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Chapter 1

Introduction

This text is meant to be an introduction in the theory of incoherent scatter
measurements. The emphasis lies neither in the scattering process nor in the
radar technology, but rather in the mathematical principles of the analogue and
digital data processing in the radar receiver, in the theory of ambiguity functions
and, finally, in the most important modulation methods. The purpose is to give
a general picture of the working principles of the method so that those, who later
want to learn about the technical aspects of the radar, will be familiar with the
idea behind the applied technology and those, who want to learn about the
data analysis and experiment design, will have a sufficient background on how
the measurements are carried out and what affects the observed autocorrelation
functions. Data analysis itself (i.e. the methods of determining the plasma
parameters from the measured autocorrelation functions) as well as the error
analysis are wide topics which would be subjects of a separate treatment.

In order to give some basic knowledge on the target, the theory of Thomson
scattering from free electrons as well as scattering from density fluctuations in
a plasma is briefly introduced following more or less the guidelines presented by
Prof. T. Hagfors in various EISCAT summer schools. The theory of the plasma
autocorrelation function, however, is not included but a qualitative picture based
on ion and electron acoustic waves is given instead. In order show how the radio
wave is generated in the transmitter, the working principle of the klystron is
briefly described. The generation of narrow radar beams is explained by using
the simplest theory of a parabolic dish antenna as an example.

No previous knowledge of signal theory is assumed; it is only supposed that
the reader is familiar with the Fourier transform. The necessary signal theory is
introduced starting from the first principles and restricted to a minimum level,
e.g. the use of the concept of stochastic process is avoided as much as possible.
An essential part of the course is the theory of radar ambiguity functions in
the form presented by Dr. M. Lehtinen. This formalism is greatly emphasised
because it presents a modern way of handling the effects of transmitter modu-
lation and receiver filtering and it has a key role in the future standard analy-
sis package GUISDAP (Grand Unified Incoherent Scatter Design and Analysis
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Package). The ambiguity function theory is also used in explaining the ideas of
the different modulation methods. Another useful tool essential in understand-
ing the experiment design is the lag profile matrix, which is largely applied in
explaining the modulation principles.
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Chapter 2

Scattering process and the

radar

2.1 Scattering from density fluctuations

There are always temporal and spatial variations in the refractive index n (or
the permittivity ε ∝ n2) of the ionospheric plasma. They may be caused by
thermal fluctuations, turbulence or plasma instabilities. When electromagnetic
waves propagate in the plasma, these fluctuations cause partial reflection which
we call scattering.

Let us consider an isotropic medium with a scalar permittivity ε. For high
frequencies like in the incoherent scatter radar, this is a good approximation even
in the magnetised ionospheric plasma. In this case the displacement vector D

due to an electric field E is

D = εE = ε0E + P, (2.1)

where the polarisation P is
P = (ε − ε0)E. (2.2)

If the average value of the temporally and spatially varying permittivity is 〈ε〉,
we can write ε as

ε(r, t) = 〈ε〉 + ∆ε(r, t), (2.3)

where ∆ε is the permittivity fluctuation. Then

P = (〈ε〉 + ∆ε − ε0)E

= (〈ε〉 − ε0)E + ∆εE

= P〈ε〉 + ∆P. (2.4)

Here ∆P is the polarisation fluctuation

∆P = ∆εE. (2.5)
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In ideal homogeneous medium the electromagnetic wave propagates without
scattering and reflection. In such a case ε = 〈ε〉 and the displacement current
due to the wave is Ḋ = 〈ε〉Ė. This is the displacement current which is needed
to make the wave propagate in the medium at a proper phase velocity. If
fluctuations are present, they cause an additional displacement current density

∆Ḋ = ∆Ṗ = ∆εĖ (2.6)

which will emit radiation. In this way an incident electromagnetic wave will be
scattered by the fluctuations of the refractive index.

Let an incident electromagnetic plane wave with an electric field

E = E0e
i(ω0t − k · r) (2.7)

enter the medium. It causes a polarisation fluctuation

∆P = ∆ε(r, t)E0e
i(ω0t − k · r), (2.8)

which leads to a displacement current density

∆j = ∆Ṗ = iω0∆ε(r, t)E0e
i(ω0t − k · r). (2.9)

Here the time derivative of ∆ε(r, t) is neglected because it is much smaller than
the time derivative of the electric field. A volume element d3r′ at r′ contains a
current element ∆j · d3r′ which causes a vector potential

dA =
µ0

4π
· ∆j · d3r′

|r − r′| (2.10)

at r. Since the disturbance in the electromagnetic field propagates at the speed
of light, the vector potential at r, due to a current element at r′, is delayed by
t − |r − r′|/c, i.e. the retarded vector potential is

dA(r, t) =
µ0

4π
· ∆j (r′, t − |r− r′|/c) d3r′

|r − r′|

=
iωoµ0E0

4π
· ∆ε (r′, t − |r − r′|/c)

|r − r′| · eiωo (t − |r − r′|/c) − ik · r′d3r′. (2.11)

In incoherent scatter radar we observe scattering from a finite volume V
(Fig. 2.1). Assuming so slow fluctuations that their changes are small during the
time the wave passes V and a scattering volume much smaller than its distance R
to the observation point r, the time t−|r−r′|/c in ∆ε can be replaced by a single
time t′ = t − R/c everywhere inside V . Then ∆ε (r′, t − |r − r′|/c) ≈ ∆ε(r′, t′)
and the term |r−r′| in the denominator of eq. (2.11) can also be replaced by R.
Furthermore, the term iωo|r−r′|/c can be written as iωo|r−r′|/c = ik|r−r′| =
iks · (r − r′), where ks is the wave vector in the direction r − r′. With this
notation the exponential function in eq. (2.11) can be developed as

eiω0t − iks · (r − r′) − ik · r′

7



V

k
ks

r
r − r´

d3r´

R

0

Figure 2.1: Scattering from finite volume V .

= eiω0t − iks · r− i(k − ks) · r′

= ei(ω0t − ks · r) · e−i(k− ks) · r′ .
In the above approximation the total vector potential at r, due to the radi-

ation scattered from V , can be written in the form

A(r, t) =
iω0µ0E0

4πR
· ei(ω0t − ks · r)

∫

V

∆ε(r′, t′)e−i(k− ks) · r′d3r′. (2.12)

This can be interpreted as a plane wave propagating in the direction ks with
a carrier angular frequency ω0. The amplitude of the wave is proportional to
the 3-dimensional spatial Fourier transform of the permittivity fluctuation at a
wave number K = k− ks.

Using the notation ∆E for the Fourier transform of ∆ε, the result can be
rewritten as

A(r, t) =
iω0µ0E0

4πR
∆E(K)ei(ω0t − ks · r). (2.13)

Since the magnetic induction of the scattered wave is given by

B = ∇×A, (2.14)

obviously B ∝ E0∆E(K) and the intensity (absolute value of the Poynting
vector) of the scattered radiation is

Ss ∝ |∆E(K)|2S, (2.15)

where S is the intensity of the incident wave entering the scattering volume.
Starting from the refractive index of the electromagnetic wave in a plasma,

n =

√

1 − nee2

ε0meω2
0

, (2.16)
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the plasma permittivity is

ε = ε0n
2 = ε0 −

nee
2

meω2
0

, (2.17)

where ne is the electron density and me the electron mass. Therefore the per-
mittivity and electron density fluctuations ∆ε and ∆ne are connected by

∆ε = − e2

meω2
0

· ∆ne. (2.18)

The corresponding relation is also valid for their Fourier transforms so that the
intensity of the scattered radiation is

Ss ∝ |Ne(K)|2S, (2.19)

where ∆Ne(K) is the 3-dimensional spatial Fourier transform of ∆ne. This
means that the amplitude of the scattered signal is proportional to the amplitude
of the density fluctuation at a wave number K = k − ks.

The relation of the wave numbers k, ks and K is shown in Fig. 2.2. Be-
cause |k| = |ks| = 2π/λ, |K| must be equal to 2k cosφ and the corresponding
wavelength is

Λ =
λ

2 cosφ
. (2.20)

On the other hand, if the waves were scattered from parallel planes separated
by a distance d, their path difference would be (see Fig. 2.3)

K

k ksφ

Figure 2.2: The relation of incident and scattered wave vectors and the wave
vector of the permittivity fluctuation.
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2d tanφ sinφ

d
cosφ

φd

Figure 2.3: Scattering from parallel planes.

∆ =
2d

cosφ
− 2d tanφ sin φ = 2d cosφ. (2.21)

The interference is constructive, if this distance is equal to an integer number
of wavelengths. When ∆ = λ, we get

d =
λ

2 cosφ
. (2.22)

This distance is equal to the wave length Λ in eq. (2.20). Hence we can interpret
eq. (2.19) in the following way: The density fluctuation ∆ne(r, t) is composed
of plane waves at all wave numbers, propagating in all directions as described
by its spatial Fourier transform. Each wave front reflects a part of the incident
radiation into the direction determined by the reflection law. When the fluc-
tuation wave length Λ obeys eq. (2.20), reflections from adjacent wave fronts
interfere constructively and incident radiation is scattered in this direction. For
each direction of observation, the density fluctuation contains a Fourier compo-
nent with a proper wave length and orientation to produce scattering. In other
words, the scattering process chooses the Fourier component which causes con-
structive interference in the direction of observation. The wave vector of this
component is K = k − ks and its wave length is Λ = λ/(2 cosφ). In the case
of backscattering φ = 0 and Λ = λ/2. The mechanism is analogous to Bragg
scattering in crystals.

The Fourier components of the density fluctuation are propagating waves.
Since the scattering takes place at moving wave fronts, the spectrum of the
scattered radiation is broadened due to the Doppler effect. The phase speed
and damping of these waves depend on the physical properties of the medium,
i.e. temperature, density etc. If the theory of the fluctuations and processes
involved are known, the spectrum of the scattered radiation can be used to
observe these physical parameters. The incoherent scatter spectrum tells us
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about the electron density, plasma speed, electron and ion temperature and in
some cases also on the ion-neutral collision frequency or ion concentration in a
plasma.

2.2 Thomson scattering

In the previous section, scattering was considered from the macroscopic view-
point of partial reflection from refractive index gradients without paying atten-
tion to the scattering process itself. Therefore the results are valid not only
for incoherent scatter but also for other types of scattering in the ionospheric
plasma or neutral atmosphere. The purpose of this chapter is to review Thom-
son scattering, the basic mechanism producing the faint signals observed by
incoherent scatter radars.

Thomson scattering is a process by which a part of the incident energy is
scattered by free electrons in the ionosphere. The electric field of the incident
wave puts the electrons in oscillatory motion and they emit a small fraction of
the incident energy as dipole radiation (Fig. 2.4). The same mechanism works
for ions as well but, due to the great ion mass, the energy thus scattered is
negligible.

The momentum equation of an electron in the oscillating electric field Ei =
E0e

iω0t of the incident wave is

mer̈e = −eEi, (2.23)

which gives the electron velocity

ve = ṙe = − e

me

∫

Eidt

= −eE0

me

∫

eiω0tdt = i
eE0

meω0
eiω0t. (2.24)

Ei = E0eiωt

Figure 2.4: The Thomson scattering mechanism in terms of dipole radiation of
an oscillating electron.
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The current density due to this electron motion is

j(r, t) = %e(r, t)ve(t)

= −eve(t) · δ[r − re(t)]

= −i
e2E0

meω0
eiω0t · δ[r − re(t)], (2.25)

where ρe(r, t) = −eδ[r− re(t)] is the charge density of the electron and δ is the
Dirac delta function. The retarded vector potential of the current density j is

As(r, t) =
µ0

4π

∫
j(r′, t′)

|r− r′|d
3r′, (2.26)

where

t′ = t − |r − r′|
c

. (2.27)

This vector potential is associated with a wave scattered by the oscillating elec-
tron. By inserting (2.25) in (2.26) we obtain

As(r, t) = −i
µ0e

2E0

4πmeω0

∫
eiω0t

′

|r− r′| · δ[r − re(t
′)]d3r′

= −i
µ0e

2E0

4πmeω0
· eiω0 (t − |r − re|/c)

|r − re|
. (2.28)

If we choose our coordinate system in such a way that the electron is oscillating
around the origin, re ≈ 0 for small oscillations and the vector potential far from
the origin is

As(r, t) = −i
µ0e

2E0

4πmω0
· eiω0 (t − |r|/c)

|r| . (2.29)

Then ks = ω0r̂/c so that ω0|r|/c = ks · r and

As(r, t) = −i
µ0e

2E0

4πmω0
· ei(ω0t − ks · r)

|r| . (2.30)

This is an expression of a spherical wave with an amplitude ∝ 1/|r|. At great
distances from the origin the wave fronts are nearly planes. Therefore we can
use the approximation ∇× ≈ −iks× and Faraday’s law to obtain the magnetic
induction of the scattered wave as

Bs = ∇×As ≈ −µ0e
2(ks ×E0)

4πmeω0
· ei(ω0t − ks · r)

|r| . (2.31)

The electric field of the wave is then simply |Es| = c|Bs| and the time average
of the Poynting vector for the scattered radiation is

〈|Ss|〉 = 〈|Re(Es) × Re(Hs)|〉 =
1

2
|Es||Hs|
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=
1

2µ0
|Es||Bs| =

c

2µ0
|Bs|2

=
c

2µ0

(
µ0e

2

4πmeω0

)2

· |ks ×E0|2
|r|2

=
µ0c

2

(
e2

4πmeω0

)2

· |ks|2 · |E0|2 · sin2 X
|r|2

=
µ0c

2

(
e2

4πmeω0

)2

· ω2
0

c2
· |E0|2 · sin2 X

|r|2

=
µ0ε

2
0c

3

2

(
e2

4πε0mec2

)2

· |E0|2 · sin2 X
|r|2

=
ε2
0c

2
· r2

0 · |E0|2 · sin2 X
|r|2 , (2.32)

where

r0 =
e2

4πε0mec2
= 2.82 · 10−15 m (2.33)

is so-called classical electron radius. Here X is the angle between the electric
field of the incident wave and the scattering direction (Fig. 2.5).

