply as the alphabet size q grows.
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3.8 discussion

In this chapter we considered a generalized ICA over finite alphabets framework where

we dropped the common assumptions on the underlying model. Specifically, we at-

tempted to decompose a given multi-dimensional vector to its “as statistically indepen-

dent as possible” components with no further assumptions, as introduced by Barlow

et al. (1989).

We first focused on the binary case and proposed three algorithms to address this

class of problems. In the first algorithm we assumed that there exists a set of indepen-

dent components that were mixed to generate the observed vector. We showed that

these independent components are recovered in a combinatorial manner in O(n · 2n)

operations. The second algorithm drops this assumption and accurately solves the

generalized BICA problem through a branch and bound search tree structure. Then,

we proposed a third algorithm which bounds our objective from above as tightly as

we want to find an approximated solution in O(nk · 2n) with k being the approximation

accuracy parameter. We further showed that this algorithm can be formulated as a

single matrix-vector multiplications and under some generative model assumption the

complexity is dropped to be polynomial in n. Following that we extended our methods

to deal with a larger alphabet size. This case necessitates a heuristic approach to

deal with the super exponentially increasing complexity. An objective descent search

method is presented for that purpose. We concluded the chapter by presenting a sim-

ple Blind Source Separation application.



Chapter 4

Generalized Independent Component

Analysis - The Order Permutation

The material in this Chapter is partly covered in (Painsky et al., 2016c).

In the previous chapter we presented the generalized BICA problem. This minimiza-

tion problem (3.3) is combinatorial in its essence and is consequently considered

hard. Our suggsted algorithms (desribed in detail in Sections 3.3, 3.4 and 3.5) stive

to find its global minimum, but due to the nature of the problem, they result in quite

involved methodologies. This demonstrates a major challage in providing theoretical

guarentees to the solutions they achieve. We therefore suggest a simplified greedy

algorithm which is much easier to analyze, as it sequentially minimize each term of

the summation (3.3), hb(P(Yj = 0)), for j = 1, . . . , d.

With no loss of generality, let us start by minimizing hb(P(Y1 = 0)), which corresponds

to the marginal entropy of the most significant bit (msb). Since the binary entropy is

monotonically increasing in the range
[
0, 1

2

]
, we would like to find a permutation of p

that minimizes a sum of half of its values. This means we should order the pi’s so that

half of the pi’s with the smallest values are assigned to P(Y1 = 0) while the other half

of pi’s (with the largest values) are assigned to P(Y1 = 1). For example, assuming

33
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m = 8 and p1 ≤ p2 ≤ · · · ≤ p8, a permutation which minimizes Hb(Y1) is

codeword 000 001 010 011 100 101 110 111

probability p2 p3 p1 p4 p8 p5 p6 p7

We now proceed to minimize the marginal entropy of the second most significant bit,

hb(P(Y2 = 0)). Again, we would like to assign P(Y2 = 0) the smallest possible values

of pi’s. However, since the we already determined which pi’s are assigned to the msb,

all we can do is reorder the pi’s without changing the msb. This means we again

sort the pi’s so that the smallest possible values are assigned to P(Y2 = 0), without

changing the msb. In our example, this leads to,

codeword 000 001 010 011 100 101 110 111

probability p2 p1 p3 p4 p6 p5 p8 p7

Continuing in the same manner, we would now like to reorder the pi’s to minimize

hb(P(Y3 = 0)) without changing the previous bits. This results in

codeword 000 001 010 011 100 101 110 111

probability p1 p2 p3 p4 p5 p6 p7 p8

Therefore, we show that a greedy solution to (3.3) which sequentially minimizes H(Yj)

is attained by simply ordering the joint distribution p in an ascending (or equivalently

descending) order. In other words, the order permutation suggests to simply order the

probability distribution p1, . . . , pm in an ascending order, followed by a mapping of the

ith symbol (in its binary representation) the ith smallest probability.

At this point it seems quite unclear how well the order permutation performs, com-

pared both with the relaxed BICA we previously discussed, and the optimal permu-

tation which minimizes (3.3). In the following sections we introduce some theoretical

properties which demonstrate this method’s effectiveness.
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4.1 Worst-case Independent Components Representation

We now introduce the theoretical properties of our suggested algorithms. Naturally,

we would like to quantify how much we “lose” by representing a given random vector

X as if its components are statistically independent. We notice that our objective (3.3)

depends on the distribution of a given random vector X ∼ p, and the applied invertible

transformation Y = g(X). Therefore, we slightly change the notation of (3.3) and de-

note the cost function as C(p, g) = ∑d
j=1 H(Yj)− H(X).

Since our methods strongly depend on the given probability distribution p, we focus on

the worst-case and the average case of C(p, g), with respect to p. Let us denote the

order permutation as gord and the permutation which is found by the piece-wise linear

relaxation as glin. We further define gbst as the permutation that results with a lower

value of C(p, g), between glin and gord. This means that

gbst = arg min
{glin,gord}

C(p, g).

In addition, we define gopt as the optimal permutation that minimizes (3.3) over all pos-

sible permutations. Therefore, for any given p̃, we have that C( p̃, gopt) ≤ C( p̃, gbst) ≤

C( p̃, gord). In this Section we examine the worst-case performance of both of our sug-

gested algorithms. Specifically, we would like to quantify the maximum of C(p, g) over

all joint probability distributions p, of a given alphabet size m.

Theorem 3. For any random vector X ∼ p, over an alphabet size m we have that

max
p

C(p, gopt) = Θ(log(m))

Proof. We first notice that ∑d
j=1 H(Yj) = ∑d

j=1 hb(P(Yj = 0)) ≤ d = log(m). In addition,

H(X) ≥ 0. Therefore, we have that C(p, gopt) is bounded from above by log(m). Let us also

show that this bound is tight, in the sense that there exists a joint probability distribution p̃ such

that C( p̃, gopt) is linear in log(m). Let p̃1 = p̃2 = · · · = p̃m−1 = 1
3(m−1) and p̃m = 2

3 . Then,

p̃ is ordered and satisfies P(Yi = 0) = m
6(m−1) .
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In addition, we notice that assigning symbols in a decreasing order to p̃ (as mentioned in above)

results with an optimal permutation. This is simply since P(Yj = 0) = m
6(m−1) is the minimal

possible value of any P(Yj = 0) that can be achieved when summing any m
2 elements of p̃i.

Further we have that,

C( p̃, gopt) =
d

∑
j=1

H(Yj)− H(X) =
d

∑
j=1

hb(P(Yj = 0))− H(X) = (4.1)

log(m) · hb

(
m

6(m− 1)

)
+

(
(m− 1)

1
3(m− 1)

log
1

3(m− 1)
+

2
3

log
2
3

)
=

log(m) · hb

(
m

6(m− 1)

)
− 1

3
log(m− 1) +

1
3

log
1
3
+

2
3

log
2
3
−→
m→∞

log(m) ·
(

hb

(
1
6

)
− 1

3

)
− hb

(
1
3

)
.

Therefore, max
p

C(p, gopt) = Θ(log(m)).

Theorem 3 shows that even the optimal permutation achieves a sum of marginal en-

tropies which is Θ(log(m)) bits greater than the joint entropy, in the worst case. This

means that there exists at least one source X with a joint probability distribution which

is impossible to encode as if its components are independent without losing at least

Θ(log(m)) bits. Note that this extra number of bits is high, and corresponds to a trivial

encoding of the components without any factorization. However, we now show that

such sources are very “rare”.

4.2 Average-case Independent Components Representation

In this section we show that the expected value of C(p, gopt) is bounded by a small

constant, when averaging uniformly over all possible p over an alphabet size m.

To prove this, we recall that C(p, gopt) ≤ C(p, gord) for any given probability distribution

p. Therefore, we would like to find the expectation of C(p, gord) where the random

variables are p1, . . . , pm, taking values over a uniform simplex.

Proposition 1. Let X ∼ p be a random vector of an alphabet size m and a joint probability

distribution p. The expected joint entropy of X, where the expectation is over a uniform simplex
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of joint probability distributions p is

Ep {H(X)} = 1
loge 2

(ψ(m + 1)− ψ(2))

where ψ is the digamma function.

The proof of this proposition is left for the Appendix B.

We now turn to examine the expected sum of the marginal entropies, ∑d
j=1 H(Yj) under

the order permutation. As described above, the order permutation suggests sorting

the probability distribution p1, . . . , pm in an ascending order, followed by mapping of

the ith symbol (in a binary representation) the ith smallest probability. Let us denote

p(1) ≤ · · · ≤ p(m) the ascending ordered probabilities p1, . . . , pm. Bairamov et al.

(2010) show that the expected value of p(i) is

E
{

p(i)
}
=

1
m

m

∑
k=m+1−i

1
k
=

1
m

(Km − Km−i) (4.2)

where Km = ∑m
k=1

1
k is the Harmonic number. Denote the ascending ordered binary

representation of all possible symbols in a matrix form A ∈ {0, 1}(m×d). This means

that entry Aij corresponds to the jth bit in the ith symbol, when the symbols are given in

an ascending order. Therefore, the expected sum of the marginal entropies of Y, when

the expectation is over a uniform simplex of joint probability distributions p, follows

Ep

{
d

∑
j=1

H(Yj)

}
≤
(a)

d

∑
j=1

hb(Ep{Yj}) =
(b)

d

∑
j=1

hb

(
1
m

m

∑
i=1

Aij (Km − Km−i)

)
=
(c)

(4.3)

d

∑
j=1

hb

(
1
2

Km −
1
m

m

∑
i=1

AijKm−i

)

where (a) follows from Jensen’s inequality, (b) follows from (4.2) and (c) follows since

∑m
i=1 Aij =

1
2 for all j = 1, . . . , d.

We now turn to derive asymptotic bounds of the expected difference between the sum

of Y’s marginal entropies and the joint entropy of X, as appears in (3.3).
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Theorem 4. Let X ∼ p be a random vector of an alphabet size m and joint probability

distribution p. Let Y = gord(X) be the order permutation. For d ≥ 10, the expected value of

C(p, gord), over a uniform simplex of joint probability distributions p, satisfies

EpC(p, gord) = Ep

{
d

∑
j=1

H(Yj)− H(X)

}
< 0.0162 + O

(
1
m

)
Proof. Let us first derive the expected marginal entropy of the least significant bit, j = 1,

according to (4.3).

Ep {H(Y1)} ≤hb

(
1
2

Km −
1
m

m/2

∑
i=1

Km−i

)
= (4.4)

hb

(
1
2

Km −
1
m

(
m−1

∑
i=1

Ki −
m
2 −1

∑
i=1

Ki

))
=
(a)

hb

(
1
2

Km −
1
m

(
mKm −m− m

2
K m

2
+

m
2

))
=

hb

(
1
2

(
K m

2
− Km + 1

))
<
(b)

hb

(
1
2

loge

(
1
2

)
+

1
2
+ O

(
1
m

))
≤
(c)

hb

(
1
2

loge

(
1
2

)
+

1
2

)
+ O

(
1
m

)
h′b

(
1
2

loge

(
1
2

)
+

1
2

)
=

hb

(
1
2

loge

(
1
2

)
+

1
2

)
+ O

(
1
m

)
where (a) and (b) follow the harmonic number properties:

(a) ∑m
i=1 Ki = (m + 1)Km+1 − (m + 1)

(b) 1
2(m+1) < Km − loge(m)− γ < 1

2m , where γ is the Euler-Mascheroni constant (Young,

1991)

and (c) results from the concavity of the binary entropy.

Repeating the same derivation for different values of j, we attain
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Ep
{

H(Yj)
}
≤hb

1
2

Km −
1
m

2j−1

∑
l=1

(−1)l+1
l m

2j

∑
i=1

Km−i

 = (4.5)

hb

1
2

Km −
1
m

2j

∑
l=1

(−1)l
l m

2j−1

∑
i=1

Ki

 =

hb

(
1
2

Km −
1
m

2j

∑
l=1

(−1)l
(

l
m
2j Kl m

2j
− l

m
2j

))
<

hb

(
2j−1

∑
i=1

(−1)i+1 i
2j loge

(
i

2j

)
+

1
2

)
+ O

(
1
m

)
∀j = 1, . . . , d.

We may now evaluate the sum of expected marginal entropies of Y. For simplicity of derivation

let us obtain Ep
{

H(Yj)
}

for j = 1, . . . , 10 according to (4.5) and upper bound Ep
{

H(Yj)
}

for j > 10 with hb
( 1

2

)
= 1. This means that for d ≥ 10 we have

Ep

{
d

∑
j=1

H(Yj)

}
<

10

∑
j=1

Ep
(

H
{

Yj
})

+
d

∑
j=11

hb

(
1
2

)
< (4.6)

9.4063 + (d− 10) + O
(

1
m

)
.

The expected joint entropy may also be expressed in a more compact manner. In Proposition 3

it is shown than Ep {H(X)} = 1
loge 2 (ψ(m + 1)− ψ(2)). Following the inequality in (Young,

1991), the Digamma function, ψ(m + 1), is bounded from below by ψ(m + 1) = Hm − γ >

loge(m) + 1
2(m+1) . Therefore, we conclude that for d ≥ 10 we have that

Ep

{
d

∑
j=1

H(Yj)− H(X)

}
<9.4063 + (d− 10)− log (m)+ (4.7)

ψ(2)
loge 2

+ O
(

1
m

)
= 0.0162 + O

(
1
m

)

In addition, we would like to evaluate the expected difference between the sum of

marginal entropies and the joint entropy of X, that is, without applying any permutation.

This shall serve us as a reference to the upper bound we achieve in Theorem 4.

Theorem 5. Let X ∼ p be a random vector of an alphabet size m and joint probability distri-

bution p. The expected difference between the sum of marginal entropies and the joint entropy
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of X, when the expectation is taken over a uniform simplex of joint probability distributions p,

satisfies

Ep

{
d

∑
j=1

H(Xj)− H(X)

}
<

ψ(2)
loge 2

= 0.6099

Proof. We first notice that P
(
Xj = 1

)
equals the sum of one half of the probabilities pi, i =

1, . . . , m for every j = 1 . . . d. Assume pi’s are randomly (and uniformly) assigned to each of

the m symbols. Then, E{P
(
Xj = 1

)
} = 1

2 for every j = 1 . . . d. Hence,

Ep

{
d

∑
j=1

H(Xj)− H(X)

}
=

d

∑
j=1

Ep
{

Hb(Xj)
}
−Ep{H(X)} <

d− log (m) +
1

loge 2

(
ψ(2)− 1

2(m + 1)

)
<

ψ(2)
loge 2

To conclude, we show that for a random vector X over an alphabet size m, we have

EpC(p, gopt) ≤ EpC(p, gbst) ≤ EpC(p, gord) < 0.0162 + O
(

1
m

)
for d ≥ 10, where the expectation is over a uniform simplex of joint probability distri-

butions p. This means that when the alphabet size is large enough, even the simple

order permutation achieves, on the average, a sum of marginal entropies which is only

0.0162 bits greater than the joint entropy, when all possible probability distributions p

are equally likely to appear. Moreover, we show that the simple order permutation

reduced the expected difference between the sum of the marginal entropies and the

joint entropy of X by more than half a bit, for sufficiently large m.

4.3 Block-wise Order Permutation

The computational complexity of the order permutation is O(d2d), according to a sim-

ple quick-sort algorithm (Hoare, 1961). We would now like to introduce a structured

transformation which achieves a lower complexity while (almost) maintaining the same



CHAPTER 4. GENERALIZED ICA - THE ORDER PERMUTATION 41

favorable asymptotic properties as the order permutation.

We define a block transformation (with a parameter b) as splitting the m values of

{pi}m
i=1 into non-overlapping blocks of size mb = 2b, and applying an invertible trans-

formation on each of the blocks independently. For example, assume a given 3-

dimensional binary vector with the following probability distribution:

codeword 000 001 010 011 100 101 110 111

probability p6 p3 p1 p8 p2 p5 p4 p7

then, a block transformation with b = 2 is any mutually exclusive permutation of the

probabilities in the sets {p6, p3, p1, p8} and {p2, p5, p4, p7}.

We define the block order permutation, with a parameter b, as an order permutation,

applied on each of the m
mb

blocks, independently. For example, assume p1 ≤ p2 ≤

· · · ≤ p8, then the block order permutation with b = 2 is simply

codeword 000 001 010 011 100 101 110 111

probability p1 p3 p6 p8 p2 p4 p5 p7

Denote the block order permutation as Y = gord,b(X). Notice that for b = log(m) = d,

the block order permutation is simply the order permutation.

We would like to quantify the expected difference between the sum of marginal en-

tropies after the block order permutation is applied, and the joint entropy of X, C(p, gord,b)

EpC(p, gord,b) = Ep

{
d

∑
j=1

H(Yj)− H(X)

}
(4.8)

where the expectation is with respect to a uniform prior on the probability distribution,

as before. In other words, we would like to find the expectation (4.8) where the random

variables are p1, . . . , pm, taking values over a uniform simplex.
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Theorem 6. Let X ∼ p be a random vector of an alphabet size m and joint probability

distribution p. Let Y = gord,b(X) be the block order permutation. The expected value of

C(p, gord,b), where the expectation is over a uniform simplex of joint probability distributions

p, satisfies

EpC(p, gord,b) = Ep

{
d

∑
j=1

H(Yj)− H(X)

}
≤ Hord,b + d− b− 1

loge 2
(ψ(m + 1)− ψ(2)) .

where Hord,b is the upper bound on the expected sum of marginal entropies of a random vector

with an alphabet size mb = 2b, after an order permutation is applied (4.5) and ψ is the

digamma function.

Proof. Let Z1, Z2, . . . , Zm+1 be independent exponential random variables with a parameter

λ = 1. Set

S = Z1 + Z2 + · · ·+ Zm+1

and

Di =
Zi

S
(1 ≤ i ≤ m + 1).

Then, {Di}m+1
i=1 is distributed as a set of m + 1 spacings determined by m independent uniform

random variables (Pyke, 1965). In other words,

f(D1,D2,...,Dm)(d1, d2, . . . , dm) = m! di ≥ 0, 0 ≤
m

∑
i=1

di ≤ 1.

