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Abstract— The Posterior Matching Scheme provides an 

optimal feedback communication method. It introduces a 

fundamental principle whereby the information still missing at 

the receiver is extracted from the a-posteriori density function, 

and matched to any desirable input distribution. Posterior 

Matching achieves the channel capacity for any memoryless 

channel in the presence of noiseless feedback, and can be 

viewed as a generalization of the well-known Schalkwijk-

Kailath scheme for the AWGN with average power constraint 

and the Horstein scheme for the BSC channel. The importance 

of the Posterior Matching principle goes beyond optimal 

feedback communication as it deals with a broader family of 

density matching problems. In this paper we discuss the 

uniqueness of the Posterior Matching principle and show that 

this scheme is unique for the set of monotonically increasing 

functions. Moreover, we show that any non-increasing function 

that satisfies the conditions of the Posterior Matching scheme 

is necessarily a “permutation” of the suggested scheme.   

Keywords – Posterior Matching, feedback communication, 

memoryless encoding. 

I.  INTRODUCTION  

The challenge of optimal communication in the presence of 

noiseless feedback has been studied quite broadly throughout 

the years. Early on Horstein [1] presented a feedback 

communication approach for a Binary Symmetric Channel 

(BSC). In his scheme, a message point inside the unit 

interval is used to represent the data bits, and is conveyed to 

the receiver by always indicating whether it lies to the left or 

to the right of the receiver's posterior median, which is also 

known to the transmitter via feedback. That way, the 

transmitter always answers the most informative question 

that can be posed by the receiver based on the information 

the latter has. This technique proved to attain the capacity of 

the BSC channel, and can be easily adapted to any Discrete 

Memoryless Channel (DMC) with feedback. The 

Schalkwijk-Kailath method [2-5] suggests an elegant 

capacity achieving feedback scheme for the Additive White 

Gaussian Noise (AWGN) channel with an average power 

constraint. At each time point the suggested method finds the 

Minimum Mean Square Error (MMSE) estimate of the 

message point at the receiver, and transmits the MMSE error 

on the next channel use, amplified to match the permissible 

input power constraint. This Scheme too, was shown to 

attain the channel capacity. In their Posterior Matching 

scheme [6-7] Shayevitz and Feder argue that there exists an 

underlying principle connecting these two methods. They 

claim that both these methods strive to transmit what the 

receiver is missing. This principle is the basic premise of the 

Posterior Matching scheme and is formulized in quite a 

simple manner. Let         be a message point whose 

binary expression represents an infinite bitstream to be 

reliably conveyed to the receiver. Denote the transmitted 

signal at time n as   , sent through a noisy memoryless 

channel      
. A random variable Y is therefore received by 

the receiver and is also evident to the transmitter through the 

noiseless feedback channel. The Posterior Matching 

principle suggests that the re-transmitted message      

should hold three conditions: 

There exists a random variable U such that, 

(I)  U is statistically independent of    {  }   
 . 

(II)  X can be uniquely recovered from   given 

   . 

(III)      is a deterministic function of U satisfying  

          . 

The first condition guarantees that      represents “new 

information” not yet observed by the receiver while the 

second condition makes sure the information is “relevant” in 

terms of describing the message. The third condition yields 

the re-transmitted message      which is distributed 

according to a known commutative distribution function   , 

matched to the noisy channel (hence the name Posterior 

Matching). In their paper, Shayevitz and Feder show there 

exist a method satisfying the above: 

       
  (           )                     (1) 

where             is the posterior of      and   
   is the 

inverse of   . It is easy to show that applying the function 

            on the message X given the value of    yields a 

uniformly distributed random variable. Moreover, this 

random variable is in fact independent of    as for any 

realization of   , it is distributed in a similar manner. In 

addition, since a uniform distribution has a monotonically 

increasing CDF, the message X can be uniquely recovered 

from Vn+1 given the realization of   . Finally, applying the 

inverse of    on this uniformly distributed random variable 



guarantees      is distributed according to required 

distribution. Since    
   is also a deterministic function of  

            , the Posterior Matching principle is satisfied 

Shayevitz and Feder also proved this scheme achieves the 

channel capacity and provided closed form expressions for 

the error probably of it. They showed both Horstein and 

Schalkwijk-Kailath methods can be derived as special cases 

of the Posterior Matching scheme. In this paper we discuss 

the uniqueness of the Posterior Matching scheme. I.e. we 

argue whether or not there are other functions that satisfy the 

conditions stated above. The importance of this question 

goes beyond the context of optimal feedback communication 

as it deals with quite a fundamental setup of probability 

functions matching. In other words, given a set of 

distribution functions, is there a unique method of matching 

them to the same distribution function? If not, is it possible 

to describe the family of functions that satisfy it? In this 

paper we provide a comprehensive discussion over these 

questions and characterize a set of solutions for the Posterior 

Matching conditions. We show that the scheme proposed by 

Shayevitz and Feder is unique under a natural monotonicity 

condition on the relation between X (given   ) and U, and 

explicitly derive its connection to all possible non-monotone 

transformations. 