Since the average Poynting vector of the incident radiation is

〈|Si|〉 =
1

2µ0
|Ei||Bi| =

1

2µ0c
|Ei|2 =

1

2µ0c
|E0|2, (2.34)

obviously

〈|Ss|〉 =
ε0c

2
· r2

0 · 2µ0c〈|Si|〉 ·
sin2 X
|r|2

= r2
0 · sin2 X

|r|2 〈|Si|〉. (2.35)

Hence the power scattered to a solid angle dΩ around the direction X is

E0

r
ks

χ

Figure 2.5: The angle between the electric field of the incident wave and the
scattering direction.
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dP (X ) = 〈|Si|〉 · r2dΩ = r2
0 sin2 X〈|Si|〉dΩ, (2.36)

so that the differential cross section of Thomson scattering of a single electron
is

σ(X ) = r2
0 sin2 X . (2.37)

Note that this is different from the radar cross section defined in section 2.3.
The total power scattered by a single electron is

PT =

∫

〈|Ss|〉|r|2dΩ = 2π

∫ π

0

〈|Ss|〉r2 sinXdX

= 2πr2
0〈|Si|〉

∫ π

0

sin3 XdX =
8

3
πr2

0〈|Si|〉 = σT 〈|Si|〉, (2.38)

where the ratio of the total scattered power and the incident intensity,

σT =
8

3
πr2

0 , (2.39)

is the total cross section of Thomson scattering, also known as the electron
Thomson cross section.

2.3 Scattering from a moving electron

Unlike considered above, the electrons in the ionospheric plasma are not station-
ary but they may exhibit both thermal and bulk motion. Consider an electron
moving with a velocity v in the antenna beam towards a radar transmitting at
a frequency ν0 (Fig. 2.6). The frequency of the incident wave in the rest frame
of the moving electron is

ν′ = ν0

√
c + v

c − v
. (2.40)

The electron emits radiation via the Thomson scattering mechanism at the
same frequency in its own frame of reference. If the receiver is located at the
transmitter site, the scattered radiation is observed at the frequency

c v

νo

Figure 2.6: Scattering from an electron moving towards the radar.
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ν = ν′

√
c + v

c − v
= ν0

c + v

c − v
≈ ν0

(

1 + 2
v

c

)

. (2.41)

Hence the observed Doppler shift is

δν = ν − ν0 = 2ν0
v

c
= 2

v

λ0
, (2.42)

where λ0 is the radar wave length. If the electron is moving away from the
transmitter, the sign of the Doppler shift is changed.

The scattering volume contains a large number of moving electrons. In the
absence of bulk motion the density of electrons with a velocity component vx

along the radar beam follows the Maxwellian velocity distribution

dne

dvx
∝ e−v2

x/v2
m , (2.43)

where vm =
√

2kTe/me is the most probable speed and Te is the electron
temperature. Each electron emits scattered radiation at a frequency determined
by its velocity component, and therefore the spectrum of the scattered radiation
is not monochromatic. The spectrum will be centred around the radar frequency
and, since the scattering power of each electron is the same, the spectrum should
have the same Maxwellian shape as the velocity distribution.

The velocity corresponding to the half-width of the spectrum is obtained by
putting exp(−v2

x/v2
m) = 1/2 which gives vx =

√
ln 2 · vm. The spectrum half

width is then

∆v = 2 · 2 vx

λ0
= 4

vx

λ0
=

4

λ0

√
ln2 ·

√
2 ·

√

kTe

me
≈ 4

λ0

√

kTe

me
. (2.44)

In the case of the EISCAT UHF radar, ν0 = 930 MHz and λ0 = 0.32 m. If the
electron temperature is Te = 1000 K,

∆ν =
4

0.32

√

1.38 · 10−23 · 1000

9.11 · 10−31
Hz ≈ 1.5 MHz.

In conclusion, the above consideration seems to indicate that the spectrum of
the incoherent scatter signal has a Gaussian shape and the width of the spectral
line obtained from a monochromatic transmission is of the order of 1 MHz.

In the 1950’s the radar technology was developed to such a level that Gordon
(1958) suggested an experiment of incoherent scatter from ionospheric electrons
with a big antenna. The first observations were made in Long Branch, Illinois
by Bowles (1958). Incoherent scatter signals were indeed observed, but the
spectral width of the scattered signal was much smaller than expected. In fact,
the spectrum was more in accordance with the motion of ions than electrons.
The explanation was soon discovered. There are always thermal fluctuations in
a plasma and, in a macroscopic sense, the scattering is caused by them as de-
scribed in section 2.1. In the electron component of the plasma, the fluctuations
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with wave lengths longer than the Debye length

λD =

√

ε0kTe

nee2
(2.45)

are mainly controlled by the motion of the massive ions since the light electrons
must follow the ions in order to preserve the charge neutrality. Therefore, al-
though the microscopic scattering mechanism is Thomson scatter by electrons,
the shape of the incoherent scatter spectrum at wave lengths longer than the
Debye length will be determined by the ion motion.

2.4 Incoherent scattering

As described above, the basic mechanism of incoherent scatter is Thomson scat-
tering but the density fluctuations of the plasma have an essential role in deter-
mining the spectral shape. The expression of the incoherent scatter spectrum
is quite complicated and it is not derived here. However, it is useful to give a
qualitative picture on how the spectrum is formed.

The density fluctuations in the plasma can be expressed in terms of a tem-
poral and 3-dimensional spatial Fourier transform. Each Fourier component
represents a plane wave propagating in the direction of the k-vector of the spa-
tial transform. These waves are not only mathematical constructions but they
are real physical waves of thermal origin which must obey the dispersion rela-
tions of the medium. The two main wave modes which contribute to the thermal
fluctuations are the ion- and electron-acoustic waves. The phase velocity of the
ion-acoustic wave is

v+ =

√

kTi

mi

(

1 +
Te

Ti

)

, (2.46)

where mi and Ti are the ion mass and temperature, respectively. This relation
shows that the ion-acoustic wave is non-dispersive, i.e. its phase velocity does
not depend on its wave length λ+. The dispersion equation of the electron-
acoustic wave is

v− = fp

√

λ2
− + 12π2λ2

D, (2.47)

where v− and λ− are the phase velocity and wave length, respectively, and fp

is the plasma frequency

fp =
1

2π

√

nee2

ε0me
. (2.48)

The electron-acoustic wave is dispersive because its phase velocity depends on
the wave length.

The Fourier component of the plasma wave causing constructive interference
of the scattered radiation must fulfil eq. (2.20). In the case of backscattering
the wave length of this component is Λ = λ0/2. Furthermore, the component
must obey the dispersion equation of one of the possible wave modes so that
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Figure 2.7: Ion and plasma lines.

it is a propagating wave and Λ is either λ+ or λ−. Because the phase fronts
move at a phase velocity determined by the dispersion equation, the frequency
of the scattered radiation is not the same as the frequency of the incident radi-
ation but it is Doppler-shifted according to eq. (2.41). The density fluctuation
contains Fourier components propagating in opposite directions, and therefore
the scattering spectrum will contain both up- and downshifted lines. In the
case of backscattering the Doppler shifts are ±2v+/λ0 = ±v+/λ+ for the ion-
acoustic wave and ±2v−/λ0 = ±v−/λ− for the electron-acoustic wave. Thus
the scattering spectrum should contain four lines as indicated by Fig. 2.7.

It will be shown later that the spectrum and autocorrelation function of a
signal are connected by Fourier transform. The spectrum of a monochromatic
(sinusoidal) signal is a Dirac delta function and its autocorrelation function is
also sinusoidal. Hence, if the scattering spectrum were composed of sharp

Rx

τ

Figure 2.8: Damping of an autocorrelation function.
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Figure 2.9: Generation of the ion line.

peaks like those shown in Fig. 2.7, the scattering signal should be composed of
sinusoidal functions and each of them should be due to a sinusoidal plasma wave.
In the plasma, however, new waves are thermally generated all the time and
they are being attenuated by a process called Landau damping. Therefore the
amplitude and phase of a certain Fourier component at a sufficiently distant time
in the past have no relation to the the present amplitude and phase whatsoever.
In terms of the autocorrelation function, this means that the autocorrelation
function of the scattered signal is damped by a certain time constant as shown
qualitatively in Fig. 2.8. Then the autocorrelation function is no more sinusoidal
and the spectrum of the corresponding line is no more a delta function. The
result is that the spectral lines will be broadened by Landau damping.

The broadening of the spectral lines of the ion-acoustic waves is sufficient
to make them merge into a single line as shown in Fig. 2.9. This part of the
spectrum is normally observed in incoherent scatter experiments and it is known
as the ion line. At E and F region altitudes the ion line has a characteristic
double-humped shape. The width of the ion line is roughly twice the Doppler
shift of the ion-acoustic waves, i.e. 4v+/λ0. If the ion and electron temperatures
are nearly equal, eq. (2.46) gives v+ ≈

√

2kTi/mi so that the width of the ion
line corresponds to the thermal speed of ions rather than electrons. This is
the explanation for the narrow spectrum observed for the first time by Bowles
(1958).

The remaining part of the incoherent scatter spectrum is due the electron-
acoustic waves and it consists of two narrow peaks known as plasma lines
(Fig. 2.7). If the radar wave length is much longer than the Debye length,
the phase velocity of the electron-acoustic wave in eq. (2.47) is v− ≈ fpλ− and
the Doppler shifts of the plasma lines are nearly equal to the plasma frequency.
Hence plasma lines can be used in determining the electron density. Unfor-
tunately, the great ion mass makes the ion-acoustic waves dominate so that
the plasma lines are only visible if electron-acoustic waves are excited e.g. by
energetic electrons precipitating from the magnetosphere.

The term ’incoherent scatter’ comes from the assumption that the signal is
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scattered from evenly distributed electrons. If this were true, the phases of the
elementary signals from individual electrons were completely random and the
total signal would show no coherence. The coherence of a signal is measured
in terms of its autocorrelation function, the longer the autocorrelation function
is, the higher is the coherence level. The autocorrelation function of a truly
incoherent signal would be a delta function, i.e. its coherence length would be
zero. As seen above, the autocorrelation function of our ’incoherent scatter
signal’ is far from being a delta function and therefore, strictly speaking, the
term is a misnomer. The name was first adopted, because the role of plasma
fluctuations was not understood in the beginning and it has remained in use for
historical reasons. It is our luck that ’incoherent scatter’ is not incoherent. This
very fact allows the determination of plasma parameters other than electron
density and electron temperature.

The shape of the ion line in the incoherent scatter spectrum is determined by

FREQUENCY / kHz
0 2 4 6-2-4-6

4

3

2

1

0

3

2

1

0

3

2

1

0

Ti / K
100
200
300
400

Te/Ti = 1.5
ν = 2 kHz

Te/Ti
1.00
1.25
1.50
1.75
2.00

Ti = 300 K
ν = 2 kHz

Ti = 300 K
Te/Ti = 1.5ν / kHz

0
1
2
4
8

RE
LA

TI
V

E 
PO

W
ER

 D
EN

SI
TY

Figure 2.10: Dependence of the ion line shape on plasma parameters.
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various plasma parameters. For instance, eq. (2.46) shows that the width of the
ion line is determined by the ion mass and the ion and electron temperatures.
A more complete theory gives an expression of the line shape which is used in
determining the values of the plasma parameters by the least squares method.

In order to give a qualitative picture on the effect of various plasma param-
eters on the spectrum shape, spectra at various parameter combinations are
plotted in Fig. 2.10. The top panel shows the broadening of the ion line with
increasing ion temperature, the middle panel the deepening of the centre mini-
mum with increasing electron temperature and the bottom panel the reduction
of the steepness of the edges with increasing ion-neutral collision frequency. In
principle, all these parameters can be determined from the spectrum shape, if
the ion mass is known. The effects of electron temperature and collision fre-
quency, however, are so similar that they may be difficult to separate in practice.
In routine work this problem is often solved by putting the temperature ratio
to unity in the lower E region and collision frequency to zero at greater heights.

The remaining parameters which can be determined from the ion line are
the electron density and ion velocity. The electron density is determined from
the received power (i.e. the integral of the spectrum) which is proportional to
the number of electrons in the scattering volume. If the ionospheric plasma is
in motion, the whole ion line is shifted and the bulk speed can be determined
from the Doppler shift. In the case of backscattering the Doppler shift gives the
line-of-sight ion velocity.

In addition to the main physical parameters which are determined from
the observed ion line, a set of secondary parameters can also be calculated.
These include the electric field, conductivity tensor, electric current, neutral
wind velocity, Joule heating etc.

2.5 Generation of high transmitting power

High transmitting powers are needed in incoherent scatter radars because the
scattering cross section of the electron is very small. Peak powers higher than
1 MW are common in older radars but in modern setups lower powers can be
accepted. This is because higher radar duty cycles (the fraction of time the
transmitter can operate at full power) can now be achieved and the modula-
tion methods have also been greatly improved. The peak powers of the present
EISCAT UHF and VHF radars are 1.7 MW and 1.5 MW, respectively (the nom-
inal values are essentially higher), but the peak power of the EISCAT Svalbard
Radar (ESR) in its first stage is only 0.5 MW. The ESR, however, is more effi-
cient than these numbers might indicate, since its duty cycle is 25 %, whereas
the duty cycles of the older EISCAT radars are only of the order of 10–15 %.

To achieve the high power needed in the incoherent scatter transmitter, a
device called klystron is used. Klystron is a big electron tube shown schemati-
cally in Fig. 2.11. The tube contains an electron gun which generates a narrow
electron beam in an accelerating electric field between a cathode and an anode.
The electrons are directed to a tube-like radio frequency section, which contains
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Figure 2.11: Klystron.

a few resonance cavities, and finally they hit the collector which removes them
from the system.