Moreover, it can be shown (Pyke, 1965) that (D1, D2, . . . , Dm) are distributed independently

of S ,

f(D1,D2,...,Dm|S)(d1, d2, . . . , dm|s) = f(D1,D2,...,Dm)(d1, d2, . . . , dm). (4.9)

We now apply the block order permutation on the first block, (D1, D2, . . . , Dmb). We have that

(D1, D2, . . . , Dmb+1) =

(
Y1

S
,

Z2

S
, . . . ,

Zmb+1

S

)
=(

Z1

Smb

Smb

S
,

Z2

Smb

Smb

S
, . . . ,

Zmb+1

Smb

Smb

S

)
=

Smb

S
(

D̃1, D̃2, . . . , D̃mb+1
)

where Smb = ∑mb+1
i=1 Zi and D̃i =

Zi
Smb

.

We define {D(i)}
mb
i=1 as the ordering of {Di}mb

i=1. Therefore,

E
(

D(i)

)
= E

(
Smb

S
D̃(i)

)
= E Smb

S
E
(

Smb

S
D̃(i)

∣∣∣∣Smb

S

)
= E

(
Smb

S

)
E
(

D̃(i)

)
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where the last equation follows from the D̃i’s being uniformaly distributed over a unit simplex

and are therefore distributed independently of Smb , as indicated in (4.9). Since
Smb

S is Beta

distributed with parameters (α = mb, β = m−mb), we have that E
(

Smb
S

)
= mb

m and

E
(

D(i)

)
=

mb

m
E
(

D̃(i)

)
where E

(
D̃(i)

)
is the expected value of ith smallest value drawn from a uniform simplex of

size mb. We denote the vector of
{

E
(

D̃(i)

)}mb

i=1
as E

(
D̃ord

)
. Notice this derivation applies

for any of the m
mb

blocks.

Let us now derive the expected marginal probabilities of the vector Y = gord,b(X). We begin

our derivation with the expected marginal probabilities of a b-dimensional vector X(b), after

the order permutation is applied, Y(b) = gord(X(b)). Then, the marginal probabilities of the b

components of Y(b) satisfy:

E
(

P(Y(b))
)
= E

(
D̃ord

)T · Amb

where E
(

P(Y(b))
)
=
{

E(P(Y(b)
i = 1))

}mb

i=1
and Amb is the fixed list of binary symbols. For

example, for b = 2 we have that

E
(

P
(

Y(b)
))

=
[

E(P(Y(b)
1 = 1)) E(P(Y(b)

2 = 1)) . . . E(P(Y(b)
4 = 0))

]

E
(

D̃ord
)T

=
[

E
(

D̃(1)

)
E
(

D̃(2)

)
. . . E

(
D̃(4)

)]
and

Am2 =



0 0

0 1

1 0

1 1


.

We now go back to Y = gord,b(X). In the same manner, we have that

E (P(Y)) =
mb

m
[
E
(

D̃ord
)

E
(

D̃ord
)

. . . E
(

D̃ord
)]T · Am.
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For example, assume d = 3 and b = 2:

E(P(Y)) =
1
2

[
E
(

D̃(1)

)
. . . E

(
D̃(4)

)
E
(

D̃(1)

)
. . . E

(
D̃(4)

)]
·



0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1



.

Looking at the last b components (LSB’s), we notice that by construction,

{
E(P(Yj = 1))

}m
j=b = E

(
P(Y(b))

)
. (4.10)

In addition, we have that for the first d− b bits (MSB’s)

{
E(P(Yj = 1))

}d−b
j=1 =

1
2

. (4.11)

Therefore,

Ep

{
d

∑
j=1

H(Yj)

}
≤
(a)

d

∑
j=1

hb
(
Ep
(

P(Yj = 1)
))
≤
(b)

(4.12)

d−b

∑
j=1

hb

(
1
2

)
+

b

∑
j=1

hb

(
Ep

(
P
(

Y(b)
j = 1

)))
≤
(c)

Hord,b + d− b.

where (a) follows Jensen’s inequality, (b) follows from (4.10, 4.11) and (c) introduces a nota-

tion of Hord,b as the upper bound on the expected sum of marginal entropies of a b-dimensional

vector, after an order permutation is applied.

Further, we showed in Proposition 3 that the expected joint entropy of X satisfies

Ep {H(X)} = 1
loge 2

(ψ(m + 1)− ψ(2)) .

Therefore, we have that

EpC(p, gord,b) = Ep

{
d

∑
j=1

H(Yj)− H(X)

}
≤ Hord,b + d− b− 1

loge 2
(ψ(m + 1)− ψ(2)) .
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In the same manner as with the order permutation, we may further derive an asympthotic

bound for EpC(p, gord,b):

Theorem 7. Let X ∼ p be a random vector of an alphabet size m and joint probability distri-

bution p. Let Y = gord,b(X) be the block order permutation. For d ≥ b ≥ 10, the expected

value of C(p, gord,b), where the expectation is over a uniform simplex of joint probability dis-

tributions p, satisfies

EpC(p, gord,b) = Ep

{
d

∑
j=1

H(Yj)− H(X)

}
≤ 0.0162 + O

(
1
2b

)
. (4.13)

Proof. We showed in (4.6) that for d ≥ 10,

Hord,d = Ep

{
d

∑
j=1

H(Yj)

}
<

10

∑
j=1

Ep
(

H
{

Yj
})

+
d

∑
j=11

hb

(
1
2

)
< (4.14)

9.4063 + (d− 10) + O
(

1
2d

)
.

Therefore,

EpC(p, gord,b) =Ep

{
d

∑
j=1

Hb(Yj)− H(X)

}
≤
(a)

Hord,b + d− b− 1
loge 2

(ψ(m + 1)− ψ(2)) ≤
(b)

9.4063 + (b− 10) + O
(

1
2b

)
+ d− b− 1

loge 2
(ψ(m + 1)− ψ(2)) ≤

(c)

9.4063− 10 + d− log(m) +
ψ(2)
loge 2

+ O
(

1
2b

)
≤ 0.0162 + O

(
1
2b

)
where (a) follows from Theorem 6, (b) follows form (4.14) and (c) follows from ψ(m + 1) >

loge(m) + 1
2(m+1) , as derived in (Young, 1991).

This means that the upper bound of EpC(p, gord,b) depends on the size of the block 2b

and not on the alphabet size m = 2d. In other words, assuming there exists a value b =

b∗ for which the bound (4.13) is practically sufficient, then there is no need to apply the

costly O(d2d) order permutation to achieve (almost) the same results (on the average).

Moreover, the cost of applying the block order permutation in this case is sorting each

of the m
mb∗

. This leads to an overall complexity of 2d−b∗O
(
b∗2b∗) = O

(
b∗2d). Notice

this complexity is linear in the size of p and therefore asymptomatically achieves the

computational lower bound, as indicated in Section 3.2.
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4.4 Discussion

Barlow’s minimal redundancy representation problem (Barlow et al., 1989) is a hard

long standing open problem. The main difficulty results from this problem’s combina-

torial nature, which makes it very challenging, both in terms of providing bounds or

designing efficient algorithms. In this chapter we tackle Barlow’s problem from a new

angle, by providing a sub-optimal solution which is much easier to analyze. This pro-

vides us not only with a simple, non-combinatorial, algorithm that is easy to implement,

but also with theoretical bounds and guarantees on the results we achieve. Moreover,

it gives us some insight on the optimal solution. Specifically, it shows us how well arbi-

trary random vectors over finite alphabets decompose into independent components.

This property is of high value, as for the first time, it answers the question “how well

we can do?”, when dealing with Barlow’s problem.

In addition, we introduce a computationally simplified version of the order permutation,

namely, the block-wise order permutation. This method separates the alphabet of the

random vector into disjoint blocks and orders each block separately. We show that

asymptotically, the block order permutation achieves the same accuracy as the order

permutation (on the average), while benefiting from a computational complexity that

is practically linear in the alphabet size. This computational complexity is the best we

can achieve, without further assumptions on the structure of the vector we decompose

(see Section 3.2).



Chapter 5

Generalized Versus Linear

Independent Component Analysis

The material in this Chapter is partly covered in (Painsky et al., 2016a).

5.1 Introduction

As described in Chapter 2, the linear ICA problem over finite fields has been given

a considerable amount of attention during the past years. This is mainly manifested

in a line of work initiated by Yeredor (2007). In his setup, Yeredor considers a linear

mixture of statistically independent sources and proposes a method for source separa-

tion based on entropy minimization. Yeredor assumes that the number of independent

sources d is known and the mixing matrix is a d-by-d invertible matrix. Specifically,

X = AS (5.1)

where S is a vector of d indepdendet sources, A is an (unknown) d-by-d invertible

matrix and X is the observable mixture. Under these constraints, Yeredor proves that

the XOR model is invertible and there exists a unique transformation matrix to recover

the independent components up to permutation ambiguity. As discussed in previ-

ous chapters, the complexity of the BICA is at least asymptotically linear in 2d. The

47
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AMERICA algorithm (Yeredor, 2011), which assumes a XOR mixture, has a complex-

ity of O(d2 · 2d). The MEXICO algorithm, which is an enhanced version of AMERICA,

achieves a complexity of O(2d) under some restrictive assumptions on the mixing ma-

trix. Attux et al. (2011) extend Yeredor’s formulation for sources which are not neces-

sarily independent. Specifically, under the same model (5.1), they suggest minimizing

the difference between the sum of marginal entropies and the joint entropy (as in (3.3)),

where

Y = WX

and W is a d-by-d invertible matrix over the XOR field. In their work, Attux et al. (2011)

present an immune-inspired algorithm for minimizing (3.3). Their algorithm starts with

a random ”population” where each element in the population represents a valid trans-

formation (W, an invertible matrix). At each step, the affinity function evaluates the ob-

jective
(

1− 1
d ∑d

j=1 H(Yj)
)

for each element in the population, which is subsequently

cloned. Then, the clones suffer a mutation process that is inversely proportional to

their affinity, generating a new set of individuals. This new set is evaluated again in or-

der to select the individual with highest affinity, for each group of clone individuals and

their parent individual. The process is finished with a random generation of d new in-

dividuals to replace the lowest affinity individuals in the population. The entire process

is repeated until a pre-configured number of repetitions is executed. Then, the solution

with the highest affinity is returned. It is important to notice that the mutation phase is

implemented with a random bit resetting routine, with the constraint of accepting only

new individuals that form a nonsingular matrix (invertible transformation). The use of

this immune-inspired methodology for the binary ICA problem is further extended in

(Silva et al., 2014b) and (Silva et al., 2014a).

As discussed, in a different line of work Barlow et al. (1989) suggest to decom-

pose the observed signals “as much as possible”, with no assumption on the gener-

ative model. Barlow claim that such decomposition would capture and remove the
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redundancy of the data. However, he does not propose any direct method, and this

hard problem is still considered open, despite later attempts (Atick & Redlich, 1990;

Schmidhuber, 1992; Becker & Plumbley, 1996).

A major drawback in this line of work is the lack of theoretical guarantees on the results

these algorithms achieve. Specifically, given a vector X ∼ p, it is unclear what is the

minimal value of (3.3) we can hope for, even under linear transformations, Y = WX,

where W a binary invertible matrix, W ∈ {0, 1}d×d. This means that practically, one

shall apply every known linear BICA algorithm and choose the one that achieves the

minimal value of (3.3).

Therefore, we would first like to suggest a naive yet highly efficient lower bound to

(3.3), under invertible liner transformation, Y = WX.

5.2 Lower Bound on Linear BICA

In his line of binary ICA work, Yeredor establishes a methodology based on a basic

property of the binary entropy. He suggests that the binary entropy of the XOR of

two independent binary variables is greater than each variables’ entropy. Specifically,

H(U ⊕ V) ≥ H(U), where U and V are binary independent variables and ⊕ is the

XOR operand. Unfortunately, there is no such guarantee when the variables are de-

pendent. This means that in general, the entropy of the XOR of binary variables may

or may not be greater than the entropy of each of the variables.

When minimizing (3.3) over Y = WX, we notice that each Yj is a XOR of several,

possibly dependent, variables {X1, . . . , Xd}. This means that naively, we may go over

all possible subsets of {X1, . . . , Xd} and evaluate their XOR. Specifically, we would

like to calculate Ui = Ai1X1 ⊕ Ai2X2 ⊕ . . . ⊕ AidXd for all i = 1, . . . , 2d, where each

row of the matrix A corresponds to a possible choice of subset of variables from the

set {X1, . . . , Xd}, Aij ∈ {0, 1}d. Then, we shall evaluate the binary entropy of each
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Ui. A necessary condition for W to be invertible is that it has no two identical rows.

Therefore, we a lower bound on (3.3) may be achieved by simply choosing the d rows

of the matrix A for which H(Ui) are minimal.

Notice this lower bound is by no means tight or attainable. It defines a simple lower

bound on (3.3), which may be attained iff we are lucky enough to have chosen d rows

of the matrix A which are linearly independent.

5.3 A Simple Heuristic for Linear BICA

We now present our suggested approach for the linear BICA problem, based on the

same methodology presented in the previous section. Again, we begin by evaluating

all possible XOR operations Ui = Ai1X1 ⊕ Ai2X2 ⊕ . . . ⊕ AidXd for all i = 1, . . . , 2d.

Further, we evaluate the binary entropy of each Ui. We then sort the rows of A ac-

cording to the binary entropy values of their corresponding Ui. This means that the row

which corresponds to the smallest binary entropy value among all {H(Ui)}2d

i=1 shall be

the first in order. Then, the row with the second smallest value in {H(Ui)}2d

i=1 shall be

the second in order and so on. Let us denote the sorted list of rows as Ã.

Our remaining challenge is to choose d rows from Ã such that the rank of these rows

is d. Additionally, our objective suggests to choose rows which are located higher in

Ã, as they result in a lower entropy. Our suggested greedy algorithm begins with an

empty matrix W. It then goes over the rows in Ã in ascending order. If the current row

in Ã is linearly independent of the rows in W it adds it to W. Otherwise, it skips it and

proceeds to the next row in Ã. The algorithm terminates once W is of full rank (which

necessarily happens at some point).

Our suggested algorithm is obviously a heuristic method which selects linearly inde-

pendent rows from Ã in a no-regret manner. It achieves the lower bound presented in
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Section 5.2 in the case where the first d rows in Ã are indeed linearly independent.

Although our suggested algorithm looks for d linearly independent rows from Ã in a

greedy manner, we may still evaluate the average number of rows goes through in

order to construct a full rank matrix W, as shown in (Shulman, 2003). Assume we

have already found k linearly independent rows (rank(W) = k) and are now seeking

for an additional independent row. Notice that there are 2k rows which are linearly

dependent of the rows we have already found (all possible linear combinations of these

rows). Assume we uniformly draw (with return) a row from a list of all possible rows

(of size 2d rows). The probability of drawn row to be independent of the k rows is

simply 1− 2k

2d . Therefore, the number of draws needed in order to find another linearly

interdependent row follows a geometric distribution with a parameter 1− 2k

2d (as the

draws are i.i.d.). Then, the average number of draws is 1
1− 2k

2d

= 2d

2d−2k . Denote the

average total number of draws needed to construct a full rank matrix as

L̄(d) =
d−1

∑
k=0

2d

2d − 2k .

It can be shown that

L̄(d)− d ≤ 2

and

lim
d→∞

L̄(d)− d = 1.606 . . .

This means that even if we choose rows from Ã with replacement, our suggested

algorithm skips up to 2 rows on the average, before terminating with a full rank matrix

W. Practically, it means that our greedy algorithm does not substantially deviate, on

the average, from the lower bound presented in the previous section.

5.4 Experiments

Let us now conduct several experiments to demonstrate the performance of our sug-

gested algorithm. In the first experiment we draw n = 106 independent samples from
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a Zipf’s law distribution with s = 1 and varying alphabet sizes m = 2d:

P(k; s, q) =
k−s

∑
q
m=1 m−s

where s is the skewness parameter. The Zipf’s law distribution is a commonly used

heavy-tailed distribution. This choice of distribution is further motivated in Section

7. We evaluate the lower bound of (3.3) over linear transformations, as discussed in

Section 5.2. We further apply our suggested linear algorithm (Section 5.3) and, in

addition, apply the order permutation (Chapter 4). Figure 5.1 demonstrates the results

we achieve. We first notice that the difference between our suggested linear algorithm

and the linear lower bound is fairly small, as expected. Moreover, we notice that the

order permutation outperforms both methods quite significantly. This is simply since

linear transformations are not very “flexible” models as the dimension of the problem

increases.
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Figure 5.1: Minimizing (3.3) for independent draws from a Zipf distribution. Blue curve with

the triangles: lower bound on linear transformation, black curve with the X’s: our suggested

linear transformation, red curve with the squares: the order permutation, green curve with the

circles: without applying any transformation

In addition, we would like to compare our suggested linear algorithm to the immune-



CHAPTER 5. GENERALIZED VERSUS LINEAR BICA 53

inspired method (Silva et al., 2014a). As before, we draw n = 106 independent sam-

ples from a Zipf law distribution with s = 1 and varying alphabet sizes m = 2d. Notice

that this time we limit ourselves to a maximal dimension of d = 7, as the cobICA al-

gorithm (Silva et al., 2014a) fails to perform within a reasonable time frame for greater

values of d (more than several hours, using a standard personal computer). Figure 5.2

demonstrates the results we achieve. It is easy to notice that our suggested algorithm

outperforms the cobICA. Moreover, it takes significantly less time to execute (several

seconds as opposed to almost an hour, for d = 7).
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Figure 5.2: Minimizing (3.3) for independent draws from a Zipf distribution. The curves color

and shapes correspond to the same methods as in Figure 5.1. In addition, the dashed blue curve

is the cobICA

Lastly, we would like to empirically evaluate the expected value of C(p, g), when aver-

aging uniformly over all possible p of an alphabet size m = 2d. In this experiment we

go over all possible p for a given alphabet size m = 2d and evaluate the lower bound of

C(p, g) over linear transformations, (Section 5.2), our suggested linear algorithm (Sec-

tion 5.3) and the order permutation (Chapter 4). Figure 5.3 demonstrates the results

we achieve. As we can see, the linear lower bound converges to 0.6099, which exactly
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equals to the value we derived analytically, for the case where no transformation is

applied. This further justifies our claim that linear transformations are not powerful

enough as minimizer for (3.3), when the dimension increases. We further notice that

the order permutation converges to approximately 0.0162, as expected (see Chapter

4).
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Figure 5.3: Minimizing the expected value of C(p, g), when averaging uniformly over all

possible p of an alphabet size m = 2d. The curves color and shapes correspond to the same

methods as in Figure 5.1

5.5 Discussion

Although the generalized ICA over finite fields problem was introduced quite a while

ago, there is still a limited understanding on how well a random vector may be linearly

decomposed into independent components (as much as possible). In this chapter we

proposed a novel lower bound for this problem, followed by a simple heuristic algo-

rithm.Our suggested lower bound is not tight, in the sense that we cannot guarantee

that there exists a linear transformation which achieves it. However, it provides an
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easy-to-evaluate benchmark on the best we can hope for. Moreover, our lower bound

may be easily used to provide a feasible sub-optimal solution to the linear generalized

ICA problem. This solution shows significantly outperform any currently known BICA

methods, both in terms of accuracy and computational complexity, as demonstrated

analytically and empirically.