II. PROBLEM FORMULATION 

The essence of the Posterior Matching scheme is 

presented by the following problem formulation. Assume a 

message point X is to be transmitted through a noisy 

memoryless channel. A random variable Y is received by the 

receiver (representing    as it was previously denoted to 

reduced notation) and is also evident to the transmitter 

through the noiseless feedback channel. From these two 

random variables we would like to construct a re-transmitted 

random variable,          with a known       such that 

there exists a random variable U which satisfy: 

(I)  U is statistically independent in Y. 

(II)  X can be uniquely recovered from U given Y. 

(III) V is a deterministic function of U satisfying  

       . 

Our goal is therefore finding such          and 

discussing its uniqueness. 

III. THE UNIFORM DISTRIBUTION CASE 

In this section we consider a special case where V=U 

and is uniformally distributed 

                   (2) 

For U to be statistically independent of Y it must satisfy 

                            (3) 

Deriving the left hand side we have 

                                                            

                     

A. Uniqueness of Monotonically Increasing 

Transformations 

The second constraint suggests X can be uniquely 

recovered from U and Y, which implies     
     . 

Assume        is monotonically increasing with respect to 

X. In this case we have 

                                                      

          
          

        
           

where the second equality follows from the monotonically 

increasing behavior of        with respect to X. 

Therefore, we are looking for a monotonically increasing 

transformation     
      such that 

                      
                                (6) 

    Lemma 1: Assume X is a random variable with a CDF 

     . Assume there exists a transformation on its domain, 

       such that 

                  .                         (7) 

In addition assume       is monotonically increasing where 

the transformation is defined, then 

(i)         is unique. 

(ii)       is monotonically non decreasing (increasing, if  

       is strictly increasing). 

    Proof: 

(i)  The transformation        satisfies 

               (    )      (      )            

Suppose there is another transformation        that 

satisfies the conditions stated above then 

               (    )                    . (9) 

Therefore,  

    (      )                 .         (10) 

Suppose          . This means there exist at least a 

single    ̃ where    ̃     ̃     and    . It follows 

that  



          ̃              ̃            (11) 

or in other words 

  (   ̃ )        ̃      (12) 

which contradicts the monotonically increasing behavior of 

      where the transformation is defined. 

(ii)  We have   (    )          .  

Therefore  

  (      )                    (13) 

      is a CDF which satisfies              , 

therefore  

  (      )    (    )         (14) 

(strictly larger if       is monotonically increasing). 

Since       is monotonically increasing we have 

                       (15) 

 (strictly larger if       is monotonically increasing)            

    Lemma 2: Assume X is a discrete random variable with a 

CDF      . Suppose there exists a transformation on its 

domain        such that 

                     (16) 

then we have: 

(i)        is unique up to transformations in zero  

probability areas of the X. 

(ii)      is monotonically non decreasing (increasing, if  

      is strictly increasing). 

     Proof: 

(i)  As in Lemma 1, let’s assume there is another  

transformation x=      that satisfies the requested 

conditions. Therefore we have 

    (      )                 .       (17) 

Assuming           we have at least a single    ̃ 

where    ̃     ̃     and    .  

If both    ̃  and    ̃  are valid values in X’s alphabet 

(positive probability) then we have 

                     .              (18) 

This contradicts               and              

unless      . Moreover, if    ̃        ] and    ̃  

      ] then again it contradicts              and 

             unless      . 

The only situation in which we are not facing a contradiction 

is where     ̃     ̃        ].  
In other words, x=      is unique up to transformations in 

zero probability areas of the random variable X (areas which 

satisfy     (     ̃ )   ) 

(ii)  The monotonicity proof follows the same derivation as  

in Lemma 1                    

 

To conclude, assuming there exists a transformation 

    
      such that  

       
                              (19) 

then it is unique and monotonically increasing. In this case 

we have 

             
                                                        

                          
            

                                     

which means U is statistically independent of Y. 

Equivalently, if we find a monotonically increasing 

transformation U=g(X,Y) that satisfies conditions (  , (  ) and 

(III) then it is unique. 

B. Non Monotonically  Increasing Transformations 

In the previous section we discussed the case in which 

we limit ourselves to functions g(X,Y) which are monotone 

in their first argument. For this set of functions equation (5) 

is a sufficient condition for satisfying (   and (  ).  
We may find, however, non monotonically increasing 

transformations U=h(X,Y) which satisfy conditions (  , (  ) 
and (III) but do not satisfy equation (5). For example: 

h(X,Y)=1-g(X,Y). Notice these transformations are 

necessarily measurable, as they map one distribution to 

another, and reversible with respect to X given Y (condition 

II). In this case, the following properties hold: 

 

    Lemma 3:  Assume h(X,Y) satisfies the three conditions  

mentioned above but does not satisfy equation (5). Then: 

(i)        is not monotonically increasing in X. 