The resonance cavities are used to produce a powerful radio frequency signal.
An input signal is applied to the first cavity where its electric field accelerates
and decelerates the electrons at its own frequency creating a velocity modulation
in the beam. While the electrons drift in the tube, a density modulation will
develop bunching the beam into sections of higher electron density. As a result,
an electric field will develop between the drifting electron bunches and, if a
resonance cavity is put in the place where the bunching is maximal, a strong
electric field oscillating at the frequency of the input signal is observed in the
cavity. A magnetic field is associated with the oscillating electric field and
therefore a powerful electromagnetic signal at the frequency of the input signal
is obtained. The additional cavities between the input and output cavities
produce extra bunching of the beam thus increasing the gain of the klystron.

The signal is led from the output cavity to a waveguide or a coaxial cable and
fed to the transmitting antenna. Waveguides are used in the EISCAT UHF and
VHF radars. As any electron tube, a klystron must be evacuated and therefore
a ceramic window is used between the klystron and the waveguide.

The electrons are confined to a narrow beam by an axial magnetic field
generated by solenoids. It is rather essential to have a good focusing of the
beam in high power klystrons since the stray electrons impinging upon the
inner surface may cause overheating and destroy the tube. Only a fraction of
the power in the beam is transformed to electromagnetic radiation; most of it is
transformed to heat in the collector. From the collector the heat is transferred by
an effective cooling system. In the EISCAT UHF and VHF radars the electrons
hitting the collector cause bremsstrahlung x-rays and therefore there is radiation
danger near the operating klystron. This is not the case in the ESR because of
lower beam energy.

The EISCAT UHF radar has one klystron, the VHF radar has nominally two
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but only one of them is in use, and the ESR has four klystrons in its first stage.
The number of klystrons in the ESR can be increased to 8 or 16 and their signals
are added in the waveguide. This is now possible because the modern klystrons
can be synchronised with a sufficient accuracy. The EISCAT UHF and VHF
klystrons are specially designed for these radars but in the ESR commercial TV
tubes are used.

2.6 Radiation pattern of a parabolic antenna

The purpose of the radar antenna is to confine the transmitted power into
a narrow beam and, when the antenna is used in reception, to enhance the
strength of the signal from a narrow solid angle at the cost of signals from
other directions. In order to give a physical idea of how an antenna reflector
works, a simple derivation of the radiation pattern of a parabolic dish antenna
is presented in this section. The EISCAT UHF and the ESR antennas are
parabolic dishes with Cassegrain feed, i.e. the focused rays are reflected by a
secondary mirror to the end of a feed horn at the centre of the main reflector.
The EISCAT VHF antenna is a parabolic cylinder and its feed is arranged by
128 cross-dipole antennas along the focal line of the reflector.

A parabolic dish surface has the special property that it reflects all incident
rays parallel to the optical axis into a same focal point. Similarly, all rays
emitted from the focal point towards the surface are reflected in the direction
parallel to the optical axis.

The antenna radiation pattern is the diffraction pattern of an antenna at a
long distance from the reflector. From the diffraction point of view, a parabolic
antenna behaves like a circular opening in a screen, illuminated by by a distant
radiation source at the opposite side. Hence we only have to study Fraunhofer
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Figure 2.12: Circular opening in a screen.
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diffraction in a circular slit.
In Fig. 2.12 a circular opening is located in the xz plane (only one fourth

of it is shown) and the radiation enters the slit from the left. Because of the
cylindrical symmetry it is sufficient to study the radiation in the xy plane. The
electromagnetic field at R is the sum of elementary waves originating from all
surface elements dA. The electric field of the elementary wave from dA is

dE = Cei(ωt− k%)dA, (2.48)

where C is an amplitude coefficient, k = ω/c is the wave number and % = |R−r|
is the distance from the source to the observing point. Because

r = r(sin ϕux + cosϕuz) (2.49)

and
R = R(sin θux + cos θuy), (2.50)

the distance from the surface element to the observing point is

% = |(R sin θ − r sin ϕ)ux + R cos θuy − r cosϕRz|

=
√

(R sin θ − r sinϕ)2 + (R cos θ)2 + (r cosϕ)2

=
√

R2 − 2Rr sin θ sin ϕ + r2

≈ R

√

1 − 2
r

R
sin θ sin ϕ ≈ R

(

1 − r

R
sin θ sin ϕ

)

= R − r sin θ sin ϕ. (2.51)

The above approximations are valid, since R � r in Fraunhofer diffraction. The
total electric field at R is

E =

∫

A

Cei(ωt − k%)dA

= Ceiωt
∫

A

eikR + ik sin θ · r sin ϕdA. (2.52)

When R � r, the wave vector of the elementary wave from dA is approximately
k ≈ k(sin θux+cos θuy) and therefore an approximate expression for the electric
field is

E ≈ Cei(ωt− kR)
∫

A

eik‖ · rdA, (2.53)

where k‖ ≈ k sin θux is the component of the wave vector parallel to the xz
plane. Note that this result is not restricted to a circular opening but it is
generally valid for Fraunhofer diffraction in a slit of any shape. Eq. (2.53)
shows that the diffraction pattern of the slit is obtained from a two-dimensional
Fourier transform of a function which is equal to a non-zero constant inside the
slit and zero elsewhere.
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In a circular opening, the wave amplitude at R can be further developed as

E0 = C

∫ r0

0

∫ 2π

0

eik‖ · r sinϕrdϕdr

= C

∫ r0

0

r

[∫ 2π

0

eik‖ · r sin ϕdϕ

]

dr. (2.54)

The inner integral in this expression is

I =

∫ 2π

0

cos(k‖r sin ϕ)dϕ + i

∫ 2π

0

sin(k‖r sin ϕ)dϕ. (2.55)

Since sin[k‖r sin(ϕ + π)] = sin(−k‖r sin ϕ) = − sin(k‖r sinϕ), the latter integral
in eq. (2.55) is zero. Also, cos[k‖rsin(ϕ + π)] = cos(−k‖r sin ϕ) = cos(k‖r sinϕ)
so that

I = 2

∫ π

0

cos(k‖r sin ϕ)dϕ. (2.56)

Using the zeroth order Bessel function

J0(x) =
1

π

∫ π

0

cos(x sin ϕ)dϕ (2.57)

this can be put in the form
I = 2πJ0(k‖r) (2.58)

and the wave amplitude becomes

E0 = 2πC

∫ r0

0

rJ0(k‖r)dr

=
2πC

k2
‖

∫ k‖r0

0

r′J0(r
′)dr′. (2.59)

The Bessel functions of first kind obey a general recursive formula

d

dx
[xnJn(x)] = xnJn−1(x). (2.60)

By applying this to the Bessel functions of zeroth and first order we obtain

d

dx
(r′J1(r

′)] = r′J0(r
′). (2.61)

This can be used in calculating the integral in eq. (2.59) so that the wave
amplitude is

E0 =
2πCr0

k‖
J1(k‖r0) =

2πCr0

k sin θ
J1(kr0 sin θ)

= C
λr0

sin θ
· J1

(
2πr0 sin θ

λ

)

. (2.62)
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Figure 2.13: Radiation pattern of a parabolic antenna with a 32 m diameter for
a frequency of 930 MHz.

The intensity is proportional to the square of the amplitude. Thus the radiation
pattern of the antenna is

S ∝
[

λr0

sin θ
· J1

(
2πr0 sin θ

λ

)]2

, (2.63)

where θ is the angle between the direction of observation and the optical axis.
In the EISCAT UHF antenna r0 = 16 m and f = 930 MHz. The antenna

pattern (2.63) is plotted in Fig. 2.13 using these parameter values. We see that
the pattern consists of a strong main lobe centred around the optical axis and
a series of less intense side lobes surrounding it as circular structures. The
intensity of the first side lobe is nearly 18 dB below that of the main lobe. The
antenna beam width, defined in terms of the -3 dB points of the main lobe, is
about 0.6o.

In reality there is no infinite screen around a parabolic antenna as assumed
above. Therefore the antenna does not behave exactly as a circular slit but
the diffraction pattern extends to angles greater than 90o. Furthermore, the
secondary mirror and its supports shade the antenna, which weakens the main
lobe and creates distortions in the side lobes. Conducting structures and the
landscape nearby the antenna also have an effect on the radiation pattern.
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2.7 Antenna gain and effective aperture

The antenna gain is a concept which is closely related to the radiation pattern
discussed in Chapter 2.6. The antenna gain G in a given direction is defined
as a factor by which the intensity is increased as compared to the intensity of
an isotropic radiator. If the total transmitted power is P , the intensity at the
point r would then be

S(r) =
GP

4πr2
. (2.64)

On the other hand, the power transmitted to a unit solid angle by an isotropic
radiator would be P/4π. Hence, if dP is the power transmitted by our antenna
to a solid angle dΩ around the direction Ω, the antenna gain in this direction is

G =
4π

P

(
dP

dΩ

)

. (2.65)

Because the total power is

P =

∫

4π

dP

dΩ
dΩ, (2.66)

the antenna gain can be written as

G =
4π (dP/dΩ)
∫
(dP/dΩ)dΩ

. (2.67)

Furthermore, since dP/dΩ ∝ S, we can also write

G =
4πS(Ω)

∫
S(Ω)dΩ

. (2.68)

The radiation pattern of a directional antenna gets its maximum value in
some direction and the gain corresponding to this direction is the maximum
gain Gmax. If the radiation pattern is axially symmetric like in a parabolic dish
and the maximum gain is obtained in the direction θ = 0, it can be calculated
from

1

Gmax
=

1

4πS(0)

∫

S(θ)dΩ =
1

2S(0)

∫ π

2

0

S(θ) sin θdθ. (2.69)

Here it is assumed that the antenna pattern covers the half-space like in Chapter
2.6., otherwise the integration must be carried from 0 to π. In the case of a
parabolic dish the intensity can be written in the form

S ∝
[

2πr2
0 · λ

2πr0 sin θ
· J1

(
2πr0 sin θ

λ

)]2

. (2.70)

Using the notation

ξ =
2πr0 sin θ

λ
(2.71)
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this can be put in the form

S ∝
[

2πr2
0 · J1(ξ)

ξ

]2

. (2.72)

It can be shown that limξ→0[J1(ξ)/ξ] = 1/2, so that

S(0) ∝
[

2πr2
0 · 1

2

]2

= (πr2
0)

2 = A2, (2.73)

where A is the aperture of the antenna. Then

1

Gmax
=

1

2A2

∫ π

2

0

[
πr0

sin θ
· J1

(
2πr0 sin θ

λ

)]2

sin θdθ

=
λ2r2

0

2A2

∫ π

2

0

[J1 (2π · r0/λ · sin θ)]
2

sin θ
dθ

︸ ︷︷ ︸

I

=
λ2πr2

0

2πA2
· I =

λ2

4πA
· 2I (2.74)
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Figure 2.14: The value of the integral I in eq. (2.74) as a function of the ratio
of antenna radius to wavelength.
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Gmax =
4πρA

λ2
, (2.75)

where ρ = 1/2I is the antenna efficiency. By defining the effective aperture of
the antenna as Ae = ρA, the gain can be written in the form

Gmax =
4πAe

λ2
. (2.76)

The variation of the gain with direction is simply determined by the shape
of the radiation pattern. A gain in a given direction can be expressed as

G(θ) =
S(θ)

S(0)
Gmax =

4π

λ2
· S(θ)

S(0)
Ae =

4πAe(θ)

λ2
, (2.77)

where Ae(θ) is the effective aperture for the direction θ.
The value of I depends on the ratio of the antenna radius to the wavelength

and it is plotted in Fig. 2.14. The oscillations in the curve are attenuated with
increasing r0/λ and the limiting value of I is obviously 0.5. At r0 = 10λ the
value of I is already rather close to 0.5. In the case of the EISCAT UHF antenna

r0

λ
≈ 16

0.32
= 50,

so that it is a good approximation to put

ρ =
1

2I
=

1

2 · 0.5
= 1, (2.78)

which gives Ae ≈ A and

Gmax =
4πA

λ2
. (2.79)

This result is valid for an ideal parabolic dish with r0/λ � 1. In a real antenna
the diffraction pattern and the antenna efficiency are affected by the factors
discussed in the previous section. In addition, the antenna feed has its own
efficiency which reduces the total efficiency of the antenna system.

2.8 Monostatic and multistatic radar

A monostatic radar has a single receiver which is located at the transmitter site.
A multistatic radar may have several receivers and at least one of them is lo-
cated far from the transmitter. In modern systems one of the receivers is always
at the transmitter site but in some older radars, which used continuous trans-
mission, reception was possible only at remote sites. The EISCAT UHF system
is multistatic and both the EISCAT VHF and ESR systems are monostatic.

When the transmitter and the receiver are in different places, the scattered
signal is received from the intersection of the two radar beams (Fig. 2.15).
The signal is used to determine the values of plasma parameters within this
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Figure 2.15: The principle of monostatic and multistatic radar.

scattering volume. Profiles of plasma parameters can in principle be determined
by sweeping the receiver beam along the transmitter beam but this method is
so slow that only a few scattering volumes can be obtained in practice.

In a monostatic radar, transmission is carried out with a certain modulation
during a limited time interval and the scattered signal is observed during a sub-
sequent reception period. The signal at a single instant of time comes from a
scattering volume limited in the direction perpendicular to the radar beam by
the beam itself and in the beam direction by the length of the transmitted pulse
or pulse sequence. In the course of time the scattering volume moves upwards
along the radar beam and therefore profiles of plasma parameters can be deter-
mined. The length of the scattering volume in the beam direction determines
the range resolution of the incoherent scatter measurement. Different modu-
lation methods are used for obtaining different range resolutions. Simple long
pulses are applied if a resolution of some tens of kilometres is sufficient. In order
to go down to a few kilometres, pulse codes or alternating codes are needed.
The best possible resolutions are a few hundred metres and this is achieved by
so called Barker codes.

A multistatic radar with one of the receivers at the transmitter site can also
be used in monostatic mode. In fact, this is a common practice because the
monostatic mode is more efficient in measuring the range profiles of the plasma
parameters. In normal experiments both mono- and multistatic measurements
are carried out simultaneously with different modulations. The main role of the
multistatic part is the observation of the plasma velocity vector, which gives the
ionospheric electric field if the scattering volume is high up in the F region.