Using the lower bound we developed, we showed that a linear transformation is not

a favorable approach when the dimension of the problem increases. Specifically, we

showed that the order permutation, presented in the previous chapter, incomparably

outperforms any linear solution. Moreover, we show that on the average, applying

a linear transformation is practically redundant, as it achieves the same results as if

no transformation is applied. Clearly, this happens since the alphabet size increases

exponentially with the number of components m = 2d, while the free parameters of the

linear transformation increase only polynomially, d2.





Chapter 6

Sequential Generalized Independent

Component Analysis

The material in this Chapter is partly covered in (Painsky et al., 2013).

6.1 Introduction

In this chapter we impose an additional constraint on the generalized ICA problem by

limiting ourselves to sequential processing of the vector X. Several methods have

been suggested to sequentially construct an uncorrelated or independent process

from a given stochastic process. The Gram-Schmidt procedure suggests a simple

sequential method which projects every new component on the linear span of the

components previously observed (Arfken et al., 1985). The difference between the

current component and its projection is guaranteed to be orthogonal to all previous

components. Applied on a Gaussian process, orthogonality results statistical inde-

pendence and the subsequent process is therefore considered memoryless. Non-

Gaussian processes on the other hand, do not hold this quality and a generalized

form of sequentially generating a memoryless process from any given time dependent

series is therefore required. Several non-sequential methods such as Principal Com-

ponents Analysis (Jolliffe, 2002) and Independent Component Analysis (Hyvärinen,

57
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1998) have received a great deal of attention, but we are aware of a little previous

work on sequential schemes for generating memoryless innovation processes.

The importance of innovation process representation spans a variety of fields. One ex-

ample is dynamic system analysis in which complicated time dependent processes are

approximated as independent processes triggering a dynamic system (human speech

mechanism, for instance). Another major field for example is cryptography, where a

memoryless language is easier to encrypt as it prevents an eavesdropper from learn-

ing the code by comparing its statistics with those of the serially correlated language.

Recently, Shayevitz & Feder (2011) presented the Posterior Matching (PM) scheme

for communication with feedback. It turns out that an essential part of their scheme is

to produce statistical independence between every two consecutive transmissions. In-

spired by this we suggest a general framework to sequentially construct memoryless

processes from any given Markov process, for various types of desired distribution

function, under different objective functions and constraints.

6.2 Problem Formulation

For the remaining sections of this chapter we use the following notation: we denote the

input process at a time k as Xk while Xk refers to the vector {Xi}k
i=1. We use the same

notation for our outcome process Y. Therefore, for any process Xk with a cumulative

distribution function F(Xk) we would like to sequentially construct Yk such that:

1. F(Yk) = ∏k
j=i F(Yj)

2. Xk can be uniquely recovered from Yk for any k.

Using the notation from previous chapters, we look for a sequential invertible transfor-

mation on the set of “components” {Xj}k
j=1, so that the resulting “components” {Yj}k

j=1

are statistically independent. We show that the two constraints can always be met
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if we allow the Yj’s to take values on a continuous set and may need to be relaxed

otherwise. The continuous case is discussed in the next section, followed by a com-

prehensive discussion on the discrete case in the remaining part of this chapter.

6.3 Generalized Gram-Schmidt

Following the footsteps of the Posterior Matching scheme (Shayevitz & Feder, 2011)

we define a generalized Gram-Schmidt method for the continuous case.

Theorem 8. Let X be any random variable X ∼ FX(x) and θ ∼ Unif[0, 1] be statistically

independent of it. In order to shape X to a uniform distribution (and vice versa) the following

applies:

1. F−1
X (θ) ∼ FX(x)

2. Assume X is a non-atomic distribution (FX(x) is strictly increasing) then FX(X) ∼

Unif[0, 1]

3. Assume X is discrete or a mixture probability distribution then FX(X) − θPX(x) ∼

Unif[0, 1]

The proof of this theorem can be located in Appendix 1 of (Shayevitz & Feder, 2011).

We define F̃X(x) as F̃X(x) = FX(x) if FX(x) is strictly increasing and F̃X(x) = FX(x)−

θPX(x) otherwise. For a desired FYk(yk) we construct our process by setting:

Y1 = F−1
Y1

(
F̃X1(X1)

)
(6.1)

Yk = F−1
Yk

(
F̃Xk |Xk−1(Xk|Xk−1)

)
∀k > 1 (6.2)

Theorem 8 guarantees that F̃Xk |Xk−1

(
Xk|Xk−1) is uniformly distributed and applying

F−1
Yk

on it shapes it to the desired continuous distribution. In other words, this method

suggests that for every possible history of the process at a time k, the transformation

F̃Xk |Xk−1

(
Xk|Xk−1) shapes Xk to the same (uniform) distribution. This ensures inde-

pendence of its history. The method then reshapes it to the desired distribution. It is
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easy to see that Yk are statistically independent as every Yk is independent of Xk−1.

Moreover, since F(Yk) is strictly increasing and F̃X1(X1) is uniformly distributed we can

uniquely recover X1 from Y1 according to the construction of Theorem 8. Simple in-

duction steps show that this is correct for every Yk for k > 1. A detailed discussion on

the uniqueness of this method is located in Appendix C.

6.4 Lossy Transformation in the Discrete Case

Let us now assume the both Xj and Yj take values on finite alphabet size of A and

B respectively (for every j). Even in the simplest case, where both are binary and X

is a first order Markov chain it is easy to see that no transformation can meet both

of the constraints mentioned above. We therefore relax the second constraint by re-

placing the uniquely recoverable constraint with mutual information maximization of

I
(
Xk; Yk|Xk−1). This way, we make sure that the mutual information between the two

processes is maximized at any time given its history. Notice that the case where Xk

is uniquely recoverable from Yk given its past, results in I
(
Xk; Yk|Xk−1) achieving its

maximum as desired.

This mutual information maximization problem is substantially different than the ICA

framework presented in the previous chapters. Here, we insist on full statistical in-

dependence at the cost of lossy reconstruction, while in the previous chapters we

focused on lossless reconstruction at the cost of “almost statistical independence”.

Our problem can be reformulated as follows:

For any realization of Xk, given any possible history the process Xk−1, find a set of

mapping functions to a desired distribution P(Yk) such that the mutual information be-

tween the two processes is maximal. For example, in the binary case where Xk is a

first order Markov process, and Yk is i.i.d. Bernoulli distributed,

Yk ∼ Ber(β), PXk(Xk = 0) = γk (6.3)
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PXk |Xk−1
(Xk = 0|Xk−1 = 0) = α1

PXk |Xk−1
(Xk = 0|Xk−1 = 1) = α2

we would like to maximize

I
(

Xk; Yk|Xk−1
)
= γk−1 I (Xk; Yk|Xk−1 = 0) + (1− γk−1)I (Xk; Yk|Xk−1 = 1) (6.4)

In addition, we would like to find the distribution of Yk such that this mutual information

is maximal. This distribution can be viewed as the closest approximation of the process

X as a memoryless process in terms of maximal mutual information with it. Notice that

this problem is a concave minimization over a convex polytope shaped set (Kovacevic

et al., 2012) and the maximum is guaranteed on to lie on one of the polytope’s vertices.

Unfortunately, this is an NP hard problem and generally there is no closed form solution

to it. Several approximations and exhaustive search solutions are available for this kind

of problem, such as (Kuno et al., 2007). There are, however, several simple cases in

which such a closed form solution exists. One notable example is the binary case.

6.4.1 The Binary Case

Let us begin by considering the following problem: given two binary random variables

X and Y and their marginal distributions PX(X = 0) = α < 1
2 and PY(Y = 0) =

β < 1
2 we would like to find the conditional distributions PY|X(y|x) such that the mutual

information between X and Y is maximal. Simple derivation shows that the maximal

mutual information is: For β > α:

Iβ>α
max (X; Y) = hb(β)− (1− α)hb

(
β− α

1− α

)
(6.5)

For β < α:

Iβ<α
max (X; Y) = hb(β)− αhb

(
β

α

)
. (6.6)

Applying this result on the first order Markov process setup described above and as-

suming all parameters are smaller than 1
2 , the maximal mutual information is simply:
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For β < α1 < α2:

I
(

Xk; Yk|Xk−1
)
= γk−1 Iβ<α1

max (X; Y) + (1− γk−1)Iβ<α2
max (X; Y) (6.7)

For α1 ≤ β < α2:

I
(

Xk; Yk|Xk−1
)
= γk−1 Iβ>α1

max (X; Y) + (1− γk−1)Iβ<α2
max (X; Y) (6.8)

For α1 < α2 ≤ β:

I
(

Xk; Yk|Xk−1
)
= γk−1 Iβ>α1

max (X; Y) + (1− γk−1)Iβ>α2
max (X; Y) (6.9)

It is easy to see that I
(
Xk; Yk|Xk−1) is continuous in β. Simple derivation shows that

for β < α1 < α2 the maximal mutual information is monotonically increasing in β and

for α1 < α2 ≤ β it is monotonically decreasing in β. It can also be verified that all

optimum points in the range of α1 ≤ β < α2 are local minima which leads to the con-

clusion that the maximum must be on the bounds of the range, β = α1 or β = α2. The

details of this derivation is located in Appendix D. Figure 6.1 illustrates the shape of

I
(
Xk; Yk|Xk−1) as a function of β, for α1 = 0.15, α2 = 0.45, for example.

Since we are interested in the β that maximizes the mutual information between the

two possible options, we are left with a simple decision rule

γk−1

β = α2

≶

β = α1

hb(α2)− hb(α1) + α2hb

(
α1
α2

)
α2hb

(
α1
α2

)
+ (1− α1)hb

(
α2−α1
1−α1

) (6.10)

which determines the conditions according to which we choose our β, depending on

the parameters of the problem γk−1, α1, α2.

Further, assuming the process X is at its stationary state yields γ = α2
1−α1+α2

. Applying

this result to the decision rule above (6.10), it is can be verified (Appendix E) that for

α1 < α2 < 1
2 we have:

α2

1− α1 + α2
<

hb(α2)− hb(α1) + α2hb

(
α1
α2

)
α2hb

(
α1
α2

)
+ (1− α1)hb

(
α2−α1
1−α1

)
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Figure 6.1: The mutual information I
(
Xk; Yk|Xk−1) as a function of β, for a first order Markov

model (6.3), with α1 = 0.15, α2 = 0.45

which leads to the conclusion that βopt = α2.

This derivation is easily generalized to all values of α1 and α2. This results in a decision

rule stating that βopt equals the parameter closest to 1
2 :

βopt = arg max
θ∈{α1,α2,1−α1,1−α1}

(
1
2
− θ

)
. (6.11)

In other words, in order to best approximate a binary first order Markov process at its

stationary state we set the distribution of the binary memoryless process to be similar

to the conditional distribution which holds the largest entropy.

Expanding this result to an r-order Markov process we have R = 2r Bernoulli distribu-

tions to be mapped to a single one (P(Yk)). The maximization objective is therefore

I
(

Xk; Yk|Xk−1
)
=

R−1

∑
i=0

γi I
(

Xk; Yk| [Xk−1 . . . Kk−R−1]
T = i

)
(6.12)

where γi is the probability of the vector [Xk−1 . . . Xk−R−1]
T to be equal to its ith possible

value, γi = P
(
[Xk−1 . . . Xk−R−1]

T = i
)

. Notice that I
(

Xk; Yk| [Xk−1 . . . Kk−R−1]
T = i

)
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is either hb(β)− αihb

(
β
αi

)
or hb(β)− (1− αi)hb

(
β−αi
1−αi

)
, depending on β and αi, as de-

scribed above in (6.5),(6.6).

Simple calculus shows that as in the R = 2 case, the mutual information I
(
Xk; Yk|Xk−1)

reaches its maximum on one of the inner bounds of β’s range

βopt = arg max
β∈{αi}

(
hb(β)− ∑

β<αi

γiαihb

(
β

αi

)
− ∑

β>αi

γi(1− αi)hb

(
β− αi

1− αi

))
(6.13)

Here, however, it is not possible to conclude that β equals the parameter closest to

1
2 . Simple counter example shows that it is necessary to search over all possible

parameters, as a result of the nature of our concave minimization problem over a

convex polytope.

6.5 Lossless Transformation in the Discrete Case

The lossy approximation may not be adequate in applications where unique recovery

of the original process is required. It is therefore necessary to increase the alphabet

size of the output so that every marginal distribution of Xk, given any possible history

of the process can be accommodated. This problem can be formulated as follows:

Assume we are given a set of R random variables, {Xi}R
i=1, such that each random

variable Xi is multinomial distributed, taking on A values, Xi ∼ multnom (α1i, α2i, . . . , αAi).

Notice that A is the marginal alphabet size of the original process Xk, and R corre-

sponds to its Markov memory length R = 2r. Using the notation from previous sec-

tions, we have that P(Xi) corresponds to P(Xk| [Xk−1 . . . Kk−R−1]
T = i). In addition,

we use the notation xa;i to define the ath value of the ith random variable Xi. We would

like to find a distribution Y ∼ multnom (β1, β2, . . . , βB) where the β’s and alphabet size

B ≥ A are unknown. In addition, we are looking for R sets of conditional probabilities

between every possible realization Xi = xa;i and Y, such that Xi = xa;i can be uniquely

recoverable from Y = yb for every j, a and b. Further, we would like the entropy of Y to

be as small as possible so that our memoryless process is as “cheap” as possible to
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describe. Notice that in terms of the generalized ICA framework, here we require both

full statistical independence and unique recovery, at the cost of an increased objective

(3.3).

Without loss of generality we assume that αai ≤ α(a+1)i for all a ≤ A, since we can

always denote them in such an order. We also order the sets according to the smallest

parameter, α1i ≤ α1(j+i). Notice we have α1i ≤ 1
2 for all i = 1, . . . , R , as an immediate

consequence.

For example, for A = 2 and R = 2, it is easy to verify that B ≥ 3 is a necessary

condition for Xi to be uniquely recoverable from Y. Simple calculus shows that the

conditional probabilities which achieve the minimal entropy are β1 = α1, β2 = α2 − α1

and β3 = 1− α2, as appears in Figure 6.2.

1
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1
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1 α−

2
α
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12
αα −

1
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12
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1
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Figure 6.2: Lossless representation of two binary sources with a single ternary source

6.5.1 Minimizing B

Let us start with finding the minimal alphabet size of the output process B, such that

the X is guaranteed to be uniquely recoverable from it. Looking at the free parameters

of our problem we first notice that defining the distribution of Y, takes exactly B− 1 pa-

rameters. Then, defining R conditional probability distributions between each alphabet

size A and the output process Y takes R(A− 1)(B− 1) parameters. In order for Xi’s

to be uniquely recoverable from Y, each value of Y needs to be at most assigned to

a single value of Xi (see Figure 6.2 for example). This means that for each of the R
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sets, we have B(A − 1) constraints (B possible realizations of Y , each of them has

A− 1 zero conditional probability constraints). Therefore, in order to have more free

parameters than constraints we require that:

(B− 1) + R(A− 1)(B− 1) ≥ RB(A− 1). (6.14)

Rearranging this inequality leads to

B ≥ R(A− 1) + 1. (6.15)

For example, assuming the Xi’s are over a binary alphabet we get that B ≥ R + 1.

There exist several special cases in which it is possible to go under this lower bound,

like cases where some parameters are additions or subtraction of other parameters.

For example, α2 = 1− α1 in the binary case. We focus however on solving the most

general case.

6.5.2 The Optimization Problem

The problem stated above can be formulated as the following optimization problem:

min H(Y) s.t. H (Xi|Y = yb) ≤ 0 ∀i = {1, . . . , R} (6.16)

Unfortunately this is a concave minimization problem over a non-convex set. However,

we show this problem can also be formulated as a mixed integer problem.

6.5.3 Mixed Integer Problem Formulation

In order to formulate our problem as a mixed integer problem we first notice the free

parameters are all conditional probabilities, as they fully determine the outcome distri-

bution. We use the notation piab to describe the conditional probability P(Y = yb|Xi =

xa;i). Therefore, our bounds on the variables are 0 ≤ piab ≤ 1 for all i, a and b. The

equality constraints we impose on our minimization objective are:

• All R conditional probability sets must result with the same output distribution:

P(Y = yb) =
A

∑
a=1

P (Y = yb|Xi = xa;i) P (Xi = xa;i) =
A

∑
a=1

piabαai
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for all i = {1, . . . , R} and b = {1, . . . , B}. Since the parameters α1i, . . . , αAi are

assumed to be given we have that

A

∑
a=1

piabαai −
A

∑
a=1

pjabαaj = 0

for all i, j = {1, . . . , R} and b = {1, . . . , B}

• P(Y|Xi) is a valid conditional distribution function:

A

∑
a=1

piab = 1

for all i = {1, . . . , R}, a = {1, . . . , A} and b = {1, . . . , B}

• Y must be a valid probability function:

B

∑
b=1

P(Y = yb) = 1.