(ii)        is necessarily “reordering” of g(X,Y). 

    Proof:  

(i) Assume there exists a transformation U=h(X,Y) which 
satisfy the three conditions (I), (II) and (III). Moreover 

assume h(X,Y) g(X,Y).   

We know that  

                                       (21) 

but on the other hand, h(X,Y) g(X,Y)  which implies 



       
                             (22) 

since g(X,Y) is unique. Therefore,  

                  ≠         
            (23) 

which means        cannot be monotonically increasing. 

(ii) We can always create a (reversible) transformation on  
h(X,Y) that will make it monotonically increasing with 

respect to X, since X is uniquely recoverable from h(X,Y) and 

Y. Consider this transformation as          . Therefore, we 

found             such that u is monotonically 

increasing, independent of Y and X is uniquely recoverable 

from U and Y. This contradicts the uniqueness of g(X,Y) 

unless S(       =g(X,Y), which means  

                                 (24) 

     

C. Existance of a Monotonically Increasing Transformation 

Following the properties we showed in the previous 

sections, it is enough to find U=g(X,Y) which is invertible 

and monotonically increasing with respect to X given Y=y, 

and satisfies  

                   
                  .    (25) 

If such U=g(X,Y) exists then 

(i)  If             is monotonically increasing, then 

 U=g(X,Y) is unique according to Lemma1. 

(ii)  If  X|Y takes on discrete values, then again U=g(X,Y) 

 is unique, up to different transformations in zero  

 probability areas of the X|Y. 

(iii)  Any other h(X,Y) that may satisfy conditions (I),(II)  
 and (III) is necessarily a function of g(X,Y) (and not 

 monotonically increasing).   

    Lemma 4: Let         and           ] be statistically 

independent. Then 

(i)    
            

(ii)                          ]. Specifically, if X is 

 proper (      is strictly continuous) then    

               ] 
    Proof : can be located in [7]. 

 

Define                        , where           ] 

is statistically independent of X and Y. Then we get 

                                (26) 

       (                             )  ⏟
 

 

    (                            ) ⏟
 

 

              ⏟
 

     . 

Where: 

(1) all the terms in                              are 

already conditioned in y, or statistically independent of 

y. 

(2)                                ], according to 

lemma 1. 

(3) The condition we want to satisfy 

 

Also, it is easy to see that                         is 

reversible with respect to X given Y=y.  

Therefore, we found a monotonically increasing 

transformation U=g(X,Y) that satisfies  

                   
                  .    (27) 

II. THE NON-UNIFORM CASE 

Going back to our original task, we are interested in finding 

such V=g(X,Y) that there exists a random variable U which 

satisfy: 

(I) U is statistically independent in Y. 

(II)  X can be uniquely recovered from U given Y. 

(III) V s a deterministic function of U satisfying  

       . 

   Throughout the previous sections we discussed the 

uniqueness of the case in which V=U is uniformly 

distributed. Assume we are now interested in a non-

uniformly distributed V. We know that if we set   
  

      all three conditions are satisfied according to [6]. 

Therefore, we still need to discuss the uniqueness of this 

(deterministic) mapping from   to V. In other words, given a 

uniformly distributed U and a desired random 

variable        , is the mapping     
      unique? This 

question was already answered by Lemma 1; if we limit 

ourselves to monotonically increasing transformation, the 

solution we found is unique. However, assume we do not 

limit ourselves to monotonically increasing transformations, 

and assume we have a transformation         that 

satisfies        . Since U is uniformly distributed we can 

always shift between local transformations on sets of the 

same lengths while maintaining the transformation 

measurable. Then we can always find         which makes 

it monotonically increasing with respect to U. This 

contradicts the uniqueness of the monotonically increasing 

set unless         equals the single unique transformation 

we found.  

   Putting this all together we have a two stage process in 

which we first generate a random variable U and then shape 

it to a desired distribution V through a deterministic 

mapping. We show that in both stages, if we limit ourselves 

to monotonically increasing transformations the solution 

presented in [6] is unique. However, if we allow a broader 

family of functions we necessarily end up with either the 

same solution, or a reordering of it which is not 

monotonically increasing.  



SUMMARY 

    In this paper we discussed the uniqueness of the Posterior 

Matching scheme over a noiseless feedback channel. We 

presented the three conditions that define the Posterior 

Matching principle, and discussed the family of functions 

that satisfy them. We showed that if we limit ourselves to a 

family of monotonically increasing functions with respect to 

the message X, the solution presented in the original 

Posterior Matching scheme is unique. We also showed that 

even though there are other non-increasing functions that 

satisfy the three conditions, these are necessarily 

“permutations” of the original Posterior Matching solution.  

The uniqueness of the Posterior Matching scheme is 

essential for the discussion and comparison of this scheme 

with other optimal feedback methods that may be 

derivatives of this fundamental idea. It is also important in 

the context of a broader family of problems dealing with 

probability distributions matching, as in memoryless 

representation for Markov processes [8] for example.   
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