2.9 Radar equation

Let us consider the multistatic (bistatic) radar system in Fig. 2.15. The gains
of the transmitter and receiver antennas are G1 and G2, respectively, and the
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effective aperture of the receiver antenna is Ae2. The position vectors from the
transmitter and receiver antennas to a volume element at r are r1 and r2. Signal
can only be observed from this volume element if it lies inside the scattering
volume at the crossing of the radar beams.

If there is only a single electron inside the scattering volume, the power
captured by the receiver antenna is

Pr(r) = r2
0 sin2 X · Pt ·

G1(r1)

4πr2
1

· Ae2(r2)

r2
2

. (2.80)

or, using the relation of effective aperture and antenna gain in eq. (2.77),

Pr(r) = 4πr2
0 sin2 X · Pt ·

G1(r1)

4πr2
1

· G2(r2)

4πr2
2

· λ2

4π
. (2.81)

Eq. (2.80) is also often written in the form

Pr(r) = σ0(X ) · Pt ·
G1(r1)

4πr2
1

· Ae2(r2)

4πr2
2

. (2.82)

The previous three expressions are various forms of the radar equation. The
quantity

σ0 = 4πr2
0 sin2 X = 1.00 · 10−28 m2 · sin2 X (2.83)

in eq. (2.82) is called the radar cross section. In radar theory the radar cross
section is commonly used instead of the differential cross section which is the
equivalent standard concept in scattering theory. This is an unfortunate practice
which may cause confusion but, in the case of Thomson scattering, it has the
benefit that the numerical value of the radar cross section is easy to remember.
The (nonphysical) idea behind the concept of radar cross section is simply that
the target would scatter the incident radiation uniformly in all directions. Then
the total scattered power would be the radar cross section times the incident
intensity and a fraction dΩ/4π of it would be scattered in the solid angle dΩ.

Due to the small value of the cross section, Thomson scattering is very weak.
If, for example, the transmitted power is 1 MW and the cross section of the radar
beam at a distance of 300 km is 103 m × 103 m = 106 m2, the incident intensity
at this distance is 1 W/m2. A typical value of electron density in the ionospheric
F region is ne ≈ 1012 m−3 and the scattering volumes in F region incoherent
scatter experiments are of the order of V ≈ 103 m × 103 m × 104 m = 1010 m3.
For a rough estimation, one can assume that the observed power is proportional
to the number of electrons in the scattering volume so that the total radar cross
section is about σtot ≈ neV σ0 = 1012 · 1010 · 10−28 m2 = 10−6 m2. The power
received by an antenna with an effective aperture of 100 m2 at a distance of 300
km is only Pr ≈ 10−6 m2 ×1 W/m2×100 m2/(4π ·3002 km2) ≈ 10−16 W. Hence
the radar receiver must be capable of detecting powers of this order even in the
presence of thermal noise.

As discussed in Chapter 2.4, the electron density can be determined from
the received power. The general principle of using the radar equation for this
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purpose is described below. The formulas, however, only show a rough idea of
the method, because the effects of transmitter modulation and receiver filtering
are not taken into account.

Assume a monostatic radar so that r = r1 = r2 and G1 = G2 = G and
consider received power from a volume element dV located at r. The power is
proportional to the number of electrons in the volume element so that

d3Pr(r) = ne(r)σPt ·
G2(r)

(4πr2)2
· λ2

4π
dV, (2.84)

where σ is the radar cross section per electron. Although eq. (2.81) gives σ =
4πr2

0 in the case of backscattering, this is actually not the correct expression
because the plasma effects discussed in Chapter 2.4 modify the scattering cross
section. A better approximation given by the plasma theory is

σ =
4πr2

0

(1 + k2λ2
D)(1 + Te/Ti + k2λ2

D)
. (2.85)

In spherical coordinates we can put dV = r2dΩdr, and therefore the power
received from the height interval (r, r + ∆r) is equal to

∆Pr(r) =
ne(r)σPtλ

2

(4π)3r2

[∫

Ω

G2(Ω)dΩ

]

∆r. (2.86)

Here ∆r is assumed to be small. The plasma parameters are also assumed to
be constants within the cross section of the radar beam as well as within the
range (r, r + ∆r). Solving from eq. (2.86) the electron density is

ne(r) = C · ∆Pr(r)

Pt
· r2

∆r
· 1

σ
, (2.87)

where C is a constant determined by the antenna pattern and the radar wave
length. When eq. (2.85) is used for the radar cross section, this gives

ne(r) = C · ∆Pr(r)

Pt
· r2

∆r
· (1 + k2λ2

D)(1 + Te/Ti + k2λ2
D)

4πr2
0

. (2.88)

Hence we see that the electron density depends not only on the received power
but also on Debye length (which depends on the electron temperature and elec-
tron density!) and the ratio of electron and ion temperatures. In many cases
the radar wave length is much larger than the Debye length, which simplifies the
equation because the terms k2λ2

D can be neglected. As a first approximation,
it is also sometimes assumed that Te = Ti and then the electron density can be
calculated from the formula

ne(r) = C · ∆Pr(r)

Pt
· r2

∆r
· 2

4πr2
0

. (2.88)

This result is sometimes called the ’raw electron density’. Note that the electron
density given by eq. (2.88) is twice the value obtained using the cross section
4πr2

0 .
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The above equations do not explain how the power of scattered signal from
a given height range can be obtained in a monostatic case. For this purpose
different modulations discussed in Chapter 5 must be utilised. These modula-
tions determine the altitude range of received power but further complications
are associated with their use. Actually the determination of electron density is
more complex than shown by the above equations. Instead of observing only the
signal power, we measure its autocorrelation function. The concept of autocor-
relation function is explained in Chapter 3. The signal autocorrelation function
depends on the plasma autocorrelation function in the way described by the
theory of ambiguity functions in Chapter 4. In practice the electron density is
not calculated separately from eq. (2.88) but it is determined together with the
other plasma parameters by fitting theoretical autocorrelation functions to the
observed ones.
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Chapter 3

Signal processing

3.1 Radar receiver

The signal received by an incoherent scatter radar is caused by random fluc-
tuations in the ionosphere and therefore it consists of random variations. The
theoretical concept suitable for mathematical treatment of such signals is called
a stochastic process. A stochastic process is a concept which attaches a ran-
dom variable to each instant of time. Every variable has its own probability
distribution. The signal values are simply random values of these variables and
an individual signal is called a realisation of the stochastic process. Hence, if
a large set of identical ionospheres with the same values of macroscopic pa-
rameters (temperature, density, pressure, etc.) were probed by synchronised
identical radars, simultaneous signal values from the radars would be different.
Also, the detailed waveforms of the two signals in the same radar, received after
successive transmission sequences, carry no resemblance whatsoever. In both
cases, however, the signals do have the common feature that they obey the
same probability distributions. This means that the statistical properties of the
signals, like their spectra for instance, are identical.

We are interested in plasma parameters, which depend on the spectral shape,
and therefore there is no need to know the waveform of the signal. Hence
the receiver of an incoherent scatter radar can be designed for observing the
received power and spectral shape only. In practice the spectrum is obtained
from its Fourier transform, the autocorrelation function, which is calculated
from digital samples of the signal. Therefore the receiver should contain an
AD-converter. It will be seen later that a correct sampling of a signal implies a
sampling frequency at least twice the highest frequency in the spectrum. The
signal spectrum is band-limited around the transmission frequency so that the
sampling frequency should be higher than twice the transmission frequency.
In the case of the EISCAT UHF radar this would imply an unreasonably fast
sampling at a frequency of the order of 1.9 GHz.

The problem can be avoided by mixing the signal to a lower frequency. This
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Figure 3.1: The block diagram of the EISCAT UHF receiver and the incoherent
scatter spectrum at various stages of the signal path.

means creating a new signal which has the same spectral shape as the original
one, but at an essentially lower frequency. The sampling frequency gets its
lowest value, if the spectrum is shifted to lie around zero on the frequency axis.
This can be achieved either by complex mixing or Hilbert transform.

The idea of the incoherent scatter receiver is enlightened by Fig. 3.1, which
shows the block diagram of the EISCAT UHF system together with the spectra
at different stages of the signal path. The radio wave captured by the antenna
is directed to the feed horn by the secondary mirror and the two orthogonal
polarisations are separated to different legs of the wave guide. The system is
designed for processing both polarizations but, using the polarizes unit, it is
possible to adjust the phase difference of the two components to give a non-zero
signal in a single channel only. After the first local oscillator and subsequent
filtering the system consists of several parallel channels. This arrangement is
necessary because several transmitting frequencies are normally used in an in-
coherent scatter experiment, and these must be separated in the receiver.

When the signal arrives at the preamplifier, its spectrum lies around one
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of several fixed frequencies close to 930 MHz. The mixing takes place at three
stages: first to 120 MHz by the first local oscillator, then to 30 MHz by the sec-
ond local oscillator and finally complex mixing to zero frequency in the quadra-
ture detector. In addition, the signal is filtered, attenuated and amplified at
various places of its path. Finally the complex signal from the quadrature de-
tector is digitised and the data samples are fed to the correlator which calculates
the autocorrelation function.

The purpose of Chapter 3 is to explain the mathematical principles of the
analogue signal path in the receiver. For this purpose we have to understand
the meaning of negative frequency and we also have to define the concepts of
signal spectrum and autocorrelation function more specifically than in the above
description.

3.2 Signal and its Fourier transform

Let us consider a real-valued signal x(t). Provided it is both integrable and
absolutely integrable from −∞ to +∞ as well as quasi-differentiable, it can be
presented in terms of its Fourier transform

X(ν) = F{x(t)} =

∫ ∞

−∞

x(t)e−iωtdt (3.1)

in the form

x(t) = F−1{X(ν)} =

∫ ∞

−∞

X(ν)eiωtdν. (3.2)

Here ν is the frequency and ω = 2πν the angular frequency. We say that x(t)
and X(ν) make a Fourier transform pair. When x(t) is real,

X∗(ν) =

∫ ∞

−∞

x(t)eiωtdt = X(−ν). (3.3)

In terms of the modulus |X(ν)| and phase angle ϕ(ν) this can be written as

|X(ν)|e−iϕ(ν) = |X(−ν)|eiϕ(−ν) (3.4)

or
|X(−ν)| = |X(ν)|
ϕ(−ν) = −ϕ(ν). (3.5)

Hence the modulus of the Fourier transform of a real-valued signal is an even and
the phase angle an odd function of frequency. This is visualised schematically in
Fig. 3.2. When considering the frequency behaviour of |X(−ν)| and ϕ(ν), these
quantities are often called the amplitude and phase spectrum, respectively.

In eq. (3.2) integration is carried out from minus to plus infinity, which im-
plies the existence of negative frequencies. Here the simple concept of frequency
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Figure 3.2: Modulus and phase angle of a real signal.

as the number of oscillations per time unit is generalised for mathematical conve-
nience. The meaning of negative frequency can be enlightened by the following
line of thought. Let us consider two frequency intervals around the frequencies
ν′ and −ν′, both of them with a width δν (Fig. 3.2). The part of X(ν) which
lies within these frequency bands corresponds to a signal

δx(t) = X(ν′)eiω
′tδν + X(−ν′)e−iω′tδν

=
{

|X(ν′)|ei[ω
′t + ϕ(ν′)] + |X(−ν′)|ei[−ω′t + ϕ(−ν′)]

}

δν

= |X(ν′)|
{

ei[ω
′t + ϕ(ν′)] + e−i[ω′t + ϕ(ν′)]

}

δν

= 2|X(ν′)| cos[ω′t + ϕ(ν′)]δν. (3.6)

So we see that a sum of two complex signals at positive and negative frequencies
ν′ and −ν′ creates a real signal δx(t) at a positive frequency ν ′. This is the
frequency component ν ′ of the total signal x(t). We also see that the positive
and negative frequency signals together take care of the correct phase ϕ(ν ′) of
the real signal. Obviously, the total signal x(t) can be presented as a sum of
narrow-band real signals δx(t), i.e. by integrating δx(t)/δν from zero frequency
to infinity. This is mathematically equivalent to integrating the complex signal
X(ν) exp(iωt) from minus to plus infinity.

3.3 Signal power

Let us consider a real-valued physical signal x(t) which differs from zero only
for a limited time [−T, T ]. The instantaneous power of the signal is x2(t) and
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the mean power is

P =
1

2T

∫ ∞

−∞

x2(t)dt. (3.7)

We can now apply the Fourier transform X(ν) to obtain

∫ ∞

−∞

x2(t)dt =

∫ ∞

−∞

x(t)

[∫ ∞

−∞

X(ν)eiωtdν

]

dt

=

∫ ∞

−∞

X(ν)

[∫ ∞

−∞

x(t)eiωtdt

]

dν

=

∫ ∞

−∞

X(ν)X∗(ν)dν

=

∫ ∞

−∞

|X(ν)|2dν. (3.8)

In terms of the mean power,

P =
1

2T

∫ ∞

−∞

x2(t)dt =
1

2T

∫ ∞

−∞

|X(ν)|2dν. (3.9)

Continuing the line of thought in Chapter 3.2 we can also calculate the mean
power of the frequency component ν ′ in terms of the elementary signal δx(t).
If x(t) is extended periodically beyond the range [−T, T ], it can be presented
in terms of its Fourier series and the frequencies of its Fourier components are
multiples of 1/2T . Therefore it is reasonable to adopt δν = 1/2T . Then the
average power of δx(t) is

〈δx2(t)〉 = 4|X(ν′)|2〈cos2(ω′t − ϕ(ν′)]
︸ ︷︷ ︸

1

2

〉(δν)2 =
2|X(ν′)|2

2T
δν. (3.10)

This indicates that |X(ν)|2/2T is one half of the power density (i.e. power per
frequency unit) at the frequency ν. Since |X(ν)|2 = |X(−ν)|2,

〈δx2(t)〉 =
1

2T
[|X(ν′)|2 + |X(−ν′)|2]δν. (3.11)

Hence one half of the power can be interpreted to come from positive and the
other half from negative frequencies.