In terms of piab:

B

∑
b=1

A

∑
a=1

piabαai = 1

for all i = {1, . . . , R}. Notice that this constraint, together with all previous ones,

follows that P(Y) is also bounded by 0 and 1.

In addition, the inequality constraints are:

• For convenience reasons we will ask that P(Y = yb) ≤ P(Y = yb+1) for all

b = {1, . . . , B}:

A

∑
a=1

piabαai −
A

∑
a=1

pia(b+1)αai ≤ 0 for all 1 ≤ b ≤ B

• Zero conditional entropy constraint: As stated above, a necessary and sufficient

condition for zero conditional entropy is that for every value Y = yb, in every

set i = {1, . . . , R}, there is only a single value Xi = xa;i such that piab > 0.

Therefore, for each of the R sets, and for each of the B values Y can take on, we

define A boolean variables, Tiab, that must satisfy:

piab − Tiab ≤ 0
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A

∑
a=1

Tiab = 1

Tiab ∈ {0, 1}

Notice that the summation ensures only a single Tiab equals one, for which piab ≤

1. For each of the other Tiab = 0 the inequality constraint verifies that piab ≤ 0.

This set of constraints can also be written using A− 1 Boolean variables:

piab − Tiab ≤ 0 ∀ a = {1, . . . , A}

piAb −
(

1−
A−1

∑
a=1

Tiab

)
≤ 0 ⇔ piAb +

(
A−1

∑
a=1

Tiab

)
≤ 1

Tiab ∈ {0, 1} ∀ a = {1, . . . , A}

Therefore, our minimization problem can be written as follows: Define a vector of

parameters z = [piab Tiab]
T. Define Aeq and beq as the equality constraints in a matrix

and vector forms respectively. Define Aineq and bineq as the inequality constraints in a

matrix and vector forms respectively. This leads to

min f (z) (6.17)

s.t. Aeqz = beq

Aineqz = bineq

0 ≤ z ≤ 1

z(boolean indicators) ∈ {0, 1}

where f(z) is the entropy of the random variable Y in terms of piab and boolean indica-

tors define which elements in z correspond to Tiab.

6.5.4 Mixed Integer Problem Discussion

Mixed integer problems are studied broadly in the computer science community. There

are well established methodologies for convex minimization in a mixed integer prob-

lem and specifically in the linear case (Floudas, 1995; Tawarmalani & Sahinidis, 2004).
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The study of non-convex optimization in mixed integer problem is also growing quite

rapidly, though there is less software available yet. The most broadly used mixed in-

teger optimization solver is the CPLEX1 , developed by IBM. CPLEX provides a mixed

integer linear programming (MILP) solution, based on a branch and bound oriented al-

gorithm. We use the MILP in lower bounding our objective function (6.17) as described

in the following sub-sections.

6.5.5 An Exhaustive Solution

As shown in Section 6.5.3, the problem we are dealing with is a hard one and therefore

we present an exhaustive method which searches over all valid solutions to find the

minimal entropy. We notice that each of the given parameters αai can be expressed

as a convex combination of the free parameters βb such that Aβ = αi, where A rep-

resents the convex coefficients, β is a vector of the βb’s and αi is a vector of the αai’s.

Additionally, it is easy to notice that the matrix A must be a boolean matrix, to ensure

the zero conditional entropy constraint stated above. Moreover, a necessary condition

for the recovery of β from A and αi is that A is of full rank. However, this is not a

sufficient condition since there is no guarantee that β is a valid probability distribution.

This means we need to search over all boolean matrices A of a full rank, and for each

of these matrices check if the resulting β is a valid probability distribution. If so, we

calculate its entropy and proceed. This process grows exponentially with K (and R)

but may be feasible for smaller values of these figures.

6.5.6 Greedy Solution

The entropy minimization problem can also be viewed as an attempt to minimize the

entropy of a random variable Y ∼ multinom (β1, β2, . . . , βB) on a set of discrete points

representing valid solutions to the problem we defined. Let us remember that βb ≤

βb+1 for all b = {1, . . . , B} as stated in the previous sections.

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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Proposition 2. βB is not greater than maxi

{
1−∑A−1

a=1 αai

}
Proof. Assume βB > maxi

{
1−∑A−1

a=1 αai

}
. Then, for this i there must be at least two values

xu;i and xv;i for which piub > 0 and pivb > 0. This contradicts the zero conditional entropy

constraint

Therefore, a greedy algorithm would like to squeeze all the distribution to the values

which are less constrained from above, so that it is as large as possible. We then

suggest that in every step of the algorithm we set βB = maxi

{
1−∑A−1

a=1 αai

}
which

leaves us with a B− 1 problem. Rearranging the remaining probabilities and repeating

this maximization step, ensures that in each step we increase the least constrained

value of β as much as possible. However, It is easy to notice that this solution is not

optimal through simple counter examples.

6.5.7 Lowest Entropy Bound

As discussed in the previous sections, we are dealing with an entropy minimization

problem over a discrete set of valid solutions. Minimizing the entropy over this set of

points can be viewed as a mixed integer non convex minimization, which is a hard

problem.

However, we can find boundaries on each of the parameters βb and see the lowest

entropy we can hope for. This way, we relax the search over a set of valid solutions to a

search in a continuous space, bounded by a polytope. We find the boundaries of each

βb by changing our minimization objective to a simpler linear one (minimize/maximize

βb). This way we find a valid solution for which βb is at its bound. This problem

is a simple MILP as shown above. By looking at all these boundaries together and

minimizing the entropy in this continuous space we can find a lower bound for the

minimal entropy one can expect. We notice that this bound is not tight, and we even

do not know how far it is from the valid minima, as it is not necessarily a valid solution.

However, it gives us a benchmark to compare our greedy algorithm against and decide

if we are satisfied with it or require more powerful tools. We also note that as we
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increase B, the number of valid solutions grows exponentially. This leads to a more

packed set of solutions which tightens the suggested lower bound as we converge to

a polytope over a continuous set.

6.6 Applications

As mentioned before, the problem we are dealing with has a vast amount of applica-

tions in multiple fields as it deals with a very fundamental problem. Besides the mem-

oryless representation problem which comes from the stochastic signal processing

world, we can identify other applications from entirely different domains. One example

is the following economic problem dealing with optimal design of a mass production

storage units.

Consider the following problem: a major home appliances vendor is interested in mass

manufacture of storage units. These units hold a single and predetermined design plan

according to the market demand. Let us further assume that the costumers market

is defines by R major storing types (customers) and each of these storing types is

characterized by a different distribution of items it wishes to store. The vendor is

therefore interested in designing a single storage unit that suits all of its customers.

In addition, the vendor would like to storage unit to be as “compact” and “cheap” as

possible. We denote this problem as The IKEA Problem.

6.6.1 The IKEA Problem

We consider the R storage distributions as {Xi}R
i=1 such that each storing type Xi is

multinomial distributed with A values, Xi ∼ multnom(α1i, α2i, . . . , αAi). We assume

that all storage distributions have the same cardinality A. It is easy to generalize our

solution to different cardinalities. As in previous sections, we use the notation xa;i

to define the ath value of the ith random variable Xi. For our storing units problem,

we would like to find a multinomial distribution over B values (B ≥ A is unknown),
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Y ∼ multnom(β1, β2, . . . , βB), and R sets of conditional probabilities between every

Xi = xa;i and Y, such that Xi = xa;i can be uniquely recoverable (reversible) from

Y = yb for every i, a and b. This means every customer is able to store its items

exclusively; different items will not need to be stored together. In addition, we would

like the storing unit to be “compact” and “cheap”. For most functionalities, a compact

storing unit is rectangular shaped (closets, cabins, dressers etc.) and it is made of

multiple compartments (shelves) in numerous columns. We define the number of

columns in our storage unit as L and the number of shelves as N. We would therefore

like to design a rectangular shaped storing unit such that given a number of columns

L, every costumer is able to store its items exclusively and the number of shelves

is minimal. This problem is again NP hard for the same reasons as in the previous

sections, but it can be reformulated to a set of Mixed Integer Quadratic Programming

(MIQP) which is quite an established research area with extensive software available.

6.6.2 Mixed Integer Quadratic Programming Formulation

Let us first assume we are given both the number of columns in our desired storing unit

L and the number of shelves N. Since we require the storing unit to be rectangular, we

need to find such distribution Y that can be partitioned to L columns with no residue.

Therefore, we define L equivalent partitions {δl}L
l=1 in the size of 1

L for which each

{βb}B
b=1 is exclusively assigned. We are interested in such distribution Y that the

assignment can be done with no residue at all. To guarantee an exclusive assignment

for a partition δl we introduce T integer variables {Tlb}B
b=1, indicating which of the

{βb}B
b=1 is assigned to it. Therefore, we have

B

∑
b=1

Tlbβb = δl for all l = {1, . . . , L} (6.18)

L

∑
l=1

Tlb = 1 for all b = {1, . . . , B}

Tlb ∈ {0, 1}
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and the optimization objective is simply

L

∑
l=1

(
δl −

1
L

)2

→ min (6.19)

Our constraints can easily be added to the mixed integer formulation presented in the

previous sections and the new optimization problem is therefore:

min zTccTz− 2
L

cTz (6.20)

s.t.Aeqz = beq

Aineqz ≤ bineq

0 ≤ z ≤ 1

z(boolean indicators) ∈ {0, 1}

where z is a vector of all parameters in our problem z = [piab Tlb]
T and cTz = δ.

6.6.3 Minimizing the Number of Shelves

As demonstrated in the previous sections, the problem of minimizing the residue of the

assignment given the number of columns and the number of shelves can be formulated

as MIQP. In this section we focus on finding the minimal number of shelves N that

guarantees zero residue. Notice that for large enough N the residue goes to zero,

as Y tends to take values on a continuous set. We also notice that the residue is

a monotonically non-increasing function of N, since by allowing a greater number of

shelves we can always achieve the same residue by repeating the previous partitioning

up to a meaningless split of one of the compartments. These two qualities allow very

efficient search methods (gradient, binary etc.) to find the minimal N for which the

residue is “ε close” to zero.

A Binary Search Based Algorithm

The following simple binary search based algorithm for minimizing the number of

shelves for a rectangular shaped storing unit is therefore suggested:
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1. Choose a large enough initial value N such that applying it in the MIQP pre-

sented above results with zero residue.

2. Define a step size as Stp = bN/2c

3. Apply the MIQP with N′ = N − Stp

4. If the residue is zero repeat previous step with N = N′ and Stp = bStp/2c. Oth-

erwise repeat the previous step with N = N′ and Stp = −bStp/2c. Terminate if

Stp = 0.

6.7 Memoryless Representation and its Relation to the Optimal

Transportation Problem

As discussed in the previous sections, the essence of the our suggested problem for-

mulation is finding a single marginal distribution function to be matched to multiple

ones under varying costs functions. This problem can be viewed as a design gener-

alization of a multi-marginal setup for the well-studied optimal transportation problem

(Monge, 1781). In other words, we suggest that the optimal transportation problem

can be generalized to a design problem in which we are given not a single but multiple

source probability measures. Moreover, we interested not only in finding mappings

that minimizes some cost function, but also in finding the single target probability mea-

sure that minimizes that cost.

6.7.1 The Optimal Transportation Problem

The optimal transportation problem was presented by Monge (1781) and has gener-

ated an important branch of mathematics in the last decades. The optimal transporta-

tion problem has many applications in multiple fields such as Economics, Physics,

Engineering and others. The problem originally studied by Monge was the following:

assume we are given a pile of sand (in R3) and a hole that we have to completely fill up
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with that sand. Clearly the pile and the hole must have the same volume and different

ways of moving the sand will give different costs of the operation. Monge wanted to

minimize the cost of this operation. Monge’s formulation of the optimal transportation

problem can be ill-posed as in some setups in which there is no “one-to-one” trans-

portation scheme. For example, consider the case where the original pile is a Dirac

measure but hole is not shaped in this manner. A major advance on this problem is

due to Kantorovich (1942) who proposed the notation of a “weak solution” to the opti-

mal transportation problem; he suggested looking for plans instead of transport maps

(Kantorovich, 2006). The main difference between Kantorovich work and Monge for-

mulation is that while the original Monge problem is restricted to transportation of the

complete mass at each point on the original pile, the relaxed Kantorovich version al-

lows splitting of masses. Kantorovich argued that the problem of showing existence of

optimal transport maps reduces to prove that an optimal transport plan in concentrated

in a graph. It is however clear that no such result can be expected without additional

assumptions on the measures and cost. The first existence and uniqueness result is

due to Brenier (1987). In his work, Brenier considers the case where both the pile X

and the hole Y satisfy X = Y ∈ Rn, and the cost function is c(x, y) = |x− y|2. He then

showed that if the probability measure of X is absolutely continuous with respect to the

Lebesgue measure there exists a unique optimal transport map. After this result many

researchers started working on this problem, showing existence of optimal maps with

more general costs both in the Euclidean setting (for example, Ambrosio (2003); Caf-

farelli et al. (2002); Evans (1997); Evans & Gangbo (1999); Evans & Gariepy (2015);

Ambrosio & Pratelli (2003); Trudinger & Wang (2001)).

6.7.2 A Design Generalization of the Multi-marginal Optimal Transportation

Problem

Recently, Pass published a series of papers discussing a multi-marginal generaliza-

tion of the optimal transportation problem (Pass, 2011, 2012, 2013). In his work, Pass
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considers multiple marginal distributions to be matched to a single destination with

a given distribution. In his papers, Pass discusses the existence and uniqueness of

solutions for both a Monge-like and Kantorovich-like multi-marginal problems, under

different measures and cost functions and the connection between both formulations.

In our work we generalize the multi-marginal optimal transportation from a design per-

spective; we look at the multi-marginal optimal transportation problem not only as a

minimization problem over as set of mappings but also ask ourselves what is the opti-

mal target measure such that the cost function is minimal. We show that this problem

has very broad use in many fields, especially when taking an equivalent form of mul-

tiple source measures matched to a single target. More specifically, we focus our

interest on a set of mappings that allow unique recovery between the measures. That

is, given a source measure and a the target measure one can uniquely recover any

realization of the sources from a given realization of the target. This type of mappings

hold a special interest in many applications, as it is shown throughout this chapter.

6.8 Discussion

In this chapter we presented a sequential non-linear method to generate a memory-

less process from any process under different objectives and constraints. We show

there exists a simple closed form solution if we allow the outcome process to take

values on a continuous set. However, restricting the alphabet may cause lossy recov-

ery of the original process. Two solutions are presented in the face of two possible

objectives in the discrete case. First, assuming the alphabet size is too small to allow

lossless recovery we aim to maximize the mutual information with the original process.

The second objective focuses on finding a minimal alphabet size so that a unique re-

covery is guaranteed, while minimizing the entropy of the resulting process. In both

cases the problem is shown to be hard and several approaches are discussed. In ad-

dition, a simple closed-form solution is provided for a binary first order Markov process.
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The problem of finding a single marginal distribution function to be fitted to multiple

ones under varying costs functions can be viewed as a multi-marginal generalization

of the well-studied optimal transportation problem. In other words, we suggest that the

optimal transportation problem can be generalized to a design problem in which we are

given not a single but multiple source distribution functions. We are then interested not

only in finding conditional distributions to minimize a cost function, but also in finding

the single target distribution that minimizes the cost. We conjecture that this problem

has multiple applications in the fields of Economics, Engineering and others.





Chapter 7

ICA Application to Data Compression

The material in this Chapter is partly covered in (Painsky et al., 2015, 2016c,d).

7.1 Introduction

Large alphabet source coding is a basic and well–studied problem in data compres-

sion. It has many applications such as compression of natural language text, speech

and images. The classic perception of most commonly used methods is that a source

is best described over an alphabet which is at least as large as the observed large

alphabet. Here, we challenge this approach and introduce a conceptual framework

in which a large alphabet source is decomposed into “as statistically independent as

possible” components. This decomposition allows us to apply entropy encoding to

each component separately, while benefiting from their reduced alphabet size. We

show that in many cases, such decomposition results in a sum of marginal entropies

which is only slightly greater than the entropy of the source.

Assume a source over an alphabet size m, from which a sequence of n independent

samples are drawn. The classical source coding problem is concerned with finding

a sample-to-codeword mapping, such that the average codeword length is minimal,

and the codewords may be uniquely decodable. This problem was studied since the

79
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early days of information theory, and a variety of algorithms (Huffman et al., 1952;

Witten et al., 1987) and theoretical bounds (Cover & Thomas, 1991) were introduced

throughout the years.

The classical source coding problem usually assumes an alphabet size m which is

small, compared with n. Here, in large alphabet compression, we focus on a more dif-

ficult (and common) scenario, where the source’s alphabet size is considered “large”

(for example, a word-wise compression of natural language texts). In this setup, m

takes values which are either comparable (or even larger) than the length of the se-

quence n. The main challenge in large alphabet source coding is that the redundancy

of the code, formally defined as the excess number of bits used over the source’s en-

tropy, typically increases with the alphabet size (Davisson, 1973), in any compression

method where the source statistics is not precisely known in advance.

In this chapter we propose a conceptual framework for large alphabet source coding,

in which we reduce the alphabet size by decomposing the source into multiple com-

ponents which are “as statistically independent as possible”. This allows us to encode

each of the components separately, while benefiting from the reduced redundancy of

the smaller alphabet. To utilize this concept we introduce a framework based on the

generalized ICA method (Section 3). This framework efficiently searches for an invert-

ible transformation which minimizes the difference between the sum of marginal en-

tropies (after the transformation is applied) and the joint entropy of the source. Hence,

it minimizes the (attainable) lower bound on the average codeword length, when ap-

plying marginal entropy coding.