3.4 Autocorrelation function and power spec-

trum

As stated in Chapter 3.1, the incoherent scatter signal is a realisation of a
stochastic process. Therefore the expectation value of any quantity depending
on the signal — like the signal power, for instance — is determined by the
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Figure 3.3: Autocorrelation function.

probability distributions associated with this stochastic process. An estimate of
the expectation value can be obtained as an ’ensemble average’ calculated from
several realisations of the stochastic process, i.e. by observing the signal several
times, calculating the quantity for each signal separately and taking the average
of the results.

For a real-valued signal x(t) we define the autocorrelation function as

Rx(t1, t2) = 〈x(t1)x(t2)〉, (3.12)

where the angle brackets indicate the expectation value. If the signal is station-
ary, its statistical properties are time-independent. Then the autocorrelation
function depends only on the difference of the arguments t1 and t2 and, instead
of eq. 3.12, we can write

Rx(τ) = 〈x(t)x(t − τ)〉, (3.13)

where the time difference τ is called delay or lag. In the case of so-called ergodic
process (which is not defined here) the expectation value can be replaced by the
time average of any realisation x(t). Then

Rx(τ) = lim
t0→∞

1

2t0

∫ t0

−t0

x(t)x(t − τ)dt. (3.14)

The autocorrelation function has its greatest value at τ = 0. When τ in-
creases, the autocorrelation function decreases towards zero, often with damped
oscillations as shown schematically in Fig. 3.3. At delays longer than some value
called the length of the autocorrelation function or correlation length, Rx ≈ 0.
The idea of autocorrelation function is to compare signal values at different
time intervals. If Rx is positive, the signal values have often the same sign, if
negative, opposite signs are usually expected. If Rx = 0, the relation of the
signs is unpredictable. In addition to signs, the absolute values of the signals
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also contribute to the autocorrelation function. All this means that, knowing
the autocorrelation function, a measurement of a signal allows predictions to be
made of the signal behaviour in the future. The uncertainty of this predictions
grows with time distance. Nothing can be said about the signal values beyond
the correlation length. In other words, signal values separated in time by more
than the correlation length are practically independent of each other.

In practice, a signal can never be observed for an infinite time. It seems ob-
vious that, by choosing a sufficiently long time interval [−T, T ], a good estimate
for an autocorrelation function of a stationary ergodic signal x(t) is given by
the autocorrelation function of the signal

xT (t) =

{
x(t) when − T < t < T

0 elsewhere.
(3.15)

Hence

Rx(τ) ≈ 1

2T

∫ T

−T

xT (t)xT (t − τ)dt =
1

2T

∫ T

−T

x(t)x(t − τ)dt. (3.16)

If the Fourier transform of xT is X(ν), we see that

Rx(τ) =
1

2T

∫ ∞

−∞

[∫ ∞

−∞

X(ν)eiωtdν

]

· xT (t − τ)dt

=
1

2T

∫ ∞

−∞

X(ν)eiωτ
[∫ ∞

−∞

xT (t − τ)eiω(t − τ)d(t − τ)

]

︸ ︷︷ ︸

X∗(ν)

dν

=
1

2T

∫ ∞

−∞

X(ν)X∗(ν)eiωτ dν

=
1

2T

∫ ∞

−∞

|X(ν)|2eiωτdν

=

∫ ∞

−∞

Sx(ν)eiωτ dν

= F−1{Sx(ν)}, (3.17)

where

Sx(ν) =
1

2T
|X(ν)|2 (3.18)

is called the power spectrum or, in more accurate terms, the power spectral
density. Sometimes |X(ν)|2 is also called the power spectrum, although it is
actually the energy spectral density.

Eq. (3.17) shows that the autocorrelation function and power spectrum of a
signal make a Fourier transform pair

Rx(τ) = F−1{Sx(ν)}
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Sx(ν) = F{Rx(τ)}. (3.19)

As explained in section 3.1, the signal received by an incoherent scatter radar
is usually digitised by a AD converter. The task of the correlator is to calculate
lag estimates of the autocorrelation function of the signal. The autocorrela-
tion function contains the spectral information of the signal which is needed in
determining the values of the plasma parameters in the ionosphere.

A comparison of eq. (3.18) with eq. (3.9) shows that the total mean power
within the time interval [−T, T ] is

P =

∫ ∞

−∞

Sx(ν)dν, (3.19)

i.e. the total power is obtained as a sum of powers from all frequencies. Because
Sx(ν) is an even function of frequency, one half of the power comes from positive
and the other half from negative frequencies. This result was already obtained
in interpreting eq. (3.11).

3.5 Frequency mixing

The simplest way to understand frequency mixing is to consider a monochro-
matic signal

x(t) = cosωt (3.20)

If this is multiplied by cosω0t, where ω0 < ω, the result is

y(t) = cosωt · cosω0t

=
1

2
[cos(ω + ω0)t + cos(ω − ω0)t]. (3.21)

The amplitude spectra of these two signals are shown in Fig. 3.4. Obviously

0.5

x(t)1
y(t)

ν-ν0 ν+ν0ν

ν0 ν0

ν

Figure 3.4: Frequency mixing of a monochromatic signal.
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Figure 3.5: Amplitude spectrum of a narrow-band signal.

y(t) consists of two monochromatic signals, one at a frequency ν − ν0, the other
at ν + ν0 and both with amplitudes one half of the amplitude of x(t). These
components can be separated in the system hardware, the higher frequency by
a high-pass and the lower one by a low-pass filter. The resulting signals are

yu(t) =
1

2
cos(ω + ω0)t (3.22)

and

yl(t) =
1

2
cos(ω − ω0)t. (3.23)

We say that yu(t) is mixed upwards and yl(t) downwards by the frequency ν0.
Hence the frequency of a monochromatic signal can be changed by multiplication
with a different frequency and subsequent filtering.

The same principle can also be applied in a more general case. Let us
consider a band-limited signal

x(t) =

∫ ∞

−∞

X(ν)eiωtdν, (3.24)

with its spectrum restricted to some frequency range around ν̄. This is illus-
trated by the amplitude spectrum in Fig. 3.5. When x(t) is a real-valued signal,
the amplitude spectrum is an even function of frequency as plotted in the figure.
The phase spectrum is odd, of course.

If x(t) is multiplied by cosω0t, where ω0 < ω̄ = 2πν̄, we obtain

y(t) = cosω0t · x(t)

=
eiω0t + e−iω0t

2
·
∫ ∞

−∞

X(ν)eiωtdν

=
1

2

∫ ∞

−∞

X(ν)ei(ω + ω0)tdν +
1

2

∫ ∞

−∞

X(ν)ei(ω − ω0)tdν

=
1

2

∫ ∞

−∞

X(ν − ν0)e
iωtdν +

1

2

∫ ∞

−∞

X(ν + ν0)e
iωtdν

=

∫ ∞

−∞

Y (ν)eiωtdν, (3.25)
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Figure 3.6: Frequency mixing of a narrow-band signal.

where

Y (ν) = F{y(t)} =
1

2
[X(ν − ν0) + X(ν + ν0)]. (3.26)

Hence the spectrum of the resulting signal is composed of two parts. If the
spectrum of the original signal x(t) is narrow enough, it does not overlap with
the spectrum of y(t). Such a situation is depicted in Fig. 3.6.

In the same way as above, y(t) can be divided into two components,

yu(t) =

∫ ∞

−∞

Yu(ν)eiωtdν (3.27)

and

yl(t) =

∫ ∞

−∞

Yl(ν)eiωtdν, (3.28)

where

Yu(ν) =

{
1
2X(ν − ν0) , when ν > 0
1
2X(ν + ν0) , when ν < 0

(3.29)

and

Yl(ν) =

{
1
2X(ν + ν0) , when ν > 0
1
2X(ν − ν0) , when ν < 0

. (3.30)

Via this definition the spectrum of yu(t) lies further away from the origin and
the spectrum of yl(t) closer to the origin than the spectrum of x(t). Then they
can be separated by high- and low-pass filters, respectively.

In the EISCAT UHF radar the bandwidth of the scattered signal is of the
order of 10 kHz. The applied radar modulation may broaden the spectrum to
about 100 kHz. The spectrum lies around 930 MHz, so that the signal is indeed
a narrow-band one. In the receiver the signal is first mixed down to about
120 MHz by the first local oscillator and then to 30 MHz by the second local
oscillator. In both cases the upper sideband Yu(ν) is removed by a low-pass
filter. The frequency of the first local oscillator is fixed, but the second one is
variable and its frequency is chosen to give a centre frequency of 30 MHz. A
variable frequency is needed, because different transmitting frequencies around
the nominal value of 930 MHz are used in the experiments.

42



3.6 Mixing to zero frequency

The above principle can be used in mixing the signal downwards as long as the
spectrum does not extend to zero frequency. In order to mix the spectrum to
zero, the method must be slightly modified. The idea is easily understood in
terms of a monochromatic signal

x(t) = A cos(ω0t + ϕ). (3.31)

When this is multiplied by the function

f(t) = e−iω0t = cosω0t − i sinω0t (3.32)

the result is
y(t) = Ae−iω0t · cos(ω0t + ϕ)

= Aeiϕ · e−i(ω0t + ϕ) · cos(ω0t + ϕ)

= Aeiϕ[cos2(ω0t + ϕ) − i sin(ω0t + ϕ) · cos(ω0t + ϕ)]

=
A

2
eiϕ[1 + cos 2(ω0t + ϕ) − i sin 2(ω0t + ϕ)]. (3.33)

Note carefully that the frequencies of x(t) and f(t) are the same. Thus the
multiplication of x(t) and f(t) gives a complex function y(t) which consists
of an offset and an oscillation at a frequency 2ν0. When this is filtered by a
low-pass filter with a cut-off frequency smaller than 2ν0, the output is the offset

z(t) =
A

2
eiϕ =

A

2
cosϕ + i

A

2
sinϕ (3.34)

which contains the information on both the amplitude and phase of the original
signal x(t). They are given by

{

A = 2
√

z(t)z∗(t)
ϕ = arctan[Im(z)/Re(z)].

(3.35)

In this way a monochromatic real-valued signal is mixed to zero frequency con-
serving the amplitude and phase information.

The same principle can be applied to a narrow-band signal. Assume that
the spectrum of the signal

x(t) =

∫ ∞

−∞

X(ν)eiωtdν (3.36)

lies around ν0 on the frequency axis. When x(t) is multiplied by exp(−iω0t),
the result is

y(t) = e−iω0tx(t) = e−iω0t
∫ ∞

−∞

X(ν)eiωtdν

=

∫ ∞

−∞

X(ν)e−i(ω − ω0)tdν
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Figure 3.7: Mixing to zero frequency.

=

∫ ∞

−∞

X(ν + ν0)e
iωtdν

=

∫ ∞

−∞

Y (ν)eiωtdν, (3.37)

where
Y (ν) = X(ν + ν0). (3.38)

This shows that complex mixing shifts the whole spectrum in negative direction
by the amount ν0. Then the upper spectral band lies around the zero frequency
and the lower band around −2ν0 as indicated in Fig. 3.7. If the latter one is
filtered out, all we have left is the spectrum around zero frequency. This can be
put in the form

Z(ν) = X+(ν + ν0), (3.39)

where

X+(ν) =

{
X(ν) , when ν > 0
0 , when ν < 0 .

(3.40)

The corresponding signal is

z(t) = e−iω0t
∫ ∞

0

X(ν)eiωtdν

=

∫ ∞

−∞

X(ν)ei(ω − ω0)tdν

=

∫ ∞

−∞

X(ν + ν0)e
iωtdν. (3.41)

In the EISCAT UHF radar the spectrum is shifted to zero frequency by
complex mixing in the quadrature detector, also known as the hybrid detector.
After the second local oscillator the spectrum lies around 30 MHz. In the
quadrature detector this signal is multiplied separately by two sinusoidal signals
at 30 MHz, with a fixed phase difference of 90o. These are the real and imaginary
parts of the function exp(−iω0t) in complex mixing. The output of the hybrid
detector consists of two channels, one for the real part and the other for the
imaginary part of the output. These together make the complex signal

y(t) = x(t) cos ω0t − ix(t) sin ω0t = e−iω0tx(t). (3.42)
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When the real and imaginary parts are passed through low-pass filters, the
higher frequencies are cut away, and the complex signal z(t) is obtained. The
total effect of mixing by the first and second local oscillators and complex mixing
in the quadrature detector and the associated filterings is to move the narrow
spectrum around 930 MHz to zero frequency. The quadrature detector and the
subsequent filter (PDF or Post Detection Filter) are the last analogue compo-
nents in EISCAT UHF receiver. After PFD the signal is fed to the AD-converter
and post processed in digital form.

3.7 Hilbert transform

A second way of mixing a signal to zero frequency is provided by the Hilbert
transform. The Hilbert transform of signal x(t) is defined as

x̂(t) =
1

π

∫ ∞

−∞

x(τ)

t − τ
dτ, (3.43)

where it is understood that the integral means its principal value. Note that,
unlike in the case of Fourier transform, the Hilbert transform of a time-domain
signal remains in time domain.

The most convenient way of calculating the Fourier transform of a Hilbert-
transformed signal is to use convolution which will be defined later. The result,
however, can also be derived as follows. The Fourier transform of a Hilbert-
transformed signal is

F{x̂(t)} =

∫ ∞

−∞

x̂(t)e−iωtdt =
1

π

∫ ∞

−∞

[∫ ∞

−∞

x(τ)

t − τ
dτ

]

e−iωtdt. (3.44)

By changing the order of integration we obtain

F{x̂(t)} =
1

π

∫ ∞

−∞

x(τ)

[
∫ ∞

−∞

e−iω(t− τ)

t − τ
d(t − τ)

]

e−iωτ dτ

=
1

π

[
∫ ∞

−∞

e−iωt′

t′
dt′

] [∫ ∞

−∞

x(τ)e−iωτ dτ

]

= I · F{x(τ)} = I · X(ν).

Here the integral I is

I =
1

π

[∫ ∞

−∞

cosωt′

t′
dt′ − i

∫ ∞

−∞

sin ωt′

t′
dt′

]

= − 2

π
· i · sgn(ν)

∫ ∞

0

sin ωt′

ωt′
dωt′ = −i · sgn(ν),
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Figure 3.8: Mixing to zero frequency using Hilbert transform.

where the signum function is

sgn(ν) =







1 , when ν > 0
0 , when ν = 0

−1 , when ν < 0.
(3.45)

Combining these results gives

F{x̂(t)} = X̂(ν) = −i · sgn(ν) · X(ν). (3.46)

If x(t) is a narrow-band signal with its spectrum around the frequency ν0,
its Fourier transform can be presented as a sum of the positive and negative
frequency parts as shown by the top panel in Fig. 3.8. Thus

X(ν) = X+(ν) + X−(ν) (3.47)

and the Fourier transform of the Hilbert-transformed signal is

X̂(ν) = −i[X+(ν) − X−(ν)]. (3.48)

The original signal and its Hilbert transform can be used in creating a complex
signal

x+(t) = [x(t) + ix̂(t)]/2, (3.49)
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which has a Fourier transform

F{x+(t)} = [X(ν) + iX̂(ν)]/2 = X+(ν). (3.48)

This shows that the spectrum of x+(t) lies at positive frequencies only, as seen
in the second panel of Fig. 3.8. The next step is to shift this spectrum to zero
frequency. This can be done by complex mixing with exp(−iω0t). The result is

z(t) = x+(t)e−iω0t, (3.49)

and the corresponding Fourier transform is

Z(ν) =

∫ ∞

−∞

z(t)e−iωtdt =

∫ ∞

−∞

x+(t)e−i(ω + ω0)tdt = X+(ν + ν0). (3.50)

Hence the spectrum of z(t) is obtained by shifting the spectrum of x+(t) on the
frequency axis in the negative direction by the amount ν0. This is shown in the
bottom panel of Fig. 3.8.

In conclusion, the above theory shows that Hilbert transform can be used
in shifting the spectrum of a signal to zero frequency. The original signal and
its Hilbert transform make the real and imaginary parts of a complex signal,
which has a non-zero spectrum at positive frequencies only. The final shift to
zero frequency is carried out by complex mixing. Note that in this procedure
the negative frequency part of the spectrum is removed before mixing to zero
frequency is carried out. This order is opposite to what happens in the EISCAT
UHF receiver where a quadrature detector is used.

3.8 Autocorrelation function and power spec-

trum of a complex signal

The theory presented in the previous section makes it clear that, after the
quadrature detector and post-detection filter, the incoherent scatter signal

z(t) =

∫ ∞

−∞

Z(ω)eiωtdν (3.51)

is complex-valued and its Fourier transform

Z(ω) =

∫ ∞

−∞

z(t)e−iωtdt (3.52)

departs from zero only within a narrow frequency range around the zero fre-
quency. Because z(t) is complex, |Z(ω)| is not necessarily even. Obviously,

|Z(ω)|2 = Z(ω)Z∗(ω) =

∫ ∞

−∞

z(t)e−iωtdt ·
∫ ∞

−∞

z∗(t′)eiωt′dt′
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=

∫ ∞

−∞

z(t)

[∫ ∞

−∞

z∗(t′)e−iω(t− t′)dt′
]

dt.

Using the notation τ = t − t′, so that t′ = t − τ and dt′ = −dτ , the above
equation can be developed as

|Z(ω)|2 =

∫ ∞

−∞

z(t)

[∫ ∞

−∞

z∗(t − τ)e−iωτ dτ

]

dt

=

∫ ∞

−∞

[∫ ∞

−∞

z(t)z∗(t − τ)dt

]

e−iωτ dτ. (3.53)

This means that |Z(ω)|2 is a Fourier transform of a quantity closely resembling
the autocorrelation function defined by eq. (3.14) for a real-valued stationary
ergodic signal.

It seems reasonable to extend the definition of the autocorrelation function
to include complex-valued signals. In analogy with eq. (3.16), an estimate for
the autocorrelation function of a complex signal z(t) is given by

Rz(τ) = 〈z(t)z∗(t − τ)〉 ≈ 1

2T

∫ ∞

−∞

z(t)z∗(t − τ)dt, (3.54)

when z(t) is non-zero within the interval [−T, T ] only, and the corresponding
power spectrum is

Sz(ν) =
1

2T
|Z(ν)|2. (3.55)

Then, according to eq. (3.53), the autocorrelation function and the power spec-
trum make a Fourier transform pair

Sz(ν) = F{Rz(τ)}

Rz(τ) = F−1{Sz(ν)}. (3.56)

Note that, in order to achieve this result, it was necessary to use the complex
conjugate z∗ in the definition of the autocorrelation function.

Because Z(ω) = X+(ω + ω0), Sz(ν) has the same shape as the power

0 νν
∆ν

Figure 3.9: Doppler shift of the power spectrum.
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spectrum of x(t), but it is shifted to zero frequency. If the power spectrum of
the incoherent scatter signal is symmetric around the transmission frequency,
Sz(ν) is also symmetric around zero like in the left hand panel of Fig. 3.9. In
that case |Z(ν)| is even and ϕz(ν) is odd function of frequency, so that z(t) and
Rz(τ) are actually real. Due to Doppler shift, however, the power spectrum of
the scattering signal is usually asymmetric around the transmission frequency,
and therefore Sz(ν) is also asymmetric around zero. This situation is portrayed
in the right hand panel of Fig. 3.9. Then |Z(ν)| is not even and z(t) and Rz(τ)
are necessarily complex. Hence a non-zero imaginary part of the autocorrelation
function is an indication of plasma motion with a non-zero velocity component
along the radar beam.

3.9 Linear system

In the following, the word ’system’ means a setup containing an input and an
output, and giving an unequivocal output signal for each input signal. A real
physical system, however, adds random noise in the output so that the output
is not completely unequivocal.

A system is linear if it fulfils the following two conditions:

1. If the output corresponding to an input x(t) is y(t) , then the input a ·x(t),
where a is a constant, leads to an output a · y(t).

2. If the outputs corresponding to inputs x1(t) and x2(t) are y1(t) and y2(t),
respectively, the output corresponding to the input x1(t)+x2(t) is y1(t)+
y2(t).

These definitions are clarified by Fig. 3.10.

1:

2:

x1(t) y1(t)

x2(t) y2(t)

x(t) y(t)

x1(t) + x2(t) y1(t) + y2(t)

a·x(t) a·y(t)

Figure 3.10: Properties of a linear system.
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δ(t) h(t)
h(t)

Figure 3.11: Impulse response of a linear system.

The incoherent scatter receiver is treated theoretically as a linear system.
In order to fulfil this requirement, the amplifiers, attenuators and filters in
different stages of the signal path should be as linear as possible. In EISCAT
receivers the post-detection filter has a key role, because it affects the observed
autocorrelation function and its properties must be known in the data analysis.
The following text consists of the basic theory of a linear system, a knowledge
which is essential in understanding the post-detection filter.

The characteristics of a linear system are ruled by its impulse response.
When the impulse response is known, the output corresponding to any input
can be calculated. The impulse response is defined as the output signal corre-
sponding to an input signal equal to the Dirac delta function (Fig. 3.11).

Assume x(t) is the input signal in a linear system with an impulse response
h(t). The task is to calculate the output signal y(t). Using the definition of the
delta function we can write

x(t) =

∫ ∞

−∞

x(τ)δ(τ − t)dτ =

∫ ∞

−∞

x(τ)δ(t − τ)dτ. (3.57)

The latter equality is valid, because the delta function is even. This formula
allows x(t) to be interpreted as a sum of elementary signals

dx(t) = x(τ)δ(t − τ)dτ. (3.58)

If the input signal is δ(t − τ), the output is obviously h(t − τ). According to
condition 2, the elementary output corresponding to an input dx is therefore

dy(t) = x(τ)h(t − τ)dτ (3.59)

and, according to condition 1, the total output is the sum of elementary outputs,
i.e.

y(t) =

∫ ∞

−∞

x(τ)h(t − τ)dτ = (x ∗ h)(t). (3.60)

The type of integral in eq. (3.60) is known as convolution, which is often briefly
marked using the notation ’∗’. Thus we have arrived at an important result: the
output of a linear system is a convolution of the input and the impulse response
of the system.

It is convenient to derive here some of the most important characteristics of
the convolution.

1. Convolution is commutative: (u ∗ v)(t) = (v ∗ u)(t).

Proof:

(u ∗ v)(t) =

∫ ∞

−∞

u(τ)v(t − τ)dτ
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=

∫ ∞

−∞

u(t − τ ′)v(τ ′)dτ ′ = (v ∗ u)(t).

2. Fourier transform of convolution:

F{u ∗ v} = F{u} · F{v} and F−1{U ∗ V } = F−1{U} · F{V }.
Proof:

F{u ∗ v} =

∫ ∞

−∞

(u ∗ v)e−iωtdt =

∫ ∞

−∞

[∫ ∞

−∞

u(τ)v(t − τ)dτ

]

e−iωtdt

=

∫ ∞

−∞

u(τ)

[∫ ∞

−∞

v(t − τ)e−iωtdt

]

dτ

=

∫ ∞

−∞

u(τ)e−iωτ
[∫ ∞

−∞

v(t − τ)e−iω(t − τ)dt

]

dτ

=

[∫ ∞

−∞

u(τ)e−iωτ dτ

] [∫ ∞

−∞

v(t′)e−iωt′dt′
]

= F{u} · F{v}.

The proof for the inverse Fourier transform is analogous.

3. Fourier transform of product:

F{u · v} = F{u} ∗ F{v} and F−1{U · V } = F−1{U} ∗ F{V }.
Proof: If U = F{u} and V = F{v}, obviously

F−1{U ∗ V } = F−1{U} · F−1{V } = u · v,

so that
F{u · v} = F{F−1{U ∗ V }}

= U ∗ V = F{u} ∗ F{v}.
Again, the proof for the inverse transform is analogous.

The properties of the convolution integral give us a possibility to relate the
Fourier transforms of the input and output signals. By applying property 2 to
y(t) = (x ∗ h)(t) we immediately obtain

Y (ν) = F{y} = F{x} · F{h} = X(ν) · H(ν), (3.61)

where
H(ν) = F{h} (3.62)

is called the transfer function of the linear system. Hence the transfer function
and the impulse response make a Fourier transform pair. Because

H(ν) = |H(ν)|eiϕh(ν), (3.63)

the output signal can be put in the form

y(t) =

∫ ∞

−∞

Y (ν)eiωtdν =

∫ ∞

−∞

H(ν)X(ν)eiωtdν
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0.0
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0.2

0.0

Figure 3.12: Convolution of impulse response and input signal.

=

∫ ∞

−∞

|H(ν)||X(ν)|ei[ωt + ϕx(ν) + ϕh(ν)]dν. (3.64)

This indicates how the amplitude and phase of the frequency component ν are
changed by a linear system. The amplitude is multiplied by |H(ν)| and the
phase is shifted by ϕh(ν).

The value of the convolution (x ∗ h)(t0) is a weighted average of x from a
time interval when h(t0 − t) 6= 0. If t0 indicates the present time and h(t) = 0,
when t < 0, the output signal y(t0) is a weighted average of the input signal in
the past. The idea is visualised in Fig. 3.12, where the top panel shows both
h(t), h(t0 − t) and x(t), and the bottom panel the product x(t) · h(t0 − t). The
value of the output signal, y(t0), is the integral of the function plotted in the
bottom panel. This sort of linear system remembers the past input signal from
a time-span of its impulse response. The property is valid for all real physical
filters.

If the impulse response is non-zero on the negative time axis, the output
contains information also on the future values of the input signal. A linear
system working in real time is not capable of making predictions, and therefore
its impulse response is non-zero on the positive time axis only. A predicting
digital filter, however, can be used for a signal which has already been observed.
A simple example of such a filter is calculating a floating average.

In the EISCAT systems the complex signal from the quadrature detector is
filtered by a low-pass post-detection filter. The quadrature components (real
and imaginary parts) have filters of their own which have been built as identical
as possible. The impulse responses of these filters deform the signal and their
transfer functions deform the power spectrum. If the signal before the post-
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detection filter is z(t), the filter output is

zh(t) = (z ∗ h)(t) = [Re(z) ∗ h](t) + i[Im(z) ∗ h](t), (3.65)

its Fourier transform is

Zh(ν) = F{zh} = F{Re(z)} · H(ν) + iF{Im(z)} · H(ν)

= H(ν) · F{Re(z) + iIm(z)} = H(ν) · F{z} = H(ν) · Z(ν), (3.66)

and its power spectrum is

Szh(ν) =
1

2T
|Zh(ν)|2 =

1

2T
|H(ν)|2 · |Z(ν)|2

=
1

2T
|H(ν)|2 · |X+(ν + ν0)|2. (3.67)

This would seem to indicate that the spectrum of plasma fluctuations is ob-
tained by dividing the observed power spectrum by |H(ν)|2. This is not the
case, however, since the modulation of the transmitted signal also affects the
signal spectrum. A unified formalism for taking into account both effects is
offered by the theory of ambiguity functions, which is presented in Chapter 4.
The ambiguity functions are closely associated with the altitude and lag ranges
covered by the observed autocorrelation function estimates.

3.10 Transfer function of a boxcar filter. Defi-

nition of pass band.

As an example of a linear system, a filter with a boxcar-shaped impulse response
is studied in this section. This is an idealised model of course, because the
impulse response of a real analogue filter cannot have sharp edges. This filter,
however, has the benefit that it allows easy approximate calculations in the
ambiguity function theory and, for qualitative considerations, the results are
not too far from those obtained using the true impulse responses. A filter with
a boxcar-shaped impulse response represents one extreme case, the opposite
extreme would be a filter with a boxcar-shaped transfer function, which is also
sometimes called a boxcar filter.