We demonstrate our method in a variety of large alphabet source coding setups. This

includes even the classical lossless coding, where the probability distribution of the

source is known both to the encoder and the decoder, universal lossless coding, in

which the decoder is not familiar with the distribution of the source, and lossy coding
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in the form of vector quantization. We show that our approach outperforms currently

known methods in all these setups, for a variety of typical sources.

7.2 Previous Work

In the classical lossless data compression framework, one usually assumes that both

the encoder and the decoder are familiar with the probability distribution of the en-

coded source, X. Therefore, encoding a sequence of n memoryless samples drawn

form this this source takes on average at least n times its entropy H (X), for sufficiently

large n (Cover & Thomas, 1991). In other words, if n is large enough to assume that

the joint empirical entropy of the samples, Ĥ (X), is close enough to the true joint en-

tropy of the source, H (X), then H (X) is the minimal average number of bits required

to encode a source symbol. Moreover, it can be shown (Cover & Thomas, 1991) that

the minimum average codeword length, l̄min, for a uniquely decodable code, satisfies

H (X) ≤ l̄min ≤ H (X) + 1. (7.1)

Entropy coding is a lossless data compression scheme that strives to achieve the lower

bound, l̄min = H (X). Two of the most common entropy coding techniques are Huff-

man coding (Huffman et al., 1952) and arithmetic coding (Witten et al., 1987).The Huff-

man algorithm is an iterative construction of variable-length code table for encoding the

source symbols. The algorithm derives this table from the probability of occurrence of

each source symbol. Assuming these probabilities are dyadic (i.e., − log p(x) is an

integer for every symbol x ∈ X), then the Huffman algorithm achieves l̄min = H (X).

However, in the case where the probabilities are not dyadic then the Huffman code

does not achieve the lower-bound of (7.1) and may result in an average codeword

length of up to H (X) + 1 bits. Moreover, although the Huffman code is theoretically

easy to construct (linear in the number of symbols, assuming they are sorted accord-

ing to their probabilities) it is practically a challenge to implement when the number

of symbols increases (Moffat & Turpin, 1997). Huffman codes achieve the minimum
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average codeword length among all uniquely decodable codes that assign a separate

codeword to each symbol. However, if the probability of one of the symbols is close

to 1, a Huffman code with an average codeword length close to the entropy can only

be constructed if a large number of symbols is jointly coded. The popular method of

arithmetic coding is designed to overcome this problem.

In arithmetic coding, instead of using a sequence of bits to represent a symbol, we

represent it by a subinterval of the unit interval (Witten et al., 1987). This means that

the code for a sequence of symbols is an interval whose length decreases as we add

more symbols to the sequence. This property allows us to have a coding scheme that

is incremental. In other words, the code for an extension to a sequence can be calcu-

lated simply from the code for the original sequence. Moreover, the codeword lengths

are not restricted to be integral. The arithmetic coding procedure achieves an average

length for the block that is within 2 bits of the entropy. Although this is not necessarily

optimal for any fixed block length (as we show for Huffman code), the procedure is

incremental and can be used for any block-length. Moreover, it does not require the

source probabilities to be dyadic. However, arithmetic codes are more complicated to

implement and are a less likely to practically achieve the entropy of the source as the

number of symbols increases. More specifically, due to the well-known underflow and

overflow problems, finite precision implementations of the traditional adaptive arith-

metic coding cannot work if the size of the source exceeds a certain limit (Yang & Jia,

2000). For example, the widely used arithmetic coder by Witten et al. (1987) cannot

work when the alphabet size is greater than 215. The improved version of arithmetic

coder by Moffat et al. (1998) extends the alphabet to size 230 by using low precision

arithmetic, at the expense of compression performance.

Notice that a large number of symbols not only results in difficulties in implementing

entropy codes: as the alphabet size increases, we require a growing number of sam-

ples for the empirical entropy to converge to the true entropy. Therefore, when dealing
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with sources over large alphabets we usually turn to a universal compression frame-

work. Here, we assume that the empirical probability distribution is not necessarily

equal to the true distribution and henceforth unknown to the decoder. This means that

a compressed representation of the samples now involves with two parts – the com-

pressed samples and an overhead redundancy (where the redundancy is defined as

difference between the number of bits used to transmit a message and the entropy of

the sequence).

As mentioned above, encoding a sequence of n samples, drawn from a memoryless

source X, requires at least n times the empirical entropy, Ĥ(X). Assuming that an

optimal codebook is assigned for sequence, after it is known, nĤ(X) is also the code-

length of the sequence. The redundancy, on the other hand, may be quantified in

several ways. One common way of measuring the coding redundancy is through the

minimax criterion (Davisson, 1973). Here, the worst-case redundancy is the lowest

number of extra bits (over the empirical entropy) required in the worst case (that is,

among all sequences) by any possible encoder. Many worst-case redundancy results

are known when the source’s alphabet is finite. A succession of papers initiated by

Shtarkov (1977) show that for the collection In
m of i.i.d. distributions over length-n

sequences drawn from an alphabet of a fixed size m, the worst-case redundancy be-

haves asymptotically as m−1
2 log n

m , as n grows. Orlitsky & Santhanam (2004) extended

this result to cases where m varies with n. The standard compression scheme they

introduce differentiates between three situations in which m = o(n), n = o(m) and

m = Θ(n). They provide leading term asymptotics and bounds to the worst-case min-

imax redundancy for these ranges of the alphabet size. Szpankowski & Weinberger

(2012) completed this study, providing the precise asymptotics to these ranges. For

the purpose of our work we adopt the leading terms of their results, showing that the

worst-case minimax redundancy, when m→ ∞, as n grows, behaves as follows:

• For m = o(n): R̂(In
m) w

m− 1
2

log
n
m

+
m
2

log e +
m log e

3

√
m
n

(7.2)



CHAPTER 7. ICA APPLICATION TO DATA COMPRESSION 84

• For n = o(m): R̂(In
m) w n log

m
n
+

3
2

n2

m
log e− 3

2
n
m

log e (7.3)

• For m = αn + l(n): R̂(In
m) w n log Bα + l(n) log Cα − log

√
Aα (7.4)

where α is a positive constant, l(n) = o(n) and

Cα ,
1
2
+

1
2

√
1 +

4
α

, Aα , Cα +
2
α

, Bα , αCα+2
α e−

1
Cα .

A very common method for dealing with unknown, or very large alphabet, sources is

through adaptation (Cleary & Witten, 1984). Adaptive entropy coding reduces this

overhead redundancy by finding a better trade-off between the average codeword

length and the cost of transmitting the empirical distribution. Specifically, the samples

are sequentially processed so that each sample is encoded according to the empirical

distribution of its preceding samples (with some bias towards symbols which are yet to

appear). As the samples are transmitted, both the encoder and the decoder gradually

adapt their models so that the empirical distribution is less effected by a single sample

and the average code length approaches the samples’ entropy.

In is paper from 2004, Orlitsky et al. (2004) presented a novel framework for universal

compression of memoryless sources over unknown and possibly infinite alphabets.

According to their framework, the description of any string, over any alphabet, can be

viewed as consisting of two parts: the symbols appearing in the string and the pattern

that they form. For example, the string “abracadabra” can be described by conveying

the pattern “12314151231” and the dictionary

index 1 2 3 4 5

letter a b r c d

Together, the pattern and dictionary specify that the string “abracadabra” consists of

the first letter to appear (a), followed by the second letter to appear (b), then by the
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third to appear (r), the first that appeared (a again), the fourth (c), etc. Therefore, a

compressed string involves with a compression of the pattern and its corresponding

dictionary. Orlitsky et al. derived the bounds for pattern compression, showing that the

redundancy of patterns compression under i.i.d. distributions over potentially infinite

alphabets is bounded by
( 3

2 log e
)

n1/3. Therefore, assuming the alphabet size is m

and the number of uniquely observed symbols is n0, the dictionary can be described

in n0 log m bits, leading to an overall lower bound of n0 log m + n1/3 bits on the com-

pression redundancy.

An additional (and very common) universal compression scheme is the canonical Huff-

man coding (Witten et al., 1999). A canonical Huffman code is a particular type of

Huffman code with unique properties which allow it to be described in a very compact

manner. The advantage of a canonical Huffman tree is that one can encode a code-

book in fewer bits than a fully described tree. Since a canonical Huffman codebook can

be stored especially efficiently, most compressors start by generating a non-canonical

Huffman codebook, and then convert it to a canonical form before using it. In canon-

ical Huffman coding the bit lengths of each symbol are the same as in the traditional

Huffman code. However, each code word is replaced with new code words (of the

same length), such that a subsequent symbol is assigned the next binary number in

sequence. For example, assume a Huffman code for four symbols, A to D: Applying

symbol A B C D

codeword 11 0 101 100

canonical Huffman coding to it we have This way we do not need to store the entire

symbol B A C D

codeword 0 10 110 111

Huffman mapping but only a list of all symbols in increasing order by their bit-lengths

and record the number of symbols for each bit-length. This allows a more compact
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representation of the code, hence, lower redundancy.

An additional class of data encoding methods which is referred to in this chapter is

lossy compression. In the lossy compression setup one applies inexact approxima-

tions for representing the content that has been encoded. In this chapter we focus on

vector quantization, in which a high-dimensional vector X ∈ Rd is to be represented

by a finite number of points. Vector quantization works by clustering the observed

samples of the vector X into groups, where each group is represented by its centroid

point, such as in k-means and other clustering algorithms. Then, the centroid points

that represent the observed samples are compressed in a lossless manner. In the

lossy compression setup, one is usually interested in minimizing the amount of bits

which represent the data for a given a distortion measure (or equivalently, minimizing

the distortion for a given compressed data size). The rate-distortion function defines

the lower bound on this objective. It is defined as

R (D) = min
P(Y|X)

I(X; Y) s.t. E {D(X, Y)} ≤ D (7.5)

where X is the source, Y is recovered version of X and D(X, Y) is some distortion

measure between X and Y. Notice that since the quantization is a deterministic map-

ping between X and Y, we have that I(X; Y) = H(Y), i.e., the entropy of the “code-

book”.

The Entropy Constrained Vector Quantization (ECVQ) is an iterative method for clus-

tering the observed samples from X into centroid points which are later represented by

a minimal average codeword length. The ECVQ algorithm minimizes the Lagrangian

L = E {D(X, Y)}+ λE {l(X)} (7.6)

where λ is the Lagrange multiplier and E (l(X)) is the average codeword length for

each symbol in X. The ECVQ algorithm performs an iterative local minimization

method similar to the generalized Lloyd (1982) algorithm. This means that for a given
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clustering of samples it constructs an entropy code to minimize the average codeword

lengths of the centroids. Then, for a given coding of centroids it clusters the observed

samples such that the average distortion is minimized, biased by the length of the

codeword. This process continues until a local convergence occurs. The ECVQ al-

gorithm performs local optimization (as a variant of the k-means algorithm) which is

also not very scalable for an increasing number of samples. This means that in the

presence of a large number of samples, or when the alphabet size of the samples

is large enough, the clustering phase of the ECVQ becomes impractical. Therefore,

in these cases, one usually uses a predefined lattice quantizer and only constructs a

corresponding codebook for its centroids.

It is quite evident that large alphabet sources entails a variety of difficulties in all the

compression setups mentioned above: it is more complicated to construct an entropy

code for, it results in a great redundancy when universally encoded and it is much more

challenging to design a vector quantizer for. In the following sections we introduce a

framework which is intended to address these drawbacks.

7.3 Large Alphabet Source Coding

Assume a classic compression setup in which both the encoder and the decoder are

familiar with the joint probability distribution of the source X ∼ p, and the number of

observations n is sufficiently large in the sense that Ĥ(X) ≈ H(X). As discussed

above, both Huffman and arithmetic coding entail a quite involved implementation as

the alphabet size increases. In addition, the Huffman code guarantees a redundancy

of at most a single bit for every alphabet size, depending on the (non-)dyadic struc-

ture of p. On the other hand, arithmetic coding does not require a dyadic p, but only

guarantees a redundancy of up to two bits, and is practically limited for smaller alpha-

bet size (Cover & Thomas, 1991; Yang & Jia, 2000). In other words, both Huffman

and arithmetic coding may result in an average codeword length which is a bit or two
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greater than H(X). Notice that these extra bits per symbol may be a substantial re-

dundancy, as this extra code-length is compared with the entropy of the source (which

is at most log(m)).

To overcome these drawbacks, we suggest a simple solution in which we first ap-

ply an invertible transformation to make the components of X “as statistically inde-

pendent as possible”, following entropy encoding of each of its components sepa-

rately. This scheme results in a redundancy which we previously defined as C(p, g) =

∑m
j=1 H(Yj) − H(X). However, it allows us to apply a Huffman or arithmetic encod-

ing on each of the components separately; hence, over a binary alphabet. Moreover,

notice we can group several components, Yj, into blocks so that the joint entropy of

the block is necessarily lower than the sum of marginal entropies. Notice that in this

chapter we refer to blocks as a set of components (as opposed to a set of words, as

in Section 4.3). Specifically, denote b as the number of components in each block and

B as the number of blocks. Then, b× B = d and for each block v = 1, . . . , B we have

that

H(Y(v)) ≤
b

∑
u=1

H(Y(v)
u ) (7.7)

where H(Y(v)) is the entropy of the block v and H(Y(v)
u ) is the marginal binary entropy

of the uth component of the block v. Summing over all B blocks we have

B

∑
v=1

H(Y(v)) ≤
B

∑
v=1

b

∑
u=1

Hb(Y
(v)
u ) =

d

∑
j=1

H(Yj). (7.8)

This means we can always apply our suggested invertible transformation which min-

imizes ∑d
j=1 H(Yj), and then the group components into B blocks and encode each

block separately. This results in ∑B
v=1 H(Y(v)) ≤ ∑d

j=1 H(Yj). By doing so, we increase

the alphabet size of each block (to a point which is still not problematic to implement

with Huffman or arithmetic coding) while at the same time we decrease the redun-

dancy. We discuss different considerations in choosing the number of blocks B in the

following sections.
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A more direct approach of minimizing the sum of block entropies ∑B
v=1 H(Y(v)) is to re-

fer to each block as a symbol over a greater alphabet size, 2b. This allows us to seek an

invertible transformation which minimizes the sum of marginal entropies, where each

marginal entropy corresponds to a marginal probability distribution over an alphabet

size 2b. This minimization problem is discussed in detail in Section 3.6. However,

notice that both the Piece-wise Linear Relaxation algorithm (Section 3.5), and the so-

lutions discussed in Section 3.6, require an extensive computational effort in finding

a minimizer for (3.3) as the alphabet size increases. Therefore, we suggest applying

the greedy order permutation as m grows. This solution may result in quite a large

redundancy for a several joint probability distributions p (as shown in Section 4.1).

However, as we uniformly average over all possible p’s, the redundancy is bounded

with a small constant as the alphabet size increases (Section 4.2). Moreover, the order

permutation simply requires ordering the values of p, which is significantly faster than

constructing a Huffman dictionary or arithmetic encoder.

To illustrate our suggested scheme, consider a source X ∼ p over an alphabet size m,

which follows the Zipf’s law distribution,

P(k; s, m) =
k−s

∑m
l=1 l−s

where m is the alphabet size and s is the skewness parameter. The Zipf’s law dis-

tribution is a commonly used heavy-tailed distribution, mostly in modeling of natural

(real-world) quantities. It is widely used in physical and social sciences, linguistics,

economics and many other fields.

We would like to design an entropy code for X with m = 216 and different values of s.

We first apply a standard Huffman code as an example of a common entropy coding

scheme. We further apply our suggested order permutation scheme (Chapter 4), in

which we sort p in a descending order, followed by arithmetic encoding to each of the

components separately. We further group these components into two separate blocks
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(as discussed above) and apply an arithmetic encoder on each of the blocks. We

repeat this experiment for a range of parameter values s. Figure 7.1 demonstrates the

results we achieve.
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Figure 7.1: Zipf’s law simulation results. Left: the curve with the squares is the average

codeword length using a Huffman code, the curve with the crosses corresponds to the average

codeword length using our suggested methods when encoding each component separately, and

the curve with the asterisks is our suggested method when encoding each of the two blocks

separately. The black curve (which tightly lower-bounds all the curves) is the entropy of the

source. Right: The difference between each encoding method and the entropy of the source

Our results show that the Huffman code attains an average codeword length which is

very close to the entropy of the source for lower values of s. However, as s increases

and the distribution of the source becomes more skewed, the Huffman code diverges

from the entropy. On the other hand, our suggested method succeeds in attaining an

average codeword length which is very close to the entropy of the source for every s,

especially as s increases, and when independently encoding each of the blocks.
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7.4 Universal Source Coding

The classical source coding problem is typically concerned with a source whose al-

phabet size is much smaller than the length of the sequence. In this case one usually

assumes that Ĥ(X) ≈ H(X). However, in many real world applications such an as-

sumption is not valid. A paradigmatic example is the word-wise compression of natural

language texts. In this setup we draw a memoryless sequence of words, so that the

alphabet size is often comparable to or even larger than the length of the source se-

quence.

As discussed above, the main challenge in large alphabet source coding is the redun-

dancy of the code, which is formally defined as the excess number of bits used over

the source’s entropy. The redundancy may be quantified as the expected number of

extra bits required to code a memoryless sequence drawn from X ∼ p, when using a

code that was constructed for p, rather than using the “true” code, optimized for the

empirical distribution p̂. Another way to quantify these extra bits is to directly design a

code for p̂, and transmit the encoded sequence together with this code.

Here again, we claim that in some cases, applying a transformation which decom-

poses the observed sequence into multiple “as independent as possible” components

results in a better compression rate. However, notice that now we also need to con-

sider the number of bits required to describe the transformation. In other words, our

redundancy involves not only with the cost described in (3.1), and the designated code

for the observed sequence, but also with the cost of describing the invertible transfor-

mation to the receiver. This means that even the simple order permutation (Section

4) requires at most n log m bits to describe, where m is the alphabet size and n is the

length of the sequence. This redundancy alone is not competitive with Szpankowski

& Weinberger (2012) worst-case redundancy results, described in (7.3).Therefore, we

require a different approach which minimizes the sum of marginal entropies (3.3) but
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at the same time is simpler to describe.