Because the input and output signals of a linear system normally have the
same unit, the dimension of the impulse response must be time−1. It is practical
to scale the impulse response to give

∫ ∞

−∞

h(t)dt = 1. (3.68)

Since H(ν) is the Fourier transform of h(t), this choice also means that H(0) =
1. This scaling is not useful if the amplification or damping of the system is
of interest, since it pays attention only to the shape of the power spectrum,
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Figure 3.13: Impulse response of a boxcar filter.

not to its magnitude. In an incoherent scatter receiver, however, the signal is
attenuated and amplified in various stages of its path, and a separate calibration
of the output power is always necessary. Therefore the absolute scaling of the
post-detection filter is not of interest to us, and it is convenient to use eq. (3.68).

With the above scaling, the impulse response of a boxcar filter is (Fig. 3.13)

h(t) =

{
1/t0 , when 0 < t < t0
0 , when t ≤ 0 or t ≥ t0 ,

(3.69)

and the transfer function is

H(ν) =

∫ ∞

−∞

h(t)e−iωtdt =

∫ t0

0

1

t0
· e−iωtdt

=
1

t0
· e−iωt0/2 ·

∫ t0

0

e−iω(t − t0/2)dt =
1

t0
· e−iωt0/2 ·

∫ t0/2

−t0/2

e−iωtdt

=
e−iωt0/2

−iωt0

(

e−iωt0/2 − eiωt0/2
)

=
e−iωt0/2

ωt0/2
· eiωt0/2 − e−iωt0/2

2i

=
sin ωt0/2

ωt0/2
· e−iωt0/2 = sinc(ωt0/2) · e−iωt0/2. (3.70)

It is a common practice to use the definition sinc(x) = sin x/x in signal theory,
although this sinc-function is nothing but the spherical Bessel function j0(x).

The modulus of the transfer function is

|H(ν)| =

∣
∣
∣
∣

sin ωt0/2

ωt0/2

∣
∣
∣
∣

(3.71)

and the phase
ϕh(ν) = −πt0ν + nπsgn(ν), (3.72)

when n/t0 < |ν| < (n + 1)/t0, n = 0, 1, 2, . . .. These quantities are plotted in
Fig. 3.14.We see that the modulus has a strong centre peak (pass band) around
zero and a set of weaker ’sidebands’ separated by zero points at frequencies
which are multiples of 1/t0. The heights of the first sidebands are about 0.22
and the other sidebands further away from the central peak are even weaker.
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Figure 3.14: Modulus and phase of the transfer function of a boxcar filter.

This means that the system greatly attenuates the high frequencies in the signal
so that it is indeed a low-pass filter, but it is not capable of completely removing
all frequencies higher than some cut-off value. Hence the filter has no sharply
limited pass band. The phase is discontinuous at points ν = ±1/t0,±2/t0, . . .
and descends linearly with frequency within each interval n/t0 < |ν| < (n+1)/t0.
Because the impulse response is real, the modulus and phase should be even and
odd functions of frequency, respectively. This condition is clearly fulfilled by the
results shown in Fig. 3.14.

It is convenient to define a general concept of bandwidth which serves the
practical need of comparing the pass bands of different filters. Such a definition
can be given in terms of a boxcar-shaped transfer function as follows. The band-
width of a low-pass filter is the cut-off frequency of a boxcar transfer function,
which lets the same energy of white noise pass the filter as the original filter
does. If νc is the cut-off frequency, the modulus of the boxcar transfer function
is

|Hc(ν)| =

{
1 , when − νc < ν < νc

0 , when ν < −νc or ν > νc.
(3.73)

Then ∫ ∞

−∞

|Hc(ν)|2dν =

∫ νc

−νc

12dν = 2νc

=

∫ ∞

−∞

|H(ν)|2dν =

∫ ∞

0

h(t)2dt. (3.74)
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This gives a cut-off frequency

νc =
1

2

∫ ∞

0

h(t)2dt. (3.75)

In the case of a boxcar-shaped impulse response

νc =
1

2t20

∫ t0

0

dt =
1

2t0
. (3.76)

We can now calculate the ratio of output and input power at the cut-off
frequency. When ν = νc, the value of ωct0/2 is 2πνct0/2 = π/2 and

|H(νc)|2 =

∣
∣
∣
∣

sin π/2

π/2

∣
∣
∣
∣

2

=

(
2

π

)2

≈ 0.63662 ≈ 0.40 ≈ −3.9 dB .

Thus, if we assume that white noise is passed through the filter, the power at
the cut-off frequency is reduced to 40 % of its value at zero frequency.

3.11 Bandwidth of an incoherent scatter signal

The post-detection filters which are used in the EISCAT receivers are electronic
devices which, of course, do not have a boxcar shape. Different types of them, for
instance so called Butterworth filters, are available. Regardless of the type, the
above definition of the cut-off frequency gives a good idea of the filter pass band,
and t0 solved from the relation νc = 1/2t0 gives an estimate of the length of the
impulse response. Examples of cut-off frequencies and corresponding lengths of
impulse responses used in the EISCAT UHF radar are shown in Table 3.1.

Table 3.1
Typical cut-off frequencies and corresponding lengths of impulse response in

the EISCAT UHF receiver.

νc (kHz) t0 (µs)
25 20
50 10
125 4

The first demand in choosing the post detection filter is that the whole ion
line must be able to pass it with no severe attenuation even at the edges. The
width of the ion line can be estimated as follows. According to eq. (2.50), the
phase speed of an ion acoustic wave is approximately

v+ =

√

2kTi

mi
(3.77)

and the corresponding Doppler shift is (see eq. 2.46)

ν+ =
2v+

λ0
=

2ν0

c

√

2kTi

mi
. (3.78)
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Table 3.2
Doppler shifts corresponding to the ion acoustic speeds for different ion masses

and temperatures.

ν+ (kHz)
mi(u) 500 1000 2000

16 4.5 6.3 8.9
30 3.3 4.6 6.5

Table 3.2 shows the Doppler shifts calculated from this formula for ion masses
16 and 30 u (corresponding to ion species O+ and NO+) at different ion tem-
peratures. Due to Landau damping, the ion line is somewhat broader than
indicated by ν+ but, nevertheless, it would look like νc = 10 kHz would be
a sufficient cut off frequency for the post detection filter. However, we also
have to pay attention to the Doppler shift due to ionospheric plasma motion,
which shifts the centre of the spectrum away from zero frequency. The greatest
plasma velocities are encountered in the ionospheric F-layer and they are caused
by electric fields. Normally the electric field E is smaller than 100 mV/m. The
corresponding plasma drift speed in the geomagnetic field B is

v =
E

B
=

100 mV/m

50 µT
= 2000 m/s

which causes a Doppler shift

δν = 2
v

λ0
=

2ν0v

c
= 12.4 kHz.

Hence the width of the ion line and the Doppler shift together would give a
bandwidth of about (13 + 9) kHz = 22 kHz (Fig. 3.15). This is the explanation
for the 25 kHz bandwidth in Table 3.1.

ν / kHz13 9

Figure 3.15: Increase of signal bandwidth due to Doppler shift.
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Figure 3.16: Reflection of a signal at a horizontal thin sheet.

The next task is to understand why filter bandwidths broader than 25 kHz
are sometimes used. The explanation is that the modulation of the transmitted
signal has a bandwidth of its own, and this modulation must also pass through
the post detection filter.

Let us assume that a monostatic radar transmits a pulse with a length T
at a frequency ν0 and the pulse is reflected back by a horizontal surface at an
altitude r0 in the ionosphere (Fig. 3.16). The transmitted signal can be written
as

xt(t) = env(t) · cos(ω0t), (3.79)

where the modulation envelope is

env(t) =

{
1 , when 0 < t < T
0 , when t ≤ 0 or t ≥ T.

(3.80)

This signal is shown on the left hand side in the bottom panel of Fig. 3.16, where
the horizontal axis is time. In the top panel the vertical axis indicates range
from the transmitter. The two tilted lines starting from the origin and t = T
indicate, respectively, the paths of the front and back ends of the transmitted
pulse in the time-range coordinate system. The front end of the pulse hits the
surface at a time t = r0/c and returns back to the transmitter at t = 2r0/c. For
the back end, the same incidents are delayed by T . If no phase shifts take place
at the reflection point, the received signal is

x(t) = env(t − 2r0/c) · cosω0(t − 2r0/c), (3.81)

where the inevitable change in amplitude is neglected for simplicity.
If the moment when the front end of the echo reaches the receiver is chosen

as the zero time, the received signal is x(t) = env(t) · cosω0t and its Fourier
transform is

X(ν) =

∫ ∞

−∞

env(t)cos(ω0t)e
−iωtdt =

∫ T

0

eiω0t + e−iω0t

2
· e−iωtdt
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=
1

2

[
∫ T

0

e−i(ω − ω0)tdt +

∫ T

0

e−i(ω + ω0)tdt

]

. (3.82)

Because

∫ T

0

e−iωtdt = e−iωT/2
∫ T

0

e−iω(t− T/2)dt = e−iωT/2
∫ T/2

−T/2

e−iωtdt

= e−iωT/2 · e−iωT/2 − eiωT/2

−iω
= T · e−iωT/2

ωT/2
· eiωT/2 − e−iωT/2

2i

= T · e−iωT/2 · sin(ωT/2)

ωT/2
,

we can write
X(ν) = X+(ν) + X−(ν), (3.83)

where

X+(ν) =
T

2
e−i(ω − ω0)T/2 · sin(ω − ω0)T/2

(ω − ω0)T/2

X−(ν) =
T

2
e−i(ω + ω0)T/2 · sin(ω + ω0)T/2

(ω + ω0)T/2
. (3.84)

If T � 1/ν0, then X+(ν) departs from zero only in the neighbourhood of ν0 (i.e.
within the region |ν − ν0| � ν0), and X−(ν) 6= 0 only in the neighbourhood of
−ν0. Then, with a good accuracy, X+(ν) represents the positive and X−(ν) the
negative frequency part of the Fourier transform. Thus the Fourier transform
of the quadrature detector output is

Z(ν) ≈ X+(ν + ν0) =
T

2
e−iωT/2 · sin ωT/2

ωT/2
. (3.85)

This can obviously be put in the form

Z(ν) =
1

2

∫ T

0

e−iωtdt =
1

2

∫ ∞

−∞

env(t)e−iωtdt =
1

2
F{env(t)} (3.86)

so that

z(t) = F−1{Z(ω)} =
1

2
env(t). (3.87)

This shows that, if the transmitted signal is modulated by a simple pulse, the
output signal of the quadrature detector consists of a similar pulse. After the
post detection filter the signal is

zh(t) = (z ∗ h)(t) =
1

2
(env ∗ h)(t). (3.88)

The shape of this function for different relative magnitudes of the pulse length
and impulse response length is shown in Fig. 3.17 in the case of a boxcar filter.
The pulse is shown in panel a. In panels b – d three different impulse responses
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Figure 3.17: Deformation of a simple pulse by three different impulse responses.

and results of convolution are plotted. In each case the result is a pulse with
sloped edges and a total length T + t0, where t0 is the length of the impulse
response. If t0 < T (panel b), the pulse is not seriously deformed. If t0 = T
(panel c), the output of the post detection filter is a triangular pulse. Finally,
if t0 > T (panel d), the output signal is closer to the impulse response than the
detected pulse. Because the filter bandwidth is

νc =
1

2t0
(3.89)

and the bandwidth of the input signal is

νz =
1

2T
, (3.90)

this means in frequency domain that the signal can pass the post detection filter
without too serious deformation only if νc is greater than νz.

If the reflecting surface in the ionosphere is replaced by a thin scattering
layer, the scattering signal from this layer in the receiver is

x(t) = env(t) · y(t), (3.91)

where y(t) is a stochastic signal, which would be caused by a continuous illu-
mination cosω0t. Note that we discuss here only the signal due to Thomson
scattering within the sheet, not the reflections at the sharp edges. This is possi-
ble since the real ionosphere can be built of a great number of such layers. Then
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no sharp edges are present and only the scattering signal is observed from each
sheet.

The Fourier transform of x(t) is

X(ν) = F{env(t)} ∗ F{y(t)} = ENV(ν) ∗ Y (ν), (3.92)

where ENV(ν) is the Fourier transform of env(t). If env(t) is a simple pulse
with a length T , the modulus of its Fourier transform is

|ENV(ν)| = | sin(ωT/2)/(ωT/2)|

and its bandwidth is νenv = 1/2T . From the convolution in eq. (3.92) it is
obvious that the bandwidth of x(t) is

νx = νenv + νy, (3.93)

where νy is the bandwidth of y(t).
The above consideration shows that there are two factors which affect the

bandwidth of an incoherent scatter signal. One is the scattering process itself
and the other the modulation of the transmitted wave. In fact, both factors
have a bandwidth of their own and the total bandwidth is their sum. The
post detection filter should be chosen to let the frequencies within the total
bandwidth of the signal pass the filter without too much distortion but, at the
same time, to reject unnecessary noise. Table 3.3. shows the approximate pulse
lengths in different modulations used by the EISCAT UHF radar, together with
the corresponding bandwidths of the modulation envelope. According to these
estimates, the modulation bandwidth of the phase code is so wide that it alone
determines the bandwidth of the post detection filter. On the other hand, the
bandwidths of the longest single pulses are so narrow that they have no essential
role in determining the filter band width.

Table 3.3.
Approximate pulse lengths and bandwidths of different modulations used in

the EISCAT UHF radar.