One possible solution is to seek for invertible, yet linear, transformations. This means

that describing the transformation would now only require log2 m bits. However, the

generalized linear BICA problem is also quite involved and preforms poorly as the di-

mension increases (see Section 5) .Therefore, we would like to modify our suggested

combinatorial approach (Section 3) so that the transformation we achieve requires

fewer bits to describe.

As in the previous section, we argue that in some setups it is better to split the compo-

nents of the data into blocks, with b components in each block, and encode the blocks

separately. Notice that we may set the value of b so that the blocks are no longer con-

sidered as over a large alphabet size (n� 2b). This way, the redundancy of encoding

each block separately is again negligible, at the cost of longer averaged codeword

length. For simplicity of notation we define the number of blocks as B, and assume

B = d/b is a natural number. Therefore, encoding the d components all together takes

n · Ĥ(X) bits for the data itself, plus a redundancy term according to (7.2) and (7.3),

while the block-wise compression takes about

n ·
B

∑
v=1

Ĥ(X(v)) + B
2b − 1

2
log

n
2b (7.9)

bits, where the first term is n times the sum of B empirical block entropies and the

second term is B times the redundancy of each block when n = o(2b). Two subsequent

questions arise from this setup:

1. What is the optimal value of b that minimizes (7.9)?

2. Given a fixed value of b, how can we re-arrange d components into B blocks so

that the averaged codeword length (which is bounded from below by the empiri-

cal entropy), together with the redundancy, is as small as possible?

Let us start by fixing b and focusing on the second question.
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A naive shuffling approach is to exhaustively search for all possible combinations of

clustering d components into B blocks. Assuming d is quite large, an exhaustive search

is practically infeasible. Moreover, the shuffling search space is quite limited and re-

sults in a very large value of (3.1), as shown below. Therefore, a different method is

required. We suggest applying our generalized BICA tool as an upper-bound search

method for efficiently searching for a minimal possible averaged codeword length. As

in previous sections we define Y = g(X), where g is some invertible transformation

of X. Every block of the vector Y satisfies (7.7), where the entropy terms are now re-

placed with empirical entropies. In the same manner as in Section 7.3, summing over

all B blocks results in (7.8) where again, the entropy terms are replaced with empirical

entropies. This means that the sum of the empirical block entropies is bounded from

above by the empirical marginal entropies of the components of Y (with equality iff the

components are independently distributed).

B

∑
v=1

Ĥ(Y(v)) ≤
d

∑
j=1

Ĥ(Yj). (7.10)

Our suggested scheme (Painsky et al., 2015) works as follows: We first randomly

partition the d components into B blocks. We estimate the joint probability of each

block and apply the combinatorial generalized BICA (Section 3.5) on it. The sum of

empirical marginal entropies (of each block) is an upper bound on the empirical entropy

of each block, as described in the previous paragraph. Now, let us randomly shuffle

the d components of the vector Y. By “shuffle” we refer to an exchange of positions of

the components of Y. Notice that by doing so, the sum of empirical marginal entropies

of the entire vector ∑d
i=1 Ĥ(Yi) is maintained. We now apply the generalized BICA on

each of the (new) blocks. This way we minimize (or at least do not increase) the sum of

empirical marginal entropies of the (new) blocks. This obviously results in a lower sum

of empirical marginal entropies of the entire vector Y. It also means that we minimize

the left hand side of (7.10), which upper bounds the sum of empirical block entropies,

as the inequality in (7.10) suggests. In other words, we show that in each iteration we
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decrease (at least do not increase) an upper bound on our objective. We terminate

once a maximal number of iterations is reached or we can no longer decrease the

sum of empirical marginal entropies.Therefore, assuming we terminate at iteration I0,

encoding the data takes about

n ·
B

∑
v=1

Ĥ[I0](Y(v)) + B
2b − 1

2
log

n
2b + I0B·b2b + I0d log d (7.11)

bits, where the first term refers to the sum of empirical block entropies at the I0 iter-

ation, the third term refers to the representation of I0 · B invertible transformation of

each block during the process until I0, and the fourth term refers to the bit permuta-

tions at the beginning of each iteration. Hence, to minimize (7.11) we need to find the

optimal trade-off between a low value of ∑B
v=1 Ĥ[I0](Y(v) and a low iteration number I0.

We may apply this technique with different values of b to find the best compression

scheme over all block sizes.

7.4.1 Synthetic Experiments

In order to demonstrate our suggested method we first generate a dataset according to

the Zipf law distribution which was previously described. We draw n = 106 realizations

from this distribution with an alphabet size m = 220 and a parameter value s = 1.2.

We encounter n0 = 80, 071 unique words and attain an empirical entropy of 8.38 bits

(while the true entropy is 8.65 bits). Therefore, compressing the drawn realizations in

its given 220 alphabet size takes a total of about 106× 8.38+ 1.22× 106 = 9.6 · 106 bits,

according to (7.4). Using the patterns method Orlitsky et al. (2004), the redundancy

we achieve is the redundancy of the pattern plus the size of the dictionary. Hence,

the compressed size of the data set according to this method is lower bounded by

106 × 8.38 + 80, 071 × 20 + 100 = 9.982 · 106 bits. In addition to these asymptotic

schemes we would also like to compare our method with a common practical ap-

proach. For this purpose we apply the canonical version of the Huffman code. Through

the canonical Huffman code we are able to achieve a compression rate of 9.17 bits per

symbol, leading to a total compression size of about 1.21 · 107 bits.



CHAPTER 7. ICA APPLICATION TO DATA COMPRESSION 95

Let us now apply a block-wise compression. We first demonstrate the behavior of our

suggested approach with four blocks (B = 4) as appears in Figure 7.2. To have a

good starting point, we initiate our algorithm with a the naive shuffling search method

(described above). This way we apply our optimization process on the best represen-

tation a random bit shuffling could attain (with a negligible d log d redundancy cost). As

we can see in Figure 7.2.B, we minimize (7.11) over I0 = 64 and ∑B
v=1 Ĥ(Y(v)) = 9.09

to achieve a total of 9.144 · 106 bits for the entire dataset.

Table 7.1 summarizes the results we achieve for different block sizes B. We see that

the lowest compression size is achieved over B = 2, i.e. two blocks. The reason is

that for a fixed n, the redundancy is approximately exponential in the size of the block

b. This means the redundancy drops exponentially with the number of blocks while the

minimum of ∑B
v=1 Ĥ(Y(v)) keeps increasing. In other words, in this example we earn

a great redundancy reduction when moving to a two-block representation while not

losing too much in terms of the average code-word length we can achieve. We further

notice that the optimal iterations number grows with the number of blocks. This results

from the cost of describing the optimal transformation for each block, at each iteration,

I0B · b2b, which exponentially increase with the block size b. Comparing our results

with the three methods described above we are able to reduce the total compression

size in 8 · 105 bits, compared to the minimum among all our competitors.

Table 7.1: Block-Wise Compression via Generalized BICA Method for different block sizes

Number of
Blocks

Minimum of
∑B

v=1 Ĥ(Y(v))
Optimal I0

Compressed
Data Size

Redundancy
Total Compression

Size

2 8.69 5 8.69 · 106 1.15 · 105 8.805 · 106

3 8.93 19 8.93 · 106 5.55 · 104 8.985 · 106

4 9.09 64 9.09 · 106 5.41 · 104 9.144 · 106
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Figure 7.2: Large Alphabet Source Coding via Generalized BICA with B = 4 blocks. Left side

(A): the horizontal line indicated the empirical entropy of X. The upper curve is the sum of

marginal empirical entropies and the lower curve is the sum of empirical block entropies (the

outcome of our suggested framework). Right side (B): total compression size of our suggested

method at each iteration.

7.4.2 Real-world Experiments

We now turn to demonstrate our compression framework on real world data sets. For

this purpose we use collections of word frequencies of different natural languages.

These word frequency lists are publicly available1 and describe the frequency each

word appears in a language, based on hundreds of millions of words, collected from

open source subtitles2 or based on different dictionaries and glossaries (New et al.,

2004). Since each word frequency list holds several hundreds of thousands of different

words, we choose a binary d = 20 bit representation. We sample 107 words from each

language and examine our suggested framework, compared with the compression

schemes mentioned above. The results we achieve are summarized in Table 7.2.

Notice the last column provides the percentage of the redundancy we save, which is

essentially the most we can hope for (as we cannot go lower than n · Ĥ(X) bits). As

in the previous experiment, our suggested algorithm achieves the lowest compression

1http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists
2www.opensubtitles.org

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists
www.opensubtitles.org
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size applied with two blocks after approximately I0 = 10 iterations, from the same

reasons mentioned above. Compared to the other methods, our suggested framework

shows to achieve significantly lower compression sizes for all languages, saving an

average of over one million bits per language.

Table 7.2: Natural Languages Experiment. For each compression method (D), (O) and (T)

stand for the compressed data, the overhead and the total compression size (in bits) respec-

tively. The We Save column is the amount of bits saved by our method, and its corresponding

percentage of (O) and (T). n0 is the number of unique words observed in each language, of the

107 sampled words. Notice the Chinese corpus refers to characters.

Language
(n0)

Standard
Compression

Patterns
Compression

Canonical
Huffman

Our Suggested
Method

We Save

English
(129, 834)

(D) 9.709 · 107

(O) 2.624 · 106

(T) 9.971 · 107

(D) 9.709 · 107

(O) 2.597 · 106

(T) 9.968 · 107

(D) 9.737 · 107

(O) 5.294 · 106

(T) 1.027 · 108

(D) 9.820 · 107

(O) 2.207 · 105

(T) 9.842 · 107

1.262 · 106

(O) 48.6%
(T) 1.27%

Chinese
(87, 777)

(D) 1.020 · 108

(O) 2.624 · 106

(T) 1.046 · 108

(D) 1.020 · 108

(O) 1.696 · 106

(T) 1.037 · 108

(D) 1.023 · 108

(O) 3.428 · 106

(T) 1.057 · 108

(D) 1.028 · 108

(O) 2.001 · 105

(T) 1.030 · 108

6.566 · 105

(O) 38.7%
(T) 0.63%

Spanish
(185, 866)

(D) 1.053 · 108

(O) 2.624 · 106

(T) 1.079 · 108

(D) 1.053 · 108

(O) 3.718 · 106

(T) 1.090 · 108

(D) 1.055 · 108

(O) 7.700 · 106

(T) 1.132 · 108

(D) 1.067 · 108

(O) 2.207 · 105

(T) 1.069 · 108

9.631 · 105

(O) 36.7%
(T) 0.89%

French
(139, 674)

(D) 1.009 · 108

(O) 2.624 · 106

(T) 1.035 · 108

(D) 1.009 · 108

(O) 2.794 · 106

(T) 1.036 · 108

(D) 1.011 · 108

(O) 5.745 · 106

(T) 1.069 · 108

(D) 1.017 · 108

(O) 2.207 · 105

(T) 1.019 · 108

1.557 · 106

(O) 59.3%
(T) 1.50%

Hebrew
(250, 917)

(D) 1.173 · 108

(O) 2.624 · 106

(T) 1.200 · 108

(D) 1.173 · 108

(O) 5.019 · 106

(T) 1.224 · 108

(D) 1.176 · 108

(O) 1.054 · 107

(T) 1.281 · 108

(D) 1.190 · 108

(O) 1.796 · 105

(T) 1.192 · 108

7.837 · 105

(O) 29.9%
(T) 0.65%

7.5 Adaptive Entropy Coding

As mentioned in previous sections, the major bottleneck in our suggested scheme is

describing the permutation we applied to the receiver. In this section we suggest three

additional strategies to tackle this problem, as presented in (Painsky et al., 2016c).
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One possible solution is to transmit the permutation, which results in an additional re-

dundancy of n0d, where n0 is the number of unique symbols that were sampled. As

this redundancy may be too costly, we may consider a fixed sub-optimal order per-

mutation according to the source’s distribution. Assume both the encoder and the

decoder know that the samples are drawn from a family of heavy-tailed distribution (for

example, Zipf law with unknown parameters). Then, we may use a fixed order permu-

tation, based on the expected order among the appearance of the symbols, followed

by adaptive entropy coding for each of the components (Cleary & Witten, 1984). For

example, assume we are to encode independent draws from an English dictionary.

We know that the word “The” is more frequent than the word “Dictionary”, even with-

out knowing their exact probability of occurrence. This way we may apply a fixed order

permutation, based only on the order of the frequency of appearance of the symbols.

We denote this method as fixed permutation marginal encoding. Notice that if we are

lucky enough to have the empirical distribution ordered in the same manner as the

source’s distribution, this fixed permutation is optimal (identical to an order permuta-

tion of the empirical distribution). However, notice that the order permutation does not

necessarily minimize (3.3). Therefore, the joint entropy of several components may

be lower than the sum of these components’ marginal entropies. This means we may

apply the order permutation, followed by separating the resulting components into two

groups (blocks, as previously described) and apply adaptive entropy coding on each

of these blocks. This method is denoted as fixed permutation block encoding.

An additional approach for conveying the order permutation to the decoder is based

on adaptation. Here, the samples are sequentially processed so that each sample is

transformed according to an order permutation, based on the empirical distribution of

the preceding samples. This way, the decoder receives each encoded sample, applies

an inverse transformation and updates both the empirical distribution and the required

inverse transformation for the next sample. We refer to an adaptive order permutation,
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followed by marginal adaptive entropy coding, as adaptive permutation marginal en-

coding. In addition we have adaptive permutation block encoding, in the same manner

as above.

7.5.1 Experiments

To illustrate our suggested methods, consider a source X ∼ p over an alphabet size m,

which follows the Zipf’s law distribution, as described throughout this chapter. Figure

7.3 presents the results we achieve, applying our suggested methods to independent

samples of a Zipf distribution with s = 1 and different alphabet sizes m = 2d. We

compare our methods with traditional adaptive entropy coding techniques.

As we can see, our suggested methods outperform the adaptive arithmetic coding

for small sequence lengths of an alphabet size d = 6 (upper chart of the left). As

the length of the sequence increases, the alphabet is no longer considered “large”

(comparable or even smaller than the length of the sequence), and the gap between

the schemes closes. As we increase the alphabet size (middle and bottom charts

on the left) we notice our methods becomes less competitive. The reason is that the

cost of transmitting the permutation (whether adaptively or as a fixed (and inaccurate)

transformation) becomes too costly. As we examine our results with Huffman cod-

ing (charts on the right) we notice our suggested methods outperform the adaptive

Huffman scheme for all alphabet sizes and sequence lengths. The reason is that the

Huffman coding scheme performs quite poorly as the alphabet size increases. Com-

paring our three methods with each other we notice that the fixed permutation block

encoding tends to perform better than the others. Notice that the adaptive permutation

marginal encoding with a Huffman code results in a high code rate and it is therefore

omitted from the charts. The reason is that the order permutation results in marginal

probabilities which tend to have low entropies (degenerate component probabilities).

This kind of components are specifically problematic for the Huffman coding scheme,
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Figure 7.3: Adaptive entropy coding of independent draws from a Zipf distribution with s = 1.

The charts on the left correspond to arithmetic coding with different alphabet sizes (d = 6, 10

and 16) and different sequence lengths (horizontal axis of each chart). The charts on the right

are Huffman coding. In each chart the black curve at the bottom is the empirical entropy, the

red curve is the adaptive entropy coding, the curve with the triangles is adaptive permutation

marginal encoding, the curve with the squares is adaptive permutation block encoding and the

curve with the X’s is fixed permutation block encoding

as previously discussed above.

Another aspect of our suggest approach is its low computational complexity, which

results in a faster compression runtime. Figure 7.4 demonstrates the total run-time

of the adaptive arithmetic coding scheme, compared with the fixed permutation block

encoding, in the experiments above. Here we use a standard Matlab implementation

of an adaptive arithmetic coder. There exists a large body of work regarding more

efficient and faster implementations (for example, (Fenwick, 1994)). However, the
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emphasis here is to demonstrate that the order permutation is very simple and quick

to apply, as it is simply a sorting algorithm followed by a small alphabet entropy coding.
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Figure 7.4: Runtime of adaptive arithmetic coding and our suggested fixed permutation block

encoding scheme, in the experiments on the left charts in Figure 7.3

As mentioned above, the arithmetic coding scheme encodes an entire sequence of

samples altogether. This results in a delay in decoding the samples, implementa-

tion synchronization issues and a high sensitivity to errors in the coded message. To

overcome these drawbacks we suggest a sliding window approach. This means that

the encoder shall sequentially encode non-overlapping sub-sequences of length l at

each iteration, based of the empirical distribution of all preceding samples encoded

in previous iterations. As before, we compare this scheme with adaptive order per-

mutation based techniques. Here, at each iteration we apply an order permutation

on a sub-sequence of length l, based on the empirical distribution of all preceding

samples. Then we apply arithmetic encoding to each of the components/blocks of

the transformed sub-sequences. For the purpose of this experiment we use indepen-

dent draws from an English dictionary3. Since the English dictionary holds almost a

million different words, we choose a binary representation of d = 20 bits. Figure 7.5

summarizes the results we achieve for different sub-sequence lengths l. We first no-

tice that the order-permutation based methods outperform the arithmetic coding as

3http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists
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long as the alphabet size is considered large (350× 10, 000 samples). This happens

since the arithmetic coder exhibits a “large alphabet” setup in each iteration (d = 20,

l = 100/1000/10, 000), even if it already learned the true distribution of the source.

On the other hand, our adaptive permutation marginal encoding method, for example,

allows a “small alphabet” compression (d = 2) of each component at the small cost of

C(Y).
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Figure 7.5: Sliding window based adaptive arithmetic coding for window sizes l =

100/1000/10, 000. In each chart the black curve on the bottom is the empirical entropy of

the samples, the red curve is adaptive entropy coding, the curve with the triangles is adaptive

permutation marginal encoding and the curve with the squares is adaptive permutation block

encoding

7.6 Vector Quantization

Vector quantization refers to a lossy compression setup, in which a high-dimensional

vector X ∈ Rd is to be represented by a finite number of points. This means that the

high dimensional observed samples are clustering into groups, where each group is

represented by a representative point. For example, the famous k-means algorithm

(MacQueen et al., 1967) provides a method to determine the clusters and the repre-

sentative points (centroids) for an Euclidean loss function. Then, these centroid points

that represent the observed samples are compressed in a lossless manner.
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As described above, in the lossy encoding setup one is usually interested in minimiz-

ing the amount of bits which represent the data for a given a distortion (or equivalently,

minimizing the distortion for a given compressed data size). The rate-distortion func-

tion defines the lower bound on this objective. In vector quantization, the representa-

tion is a deterministic mapping (defined as P(Y|X)) from a source X to its quantized

version Y. Therefore we have that H(Y|X) = 0 and the rate distortion is simply

R (D) = min
P(Y|X)

H(Y) s.t. E {D(X, Y)} ≤ D (7.12)

where D(X, Y) is some distortion measure between X and Y.

7.6.1 Entropy Constrained Vector Quantization

The Entropy Constrained Vector Quantization (ECVQ) is an iterative method for clus-

tering the observed samples into centroid points which are later represented by a

minimal average codeword length. The ECVQ algorithm aims to find the minimizer of

J (D) = min E {l(X)} s.t. E {D(X, Y)} ≤ D (7.13)

where the minimization is over three terms: the vector quantizer (of X), the entropy

encoder (of the quantized version of X) and the reconstruction module of X from its

quantized version.

Let us use a similar notation to Chou et al. (1989). Denote the vector quantizer α :

x → C as a mapping from an observed sample to a cluster in C , where C is a set

of m clusters. Further, let γ : C → c be a mapping from a cluster to a codeword.

Therefore, the composition α ◦ γ is the encoder. In the same manner, the decoder is a

composition γ−1 ◦ β, where γ−1 is the inverse mapping from a codeword to a cluster

and β : C → y is the reconstruction of x from its quantized version. Therefore, the

Lagrangian of the optimization problem (7.13) is

Lλ(α, β, γ) = E {D(X, β (α (X)) + λ |γ (α (X))|} (7.14)
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The ECVQ objective is to find the coder (α, β, γ) which minimizes this functional. In

their work, Chou et al. (1989) suggest an iterative descent algorithm similar to the gen-

eralized Lloyd (1982) algorithm. Their algorithm starts with an arbitrary initial coder.

Then, for a fixed γ and β it finds a clustering α(X) as the minimizer of:

α(X) = arg min
i∈C
{D(X, β (i)) + λ |γ (i)|} . (7.15)

Notice that for an Euclidean distortion, this problem is simply k-means clustering, with

a “bias” of λ |γ (i)| on its objective function.

For a fixed α and β, we notice that each cluster i ∈ C has an induced probability of

occurrence pi. Therefore, the entropy encoder γ is designed accordingly, so that |γ(i)|

is minimized. The Huffman algorithm could be incorporated into the design algorithm

at this stage. However, for simplicity, we allow codewords to have non-integer lengths,

and assign

|γ (i)| = − log(pi). (7.16)

Finally, for a fixed α and γ, the reconstruction module β is

β(i) = arg min
y∈Y

E
{

D
(

X, y
)
|α(X) = i

}
. (7.17)

For example, for an euclidean distortion measure, β(i)’s are simply the centroids of

the clusters i ∈ C .

Notice that the value objective (7.14), when applying each of the three steps (7.15-

7.17), is non-increasing. Therefore, as we apply these three steps repeatedly, the

ECVQ algorithm is guarenteed to converge to a local minimum. Moreover, notice that

for an Euclidean distortion measure, step (7.15) of the ECVQ algorithm is a variant

of the k-means algorithm. However, the k-means algorithms is known to be computa-

tionally difficult to execute as the number of observed samples increases. Hence, the
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ECVQ algorithm is also practically limited to a relatively small number of samples.

As in previous sections, we argue that when the alphabet size is large (corresponds

to low distortion), it may be better to encode the source component-wise. This means,

we would like to construct a vector quantizer such that the sum marginal entropies of

Y is minimal, subject to the same distortion constraint as in (7.12). Specifically,

R̃ (D) = min
P(Y|X)

d

∑
j=1

H(Yj) s.t. E {D(X, Y)} ≤ D (7.18)

Notice that for a fixed distortion value, R (D) ≤ R̃ (D) as sum of marginal entropies

is bounded from below by the joint entropy. However, since encoding a source over a

large alphabet may result in a large redundancy (as discussed in previous sections),

the average codeword length of the ECVQ (7.13) is not necessarily lower than our

suggested method (and usually even much larger).

Our suggested version of the ECVQ works as follows: we construct α and β in the

same manner as ECVQ does, but replace the Huffman encoder (in γ) with our sug-

gested linear relaxation to the BICA problem (Section 3). This means that for a fixed

α, β, which induce a random vector over a finite alphabet size (with a finite probability

distribution), we seek for a representation which makes its components “as statistically

independent as possible”. The average codeword lengths are then achieved by arith-

metic encoding on each of these components.

This scheme results not only with a different codebook, but also with a different quan-

tizer than the ECVQ. This means that a quantizer which strives to construct a random

vector (over a finite alphabet) with the lowest possible average codeword length (sub-

ject to a distortion constraint) is different than our quantizer, which seeks for a random

vector with a minimal sum of marginal average codeword lengths (subject to the same

distortion).
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Our suggested scheme proves to converge to a local minimum in the same manner

that ECVQ does. That is, for a fixed α, β, our suggested relaxed BICA method finds a

binary representation which minimizes the sum of marginal entropies. Therefore, we

can always compare the representation it achieves in the current iteration with the rep-

resentation it found in the previous iteration, and choose the one which minimizes the

objective. This leads to a non-increasing objective each time it is applied. Moreover,

notice that we do not have to use the complicated relaxed BICA scheme and apply

the simpler order permutation (Section 4). This would only result in a possible worse

encoder but local convergence is still guaranteed.

To illustrate the performance of our suggested method we conduct the following exper-

iment: We draw 1000 independent samples from a six dimensional bivariate Gaussian

mixture. We apply both the ECVQ algorithm, and our suggest BICA variation of the

ECVQ, on these samples. Figure 7.6 demonstrates the average codeword length we

achieve for different Euclidean (mean square error) distortion levels.
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Figure 7.6: ECVQ simulation. The curve with the squares corresponds to the average codeword

length achieved by the classical ECVQ algorithm. The curve with the asterisks is the average

codeword length achieved by our suggested BICA variant to the ECVQ algorithm

We first notice that both methods performs almost equally well. The reason is that
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1000 observations do not necessitate an alphabet size which is greater than m = 1000

to a attain a zero distortion. In this “small alphabet” regime, our suggested approach

does not demonstrate its advantage over classical methods, as discussed in previous

sections. However, we can still see it performs equally well. As we try to increase

the number of observations (and henceforth the alphabet size) we encounter compu-

tational difficulties, which result from repeatedly performing a variant of the k-means

algorithm (7.15). This makes both ECVQ and our suggested method quite difficult to

implement over a “large alphabet size” (many observations and low distortion).

However, notice that if Gersho’s conjecture is true (Gersho, 1979), and the best space-

filling polytope is a lattice, then the optimum d-dimensional ECVQ at high resolution

(low distortion) regime takes the form of a lattice (Zamir, 2014). This means that for

this setup, γ is simply a lattice quantizer. This idea is described in further detail in the

next section.

7.6.2 Vector Quantization with Fixed Lattices

As demonstrated in the previous section, applying the ECVQ algorithm to a large num-

ber of observations n with a low distortion constraint, is impractical. To overcome this

problem we suggest using a predefined quantizer in the form of a lattice. This means

that instead of seeking for a quantizer γ that results in a random vector (over a finite

alphabet) with a low average codeword length, we use a fixed quantizer, independent

of the samples, and construct a codebook accordingly. Therefore, the performance of

the codebook strongly depends on the empirical entropy of the quantized samples.

Since we are dealing with fixed lattices (vector quantizers), it is very likely that the em-

pirical entropy of the quantized samples would be significantly different (lower) than

the true entropy in low distortion regimes (large alphabet size). Therefore, the com-

pressed data would consist of both the compressed samples themselves and a redun-
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dancy term, as explained in detail in Section 7.4.

Here again, we suggest that instead of encoding the quantized samples over a large

alphabet size, we should first represent them in an “as statistically independent as

possible” manner, and encode each component separately.

To demonstrate this scheme we turn to a classic quantizing problem, of a standard

d-dimensional normal distribution. Notice this quantizing problem is very well studied

(Cover & Thomas, 1991) and a lower bound for the average codeword length, for a

given distortion value D, is given by

R(D) = max
{

d
2

log
(

d
D

)
, 0
}

. (7.19)

In this experiment we draw n samples from a standard d-dimensional multivariate nor-

mal distribution. Since the span of the normal distribution is infinite, we use a lattice

which is only defined in a finite sphere. This means that each sample which falls out-

side this sphere is quantized to its nearest quantization point on the surface of the

sphere. We define the radius of the sphere to be 5 times the variance of the source

(hence r = 5). We first draw n = 105 samples from d = 3, 4 and 8 dimensional normal

distributions. For d = 3 we use a standard cubic lattice, while for d = 4 we use an

hexagonal lattice (Zamir, 2014). For d = 8 we use an 8-dimensional integer lattice (Za-

mir, 2014). The upper row of Figure 7.7 demonstrates the results we achieve for the

three cases respectively (left to right), where for each setup we compare the empirical

joint entropy of the quantized samples (dashed line) with the sum of empirical marginal

entropies, following our suggested approach (solid line). We further indicate the rate

distortion lower bound (7.19) for each scenario, calculated according to the true distri-

bution (line with x’s). Notice the results are normalized according to the dimension d.

As we can see, the sum of empirical marginal entropies is very close to the empirical

joint entropy for d = 3, 4. The rate distortion indeed bounds from below both of these

curves. For d = 8 the empirical joint entropy is significantly lower than the true entropy
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(especially in the low distortion regime). This is a result of an alphabet size which is

larger than the number of samples n. However, in this case too, the sum of empiri-

cal marginal entropies is close to the joint empirical entropy. The behavior described

above is maintained as we increase the number of samples to n = 106, as indicated in

the lower row of Figure 7.7. Notice again that the sum of marginal empirical entropies

is very close to the joint empirical entropy, especially on the bounds (very high and

very low distortion). The reason is that in both of these cases, where the joint prob-

ability is either almost uniform (low distortion) or almost degenerate (high distortion),

there exists a representation which makes the components statistically independent.

In other words, both the uniform and degenerate distributions can be shown to satisfy

∑d
j=1 H(Yj) = H(Y) under the order permutation.

We further present the total compression size of the quantized samples in this univer-

sal setting. Figure 7.8 shows the amount of bits required for the quantized samples,

in addition to the overhead redundancy, for both Huffman coding and our suggested

scheme. As before, the rows correspond to n = 105 and n = 106 respectively, while

the columns are d = 3, 4 and 8, from left to right. We first notice that for d = 3, 4

both methods perform almost equally well. However, as d increases, there exists a

significant different between the classical coding scheme and our suggested method,

for low distortion rate. The reason is that for larger dimensions, and low distortion rate,

we need a very large number of quantization points, hence, a large alphabet size.

This is exactly the regime where our suggested method demonstrates its enhanced

capabilities, compared with standard methods.

7.7 Discussion

In this chapter we introduced a conceptual framework for large alphabet source coding.

We suggest to decompose a large alphabet source into components which are “as

statistically independent as possible” and then encode each component separately.
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Figure 7.7: Lattice quantization of d-dimensional standard normal distribution. The upper row

corresponds to n = 105 drawn samples while the lower row is n = 106 samples. The columns

correspond to the dimensions d = 3, 4 and 8 respectively. In each setup, the dashed line is

the joint empirical entropy while the solid line is the sum of marginal empirical entropies,

following our suggested method. The line with the x’s is the rate distortion (7.19), calculated

according to the true distribution.

This way we overcome the well known difficulties of large alphabet source coding, at

the cost of:

(i) Redundancy which results from encoding each component separately.

(ii) Computational difficulty of finding a transformation which decomposes the source.

We propose two methods which focus on minimizing these costs. The first method is a

piece-wise linear relaxation to the BICA (Chapter 3). This method strives to decrease

(i) as much as possible, but its computationally complexity is quite involved. Our sec-

ond method is the order permutation (Chapter 4) which is very simple to implement

(hence, focuses on (ii)) but results in a larger redundancy as it is a greedy solution to
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Figure 7.8: Total compression size for lattice quantization of d-dimensional standard normal

distribution. The upper row corresponds to n = 105 drawn samples while the lower row is

n = 106 samples. The columns correspond to the dimensions d = 3, 4 and 8, from left to

right. In each setup, the dashed line is the total compression size through classical universal

compression while the solid line is the total compression size using our suggested relaxed

generalized BICA approach.

(3.3).

We demonstrated our suggested framework on three major large alphabet compres-

sion scenarios, which are the classic lossless source coding problem, universal source

coding and vector quantization. We showed that in all of these cases, our suggested

approach achieves a lower average codeword length than most commonly used meth-

ods.
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All this together leads us to conclude that decomposing a large alphabet source into “

as statistically independent as possible” components, followed by entropy encoding of

each components separately, is both theoretically and practically beneficial.
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Theorem 9. Assume a binary random vector X ∈ {0, 1}d is generated from a first order

stationary symmetric Markov model. Then, the joint probability of X, Px
¯
= p1, . . . , pm only

contains d · (d− 1) + 2 unique (non-identical) elements of p1, . . . , pm.

Proof. We first notice that for a binary, symmetric and stationary Markov model, the probabil-

ity of each word is solely determined by

• The value of the first (most significant) bit

• The number of elements equal 1 (or equivalently 0)

• The number of transitions from 1 to 0 (and vice versa).

For example, for d = 4 the probability of 0100 equals the probability of 0010, while it is not

equal to the probability of 0001.

First, assume the number of transitions, denoted in r, is even. Further, assume that the first

(most significant) bit equals zero. Then, the number of words with a unique probability is

U1 =
d−2

∑
r=2,

r is even

d− r
2

∑
k= r

2

1 =
d−2

∑
r=2,

r is even

d− r (A.1)

where the summation over r corresponds to the number of transitions, while the summation

over k is with respect to the number of 1 elements given r. For example, for d = 4, r = 2 and

k = 1 we have the words 0100, 0010 (which have the same probability as discussed above),

113
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while for k = 2 we have 0110. In the same manner, assuming that the most significant bit is 0

but now r is odd, we have

U2 =
d−1

∑
r=2,

r is odd

d− r+1
2

∑
k= r+1

2

1 =
d−1

∑
r=2,

r is odd

d− r. (A.2)

Putting together (A.1) and (A.2) we have that number of words with a unique probability,

assuming the most significant bit is 0, equals

U1 + U2 =
d−1

∑
r=1

d− r =
d · (d− 1)

2
+ 1. (A.3)

The same derivation holds for the case where the most significant bit is 1, leading to a total of

d · (d− 1) + 2 words with a unique probability
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Proposition 3. Let X ∼ p be a random vector of an alphabet size m and a joint probability

distribution p. The expected joint entropy of X, where the expectation is over a uniform simplex

of joint probability distributions p is

Ep {H(X)} = 1
loge 2

(ψ(m + 1)− ψ(2))

where ψ is the digamma function.

Proof. We first notice that a uniform distribution over a simplex of a size m is equivalent to a

Direchlet distribution with parameters αi = 1, i = 1, . . . , m. The Direchlet distribution can be

generated through normalized independent random variables from a Gamma distribution. This

means that for statistically independent Zi ∼ Γ(ki = 1, θi = 1), i = 1, . . . , m we have that

1
∑m

k=1 Zk
(Z1, . . . Zm) ∼ Dir (α1 = 1, . . . , αm = 1) . (B.1)

We are interested in the expected joint entropy of draws from (B.1),

Ep {H(X)} =−
m

∑
i=1

E

{
Zi

∑m
k=1 Zk

log
Zi

∑m
k=1 Zk

}
= (B.2)

−mE

{
Zi

∑m
k=1 Zk

log
Zi

∑m
k=1 Zk

}
It can be shown that for two independent Gamma distributed random variables X1 ∼ Γ(α1, θ)

and X2 ∼ Γ(α2, θ), the ratio X1
X1+X2

follows a Beta distribution with parameters (α1, α2). Let

us denote Z̃i ,
Zi

∑m
k=1 Zk

= Zi
Zi+∑k 6=i Zk

. Notice that Zi ∼ Γ(1, 1) and ∑k 6=i Zi ∼ Γ(m− 1, 1) are

mutually independent. Therefore,

fZ̃i
(z) = Beta(1, m− 1) =

(1− z)(m−2)

B(1, m− 1)
. (B.3)
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This means that

E

{
Zi

∑m
k=1 Zk

log
Zi

∑m
k=1 Zk

}
= E

{
Z̃i log Z̃i

}
= (B.4)

1
B(1, m− 1)

∫ 1

0
z log (z)(1− z)(m−2)dz =

B(2, m− 1)
B(1, m− 1)

1
loge (2)

1
B(2, m− 1)

∫ 1

0
loge (z)z(1− z)(m−2)dz =

1
m loge (2)

E (loge (U))

where U follows a Beta distribution with parameters (2, m − 1). The expected natural log-

arithm of a Beta distributed random variable, V ∼ Beta(α1, α2), follows E (loge (V)) =

ψ(α1)− ψ(α1 + α2) where ψ is the digamma function. Putting this together with (B.2) and

(B.4) we attain

Ep {H(X)} = −mE

{
Zi

∑m
k=1 Zk

log
Zi

∑m
k=1 Zk

}
=

1
loge (2)

(ψ(m + 1)− ψ(2)) (B.5)
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In the generalized Gram-Schmidt method we suggested that for any process X with a

cumulative distribution function F(Xk) we would like to sequentially construct Yk such

that:

1. F(Yk) = ∏k
j=1 F(Yj).

2. Xk can be uniquely recovered from Yk for any k.

We presented a sequential framework for constructing such a memoryless process,

given that the desired probability measure is non-atomic. For simplicity of notation we

reformulate our problem as follows: Assume a random variable Y is to be constructed

from a random variable X given X’s past, denoted as Xp. Therefore we would like to

construct a memoryless random variable Y = g(X, Xp) with a given FY(y) such that

(i) Y is statistically independent in Xp

(ii) X can be uniquely recovered from Y given Xp

(iii) Y ∼ FY(y)

Our goal is therefore to find such Y = g(X, Xp) and discuss its uniqueness.
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C.1 The Uniform Distribution Case

In this section we consider a special case where Y is uniformly distributed, FY(y) = y.

For Y to be statistically independent of Xp it must satisfy

FY|Xp(y|Xp = xp) = FY(y). (C.1)

Deriving the left hand side of (C.1) we have that

FY|Xp(y|Xp = xp) = P(Y ≤ y|Xp = xp) = P(g(X, Xp) ≤ y|Xp = xp).

C.1.1 Uniqueness of Monotonically Increasing Transformations

The second constraint suggests X can be uniquely recovered from Y and Xp, which

implies X = g−1
Xp
(Y). Assume g(X, Xp) is monotonically increasing with respect to X.

Then, we have that

FY|Xp(y|Xp = xp) =P(g(X, Xp) ≤ y|Xp = xp) = (C.2)

P(X ≤ g−1
Xp
(y)|Xp = xp) = FX|Xp(g−1

Xp
(y)|Xp = xp)

where the second equality follows from the monotonically increasing behavior of g(X, Xp)

with respect to X. Therefore, we are looking for a monotonically increasing transfor-

mation x = g−1
Xp
(y) such that

FX|Xp(g−1
Xp
(y)|Xp = xp) = FY(y) = y.

The following lemmas discuss the uniqueness of monotonically increasing mappings

when X is a non-atomic (Lemma 1) or atomic (Lemma 2) measure.

Lemma 1. Assume X is a non-atomic random variable with a strictly monotonically increasing

commutative distribution function FX(x) (that is, X takes values on a continuous set). Suppose

there exists a transformation on its domain, x = h(y) such that

FX(x)|x=h(y) = FY(y).

Then,



APPENDIX C. 119

(1) x = h(y) is unique

(2) h(y) is monotonically non decreasing (increasing, if FY(y) is strictly increasing) .

Proof. Let us begin with proving (1). The transformation x = h(y) satisfies

FX(x)|x=h(y) = FX(h(y)) = P(X ≤ h(y)) = FY(y).

Suppose there is another transformation x = g(y) that satisfies the conditions stated above.

Then,

FX(x)|x=g(y) = FX(g(y)) = P(X ≤ g(y)) = FY(y).

Therefore,

P(X ≤ g(y)) = P(X ≤ h(y)) ∀y.

Suppose h(y) 6= g(y). This means that there exists at least a single y = ỹ where g(ỹ) =

h(ỹ) + δ and δ 6= 0. It follows that

P(X ≤ h(ỹ) + δ) = P(X ≤ h(ỹ))

or in other words

FX(h(ỹ)) = FX(h(ỹ) + δ)

which contradicts the monotonically increasing behavior of FX(x) where the transformation is

defined.

As for (2), we have that FX(h(y)) = FY(y) for all y. Therefore,

FX(h(y + δ)) = FY(y + δ).

FY(y) is a CDF which means that it satisfies FY(y + δ) ≥ FY(y). Then,

FX(h(y + δ)) ≥ FX(h(y))

(strictly larger if FY(y) is monotonically increasing). Since FX(x) is monotonically increasing

we have that h(y + δ) ≥ h(y) (strictly larger if FY(y) is monotonically increasing)
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Lemma 2. Assume X is a non-atomic random variable with a commutative distribution func-

tion FX(x). Suppose there exists a transformation on its domain, x = h(y) such that

FX(x)|x=h(y) = FY(y).

Then,

(1) x = h(y) is unique up to transformations in zero probability regions X’s domain

(2) h(y) is monotonically non decreasing (increasing, if FY(y) is strictly increasing) .

Proof. (1) As in Lemma 1, let us assume that there exists another transformation x = g(y)

that satisfies the desired conditions. Therefore we have that

P(X ≤ g(y)) = P(X ≤ h(y)) ∀y.

Assuming h(y) 6= g(y) we conclude that there exists at least a single value y = ỹ such that

g(ỹ) = h(ỹ) + δ and δ 6= 0. If both h(ỹ) and g(ỹ) are valid values in X’s domain (positive

probability) then we have P(X ≤ x1) = P(X ≤ x2). This contradicts P(X = x1) > 0 and

P(X = x2) > 0 unless x1 = x2.

Moreover, if g(ỹ) ∈ [x1, x2] and h(ỹ) /∈ [x1, x2] then again it contradicts P(X = x1) > 0 and

P(X = x2) > 0 unless x1 = x2. The only case in which we are not facing a contradiction is

where g(ỹ), h(ỹ) ∈ [x1, x2]. In other words, x = g(y) is unique up to transformations in zero

probability regions of X’s domain (regions which satisfy P(X = g(ỹ)) = 0).

(2) The monotonicity proof follows the same derivation as in Lemma 1.

Therefore, assuming that there exists a transformation x = g−1
Xp
(y) such that

FX|Xp(g−1
Xp
(y)|X = xp) = FY(y) = y,

then it is unique and monotonically increasing. In this case we have that

FY(y) =FX|Xp(g−1
Xp
(y)|X = xp) = P(X ≤ g−1

Xp
(y)|X = xp) = (C.3)

P(g(X, Xp) ≤ y|X = xp) = FY|Xp(y|Xp = xp)
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which means Y is statistically independent of Xp. Equivalently, if we find a monoton-

ically increasing transformation Y = g(X, Xp) that satisfies conditions (i), (ii) and (iii)

then it is unique.

C.1.2 Non Monotonically Increasing Transformations

In the previous section we discussed the case in which we limit ourselves to func-

tions g(X, Xp) which are monotone in X. For this set of functions equation (C.2) is a

sufficient condition for satisfying (i) and (ii). However, we may find non monotonically

increasing transformations Y = h(X, Xp) which satisfy conditions (i), (ii) and (ii) but do

not satisfy (C.2). For example: h(X, Xp) = 1− g(X, Xp). Notice these transformations

are necessarily measurable, as they map one distribution to another, and reversible

with respect to X given Xp (condition ii). In this case, the following properties hold:

Lemma 3. Assume h(X,Y) satisfies the three conditions mentioned above but does not satisfy

equation (5.4). Then:

(1) h(X, Xp) is not monotonically increasing in X

(2) h(X, Xp) is necessarily a “reordering” of g(X, Xp)

Proof. (1) Assume there exists a transformation Y = h(X, Xp) which satisfy the three condi-

tions (i), (ii) and (iii). Moreover assume h(X, Xp) 6= g(X, Xp). We know that

FY|Xp(y|Xp = xp) = P(h(X, Xp) ≤ y|Xp = xp) = FY(y)

but on the other hand, h(X, Xp) 6= g(X, Xp) which implies

FX|Xp(h
−1
Xp
(y)|Xp = xp) 6= FY(y)

since g(X, Xp) is unique. Therefore,

P(h(X, Xp) ≤ y|Xp = xp) 6= P(X ≤ h−1
Xp
(y)|Xp = xp)

which means h(X, Xp) cannot be monotonically increasing.
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(2) Notice we can always generate a (reversible) transformation of h(X, Xp) that will make it

monotonically increasing with respect to X, since X is uniquely recoverable from h(X, Xp)

and Xp. Consider this transformation as S(h(X, Xp)). Therefore, we found Y = S(h(X, Xp))

such that y is monotonically increasing, independent of Xp and X is uniquely recoverable from

Y and Xp. This contradicts the uniqueness of g(X, Xp) unless S(h(X, Xp)) = g(X, Xp),

which means h(X, Xp) = S−1(g(X, Xp)).

C.1.3 The Existence of a Monotonically Increasing Transformation

Following the properties we presented in the previous sections, it is enough to find

Y = g(X, Xp) which is invertible and monotonically increasing with respect to X given

Xp = xp, and satisfies

FY|Xp(yXp = xp) = FY|Xp(g−1
Xp
(y)|Xp = xp) = FY(y) = y.

If such Y = g(X, Xp) exists then

1. If FX|Xp(xXp = xp) is monotonically increasing, then Y = g(X, Xp) is unique

according to Lemma 1

2. If X|Xp takes on discrete values, then again Y = g(X, Xp) is unique, up to

different transformations in zero probability regions of the X|Xp

3. Any other transformations h(X, Xp) that may satisfy conditions (i),(ii) and (iii) is

necessarily a function of g(X, Xp) (and not monotonically increasing).

Following lemma 1 we define Y = FX|Xp(x|xp)−Θ · PX|Xp(xxp), where Θ ∼ Unif[0, 1]

is statistically independent of X and Xp. Therefore we have that

FY|Xp(y|xp) =P(FX|Xp(x|xp)−Θ · PX|Xp(xp) ≤ y|Xp = xp) = (C.4)

P(FX|Xp(x|xp)−Θ · PX|Xp(xxp) ≤ h−1(y)) = y = FY(y)

where the first equality follows from the fact that all the terms in FX|Xp(x|xp) − Θ ·

PX|Xp(xxp) ≤ h−1(y) are already conditioned on Xp, or statistically independent of
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Xp, and the second equality follows from FX|Xp(x|xp) − Θ · PX|Xp(xxp) ∼ Unif[0, 1],

according to lemma 1. The third condition is remaining requirement. However, it is

easy to see that Y = FX|Xp(x|xp)−Θ · PX|Xp(xxp) is reversible with respect to X given

Xp = xp. Therefore, we found a monotonically increasing transformation Y = g(X, Xp)

that satisfies

FX|Xp(x|xp) = FX|Xp(g−1
Xp
(y)|Xp = xp) = FY(y) = y

C.2 The Non-Uniform Case

Going back to our original task, we are interested in finding such Y = g(X, Xp) such

that there exists a random variable Y that satisfies conditions (i), (ii) and (iii).

Throughout the previous sections we discussed the uniqueness of the case in which Y

is uniformly distributed. Assume we are now interested in a non-uniformly distributed

Y. Lemma 1 shows us that we can always reshape a uniform distribution to any prob-

ability measure by applying the inverse of the desired CDF on it. Moreover, if the

desired probability measure is non-atomic, this transformation is reversible. Is this

mapping unique? This question was already answered by Lemmas 2 and 3; if we limit

ourselves to monotonically increasing transformation, then the solution we found is

unique.

However, assume we do not limit ourselves to monotonically increasing transforma-

tions and we have a transformation V = G(Y) that satisfies V ∼ FV(v). Since Y is

uniformly distributed we can always shift between local transformations on sets of the

same lengths while maintaining the transformation measurable. Then we can always

find S(G(Y)) which makes it monotonically increasing with respect to Y. This contra-

dicts the uniqueness of the monotonically increasing set unless S(G(Y)) equals the

single unique transformation we found.
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Putting it all together we have a two stage process in which we first generate a uni-

form transformation and then shape it to a desired distribution V through the inverse

of the desired CDF. We show that in both stages, if we limit ourselves to monotoni-

cally increasing transformations the solution presented in (Shayevitz & Feder, 2011)

is unique. However, if we allow ourselves a broader family of functions we necessarily

end up with either the same solution, or a “reordering” of it which is not monotonically

increasing.



Appendix D

We analyze the three different regions of β, compared with the parameteres of the

Markov process, α1 ≤ α2.

Proposition 4. For β < α1 < α2 < 1
2 , the maximal mutual information, Imax

(
Xk; Yk|Xk−1),

is monotonically increasing in β

Proof. Let us derive the maximal mutual information with respect to β:

∂

∂β
Imax

(
Xk; Yk|Xk−1

)
= γ

(
log

1− β

β
− α1

(
log
(

1− β

α1

)
− log

β

α1

)
1
α1

)
+ (D.1)

(1− γ)

(
log

1− β

β
− α2

(
log
(

1− β

α2

)
− log

β

α2

)
1
α2

)
=

log
1− β

β
− γ log

α1 − β

β
− (1− γ) log

α2 − β

β
>

log
1− β

β
− γ log

α1 − β

β
− (1− γ) log

α1 − β

β
=

log
1− β

α1 − β
> 0

where the first inequality follows from α2−β
β > α1−β

β and the second inequality results from

α1 < 1⇒ 1−β
α1−β > 1.

Proposition 5. For α1 < α2 < β < 1
2 , the maximal mutual information, Imax

(
Xk; Yk|Xk−1),

is monotonically decreasing in β
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Proof. Let us again derive the maximal mutual information with respect to β:

∂

∂β
Imax

(
Xk; Yk|Xk−1

)
= (D.2)

γ

(
log

1− β

β
− (1− α1)

(
log
(

1− β− α1

1− α1

)
− log

β− α1

1− α1

)
1

1− α1

)
+

(1− γ)

(
log

1− β

β
− (1− α2)

(
log
(

1− β− α2

1− α2

)
− log

β− α2

1− α2

)
1

1− α2

)
=

log
1− β

β
− γ log

1− β

β− α1
− (1− γ) log

1− β

β− α2
<

log
1− β

β
− γ log

1− β

β− α1
− (1− γ) log

1− β

β− α1
=

log
β− α1

β
< 0

where the first inequality follows from 1−β
β−α1

< 1−β
β−α2

.

Proposition 6. All optimum points in the range of α1 < β < α2 are local minimums

Proof. In the same manner, we derive the maximal mutual information with respect to β:

∂

∂β
Imax

(
Xk; Yk|Xk−1

)
= log

1− β

β
− γ log

1− β

β− α1
− (1− γ) log

α2 − β

β
= (D.3)

log
1− β

α2 − β
− γ

(
log

1− β

1− α1
− log

α2 − β

β

)

∂2

∂2β
Imax

(
Xk; Yk|Xk−1

)
=

α2 − β

1− β
· 1− α2

(α2 − β)2− (D.4)

γ

(
1− α1

1− β
· −1

1− α1
− β

α2 − β
· α2

β2

)
=

1− α2

(α2 − β)(1− β)
+ γ

(
1

1− β
+

α2

(α2 − β)β

)
> 0



Appendix E

We would like to show that for α1 < α2 < 1
2 the following applies:

α2

1− α1 − α2
<

hb(α2)− hb(α1) + α2hb

(
α1
α2

)
α2hb

(
α1
α2

)
+ (1− α1)hb

(
α2−α1
1−α1

) (E.1)

Proof. Let us first cross multiply both sides of the inequality

α2
2hb

(
α1

α2

)
+ α2(1− α1)hb

(
α2 − α1

1− α1

)
< (E.2)

(1− α1 − α2)(hb(α2)− hb(α1)) + (1− α1)α2hb

(
α1

α2

)
+ α2

2hb

(
α1

α2

)
which leads to

(1− α1 − α2)(hb(α2)− hb(α1)) + (1− α1)α2hb

(
α1

α2

)
− α2(1− α1)hb

(
α2 − α1

1− α1

)
> 0.

Since hb(α2)− hb(α1) > 0 and 1− α1 − α2 > (1− α1)α2 we have that

(1− α1 − α2)(hb(α2)− hb(α1)) + (1− α1)α2hb

(
α1

α2

)
− α2(1− α1)hb

(
α2 − α1

1− α1

)
>

(1− α1)α2

[
hb(α2)− hb(α1) + hb

(
α1

α2

)
− hb

(
α2 − α1

1− α1

)]
.

Therefore, it is enough to show that hb(α2) − hb(α1) + hb

(
α1
α2

)
− hb

(
α2−α1
1−α1

)
> 0. Since

hb

(
α2−α1
1−α1

)
= hb

(
1−α2
1−α1

)
we can rewrite the inequality as

hb(α2)− hb(α1) > hb

(
1− α2

1− α1

)
− hb

(
α1

α2

)
.

Notice that α1 < α2 < 1
2 follows that 1−α2

1−α1
> 1

2 .
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Let us first consider the case where α1
α2
≥ 1

2 . We have that

1− α2

1− α1
− α1

α2
=

(α2 − α1)(1− α1 − α2)

(1− α1)α2
> 0. (E.3)

Since 1−α2
1−α1
− α1

α2
> 1

2 and hb(p) is monotonically decreasing for p ≥ 1
2 , we have that

hb

(
1− α2

1− α1

)
− hb

(
α1

α2

)
< 0 < hb(α2)− hb(α1). (E.4)

Now consider the case where α1
α2
≥ 1

2 . We notice that:

hb

(
1− α2

1− α1

)
= hb

(
1− 1− α2

1− α1

)
= hb

(
α2 − α1

1− α1

)
(E.5)

where α2−α1
1−α1

< 1
2 . In addition,

α2 − α1

1− α1
− α1

α2
=

(α2 − α1)
2 + α1(1− α2)

(1− α1)α2
> 0. (E.6)

Therefore, we would like to show that

hb(α2)− hb(α1) > hb

(
α2 − α1

1− α1

)
− hb

( α1

α21

)
where all the binary entropy arguments are smaller than 1

2 and both sides of the inequality

are non-negative. In order to prove this inequality we remember that hb(p) is monotonically

increasing with a decreasing slope, ∂
∂p hb(p) = log 1−p

p , for p < 1
2 . Then, it is enough to show

that α1 < α1
α2

(immediate result) and

α2 − α1 >
α2 − α1

1− α1
− α1

α2
.

Looking at the difference between the two sides of the inequality we obtain:

α2 − α1

1− α1
− α1

α2
− (α2 − α1) =(α2 − α1)

α1

1− α1
− α1

α2
< (E.7)

1
2
(1− α1)

α1

1− α1
− α1

α2
= α1

(
α2 − 2

2α2

)
< 0

where the inequality follows from α2−α1
1−α1

< 1
2 ⇒ α2 − α1 < 1

2 (1− α1).
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