T (µs) ν (kHz)
2 – 4 250 – 125 Phase code
10 50 Pulse code
100 – 300 5 – 1.7 Long pulse

As pointed out above, a real ionosphere can be considered to be composed
of a set of adjacent thin layers. In the receiver, the scattering signal from the
ith layer has the form

xi(t) = env(t − 2ri/c) · yi(t), (3.94)

where ri is the distance to the ith layer and yi(t) is the scattered signal from the
ith layer caused by a continuous monochromatic illumination. If the transmitted
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Figure 3.18: The height range of the observed signal.

pulse is modulated by a simple pulse with a length T , the scattered signal from
the ith layer will be observed at the receiver of a monostatic radar during a time
interval (2ri/c, 2ri/c + T ). This is shown by Fig. 3.18. On the other hand, the
total signal observed at t = t0 is the sum of signals scattered from all elementary
layers within the height range [c(t0−T )/2, ct0/2]. Then the above discussion on
the signal bandwidth applies to each of these elementary signals. This means
that the post detection filter at each channel must have a bandwidth which
allows the widest possible signal from the range of interest to pass through.
Even in this case the signal is deformed to some extent, which must be taken
into account in the data analysis. How this is done will be explained by the
theory of ambiguity functions in Chapter 4.
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Chapter 4

Theory of ambiguity

functions

4.1 Two-dimensional ambiguity functions

As shown previously, the incoherent scatter signal is deformed by the impulse
response of the receiver, and therefore the impulse response also affects the
signal autocorrelation function. A second factor which deforms the signal and
its autocorrelation function is the radar modulation since it determines the
scattering altitudes of the elementary signals contributing to the total signal
at a given instant of time. When plasma parameters are estimated from the
autocorrelation functions, both of these effects have to be taken into account.
This can be done in a controlled way by means of the theory of ambiguity
functions.

Let us consider a volume element d3r at r with distances r1(r) and r2(r)
to the transmitter and the receiver, respectively. This volume is illuminated by
continuous monochromatic radiation. If there were only a single electron in the
volume element, the scattered power captured by the receiver antenna would be
given by eq. (2.81). The power P o

z observed after the quadrature detector would
be proportional to this power. Note that this power is inversely proportional to
the squares of the distances to the two antennas and it is also controlled by the
antenna gains.

When the volume element is filled with thermal plasma, a complex random
voltage dz(t, r) is observed at the output of the quadrature detector. The mean
value of the square of this voltage, 〈dz(t, r)dz∗(t, r)〉, is proportional to the
observed mean power and the respective coefficient R can be called the receiver
resistance. The mean power, on the other hand, is proportional to the the
number of electrons within the volume element as well as to P o

z , the power due
to a single electron. According to the definition of the autocorrelation function in
eq. (3.54), 〈dz(t, r)dz∗(t, r)〉 is the zero lag of the signal autocorrelation function.
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Then we can write the signal autocorrelation function in the form

〈dz(t, r)dz∗(t′, r′)〉 = RP o
z σe(t − t′, r)δ(r − r′)d3rd3r′, (4.1)

where σe is the plasma autocorrelation function proportional to the electron
density. This equation also contains the condition that signals from different
volume elements do not correlate, i.e. 〈dz(t, r)dz∗(t′, r′) = 0 when r 6= r′. The
quantity we are interested in is the plasma autocorrelation function because
it is determined by the physical parameters of the plasma. One should also
notice that eq. (2.84) is a special case of eq. (4.1). The factors containing the
transmitted power, the radar wave length and the antenna gain and distance
are included in P o

z . The product neσ is equal to σe(0, r), the zero lag of the
plasma autocorrelation function.

When the transmission is modulated with an envelope env(t), the signal
received from whole the space is

z(t) =

∫

r

env(t − S(r)dz(t, r), (4.2)

where

S(r) =
r1(r) + r2(r)

c
(4.3)

is the travel time of the signal from transmitter to receiver via the volume
element at r. One should notice that the strength of the elementary signals
dz(t, r) is controlled by the antenna gains so that no important contribution is
obtained from regions outside the radar beams. After passing the post detection
filter, the signal has the form

zh(t) = (z ∗ h)(t) = (h ∗ z)(t) =

∫ ∞

−∞

h(t − τ)z(τ)dτ

=

∫ ∞

−∞

h(t − τ)

[∫

r

env(τ − S(r))dz(τ, r)

]

dτ

=

∫ ∞

−∞

[∫

r

h(t − τ)env(τ − S(r))dz(τ, r)

]

dτ. (4.4)

By defining the amplitude ambiguity function

W A
t (τ, r) = h(t − τ)env(τ − S(r)) (4.5)

the signal can be written in the form

zh(t) =

∫ ∞

−∞

[∫

r

W A
t (τ, r)dz(τ, r)

]

dτ. (4.6)

Note carefully that a different amplitude ambiguity function is attached to each
time of observation. Eq. (4.6) means that, after the post detection filter, the
signal is a weighted sum of elementary signals from all volume elements and all
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times, and the weight in this sum is given by the amplitude ambiguity function.
Of course, non-zero elementary signals are only obtained from the cross-sections
of the radar beams and their amplitudes are controlled by the antenna gains.
The amplitude ambiguity function introduces an additional spatial weight asso-
ciated with the length of the radar modulation and a temporal weight associated
with the receiver filtering.

With the help of the amplitude ambiguity function, the signal autocorrela-
tion function can be further developed as

〈zh(t)z∗h(t′)〉 =

〈
∫ ∞

−∞

[∫

r

W A
t (τ, r)dz(τ, r)

]

dτ ·
∫ ∞

−∞

[∫

r′

W A∗
t′ (τ ′, r)dz∗(τ ′, r′)

]

dτ ′〉

=

∫ ∞

−∞

dτ

∫ ∞

−∞

dτ ′

[∫

r

∫

r′

W A
t (τ, r)W A∗

t′ (τ ′, r′)〈dz(τ, r)dz∗(τ ′, r′)〉
]

= R

∫ ∞

−∞

dτ

∫ ∞

−∞

dτ ′×
[∫

r

∫

r′

P o
z (r)W A

t (τ, r)W A∗
t′ (τ ′, r′)σe(τ − τ ′, r)δ(r − r′)d3rd3r′

]

= R

∫ ∞

−∞

dτ

∫ ∞

−∞

dτ ′

[∫

r

P o
z (r)W A

t (τ, r)W A∗
t′ (τ ′, r)σe(τ − τ ′, r)d3r

]

(4.7)

By introducing a new variable ν = τ − τ ′ we obtain

〈zh(t)z∗h(t′)〉 =

R

∫ ∞

−∞

dτ

∫ ∞

−∞

dν

[∫

r

P o
z (r)W A

t (τ, r)W A∗
t′ (τ − ν, r)σe(ν, r)d3r

]

= R

∫

r

d3rP o
z (r)

∫ ∞

−∞

dν · σe(ν, r)

[∫ ∞

−∞

W A
t (τ, r)W A∗

t′ (τ − ν, r)dτ

]

. (4.8)

The integral of amplitude ambiguity functions in eq. (4.8) is known as the two-
dimensional ambiguity function

Wtt′(ν, r) =

∫ ∞

−∞

W A
t (τ, r)W A∗

t′ (τ − ν, r)dτ, (4.9)

which is a basic concept in the analysis of incoherent scatter data. Two-
dimensional ambiguity function is an unnormalised cross-correlation function
(in time direction) of the amplitude ambiguity functions attached to time in-
stants t and t′. Consequently, a different two-dimensional ambiguity function is
attached to each pair (t, t′) of observation times.

The autocorrelation function of the received signal can now be written as

〈zh(t)z∗h(t′)〉 = R

∫

r

P o
z (r)

[∫ ∞

−∞

Wtt′(ν, r)σe(ν, r)dν

]

d3r. (4.10)
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According to this result, each lag t − t′ of the measured autocorrelation func-
tion is a weighted average of the plasma autocorrelation function both in space
and in time. Contribution to the measurement is obtained from that part of
space where both P o

z 6= 0 and Wtt′ 6= 0. The single electron power P o
z includes

the effects of the antenna pattern (only signal from the crossing volume of the
radar beams can be non-zero), wave polarisation effects, attenuation of the sig-
nal with distance as well as receiver amplification. In monostatic case the effect
of antenna pattern means that P o

z contains spatial weighting in directions per-
pendicular to the radar beam. The two-dimensional ambiguity function Wtt′

includes the effects of transmitter modulation and receiver filtering. As seen
from eqs. (4.5) and (4.9), the transmitter modulation also provides a spatial
weighting which, in the case of a monostatic radar, controls the scattering vol-
ume in the direction of the antenna beam. The post-detection filter takes care
of the weight in time direction.

4.2 Examples of two-dimensional ambiguity func-

tions in monostatic case

In monostatic radar system the transmitter and receiver are in the same position,
and the space where the scattered radiation is received from, is restricted by
the radar beam. Then Wtt′ depends only on the distance r measured from the
antenna or, equivalently, on S = 2r/c, which is the travel time of the signal
from the antenna to the distance r and back. If the beam is narrow enough,
σe does not vary within the beam cross section and therefore it also depends
only on r. Although this is usually true in incoherent scatter radars with very
narrow beams, the assumption may be violated when thin auroral structures
are drifting across the antenna pattern.

In a monostatic case the two-dimensional ambiguity function is

Wtt′ (ν, r) =

∫ ∞

−∞

W A
t (τ, r)W A∗

t′ (τ − ν, r)dτ, (4.11)

where the amplitude ambiguity function is

W A
t (τ, r) = h(t − τ)env(τ − S(r)), (4.12)

and the autocorrelation function of the received signal can be written as

〈zh(t)z∗h(t′)〉 = R

∫ ∞

0

P o
Az(r)

[∫ ∞

−∞

Wtt′(ν, r)σe(ν, r)dν

]

dr. (4.13)

Here integration over the cross section of the radar beam has been carried out
so that

P o
Az(r) =

∫

A(r)

P o
z (r)dA, (4.14)

where A(r) is the area of the cross section at a distance r. A comparison with
eq. (2.84) shows that eq. (4.14) involves integration of the square of the antenna
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Figure 4.1: Amplitude ambiguity function of a single pulse.

gain. Instead of ν and r, we can also use ν and S as the arguments of the
two-dimensional ambiguity function so that Wtt′ = Wtt′(ν, S(r)).

We next take two examples to demonstrate the meaning of the amplitude
ambiguity function and the two-dimensional ambiguity function.The first exam-
ple is a single pulse with a length T . The envelope of this modulation is

env(t) =

{
1 , when 0 < t < T
0 , when t ≤ 0 or t ≥ T.

We further assume that the receiver impulse response has a boxcar shape with
the same length as the envelope,

h(t) = env(t)/T.

The corresponding amplitude ambiguity function W A
t = h(t−τ)env(τ−S) is

shown in Fig. 4.1 in τS-coordinates. The generation of this figure is understood
as follows. According to the definition in eq. (4.12), the amplitude ambiguity
function is a product of two terms, h(t − τ) and env(τ − S). The first one of
these does not depend on S and therefore it is zero everywhere in the τS-plane
except within the vertical stripe limited by the lines τ = t−T and τ = t, where
it has a constant value of 1/T . The second term env(τ −S), on the other hand,
is equal to unity within the region limited by lines S = τ and S = τ−T and zero
elsewhere. Hence the amplitude ambiguity function is zero everywhere except
within the region where the above two stripes cross. There it gets a value 1/T .
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Figure 4.2: Zero lag of the two-dimensional ambiguity function of a single pulse.

This region is shown as a dark grey area in Fig. 4.1. In the course of time t, the
region of non-zero amplitude ambiguity function travels upwards between the
tilted lines.

The two-dimensional ambiguity functions can now be constructed using the
amplitude ambiguity functions. For zero lag, i.e. t′ = t, Wtt is simply the
(unnormalised) autocorrelation function of W A

t in lag direction. The amplitude
ambiguity function has a boxcar-shaped form in τ -direction for all values t −
2T < S < t, otherwise it is zero. The height of the boxcar-function is 1/T and,
when S = t − T , it obtains its maximum length T . The length of the boxcar-
function reduces from this value linearly to zero as a function of S and the
zero points are reached at S = t and S = t − 2T . Because the autocorrelation
function of a boxcar function is a triangle, Wtt′ is a pyramid with a height 1/T .
The result is shown in Fig. 4.2. With increasing t, the pyramid moves upwards
along the S-axis.

The result shows that the zero lag of the measured autocorrelation is a
weighted average of the plasma autocorrelation function from a lag range (−T, T )
and the height range corresponding to the values t − 2T < S < t. One must
notice that, when calculating the total weight in S-direction, attenuation with
distance contained in P o

Az must be taken into account.
In order to study other lags with t′ − t 6= 0, we have to use the ampli-

tude ambiguity functions W A
t and W A∗

t′ corresponding to different instants of
observation time. These are investigated later in Chapter 5.x for a long pulse
modulation and an impulse response shorter than the pulse length. Here it is
sufficient to notice that, if t′− t > 2T in the present example, the two amplitude
ambiguity functions do not overlap in S-direction in the presentation of Fig. 4.1
and the corresponding two-dimensional ambiguity function will be zero. Hence
lags longer than 2T give no information on the plasma autocorrelation function.
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Figure 4.3: Amplitude ambiguity functions of a two-pulse code.

As a second example we take so-called two-pulse code consisting of two
simple pulses of length T and a gap of the same length between them. The
modulation envelope is

env(t) =

{
1 , when 0 < t < T or 2T < t < 3T
0 , when t ≤ 0 or T ≤ t ≤ 2T or t ≥ 3T.

As in the previous example, the impulse response has the same shape as a single
pulse, i.e.

h(t) = env(t)/T.

Amplitude ambiguity functions for two observation times t′ and t with a
difference 2T are drawn in Fig. 4.3. As before, the impulse response factor in
the amplitude ambiguity function for a single observation time is non-zero within
a single vertical strip in τS-plane. The difference is that the envelope factor is
non-zero within two strips, and therefore the amplitude ambiguity function is
non-zero within two separate regions. Note that these regions do not overlap
in S-direction, but the top area starts at the same S-value as the bottom area
ends. Note also that the time separation 2T of t′ and t is chosen to make the
top region of W A

t to cover exactly the same range on the S-axis as the bottom
region of W A

t′ does.
The two-dimensional ambiguity function for zero lag is obtained using W A

t

in the same way as in Fig. 4.1. However, since the amplitude ambiguity function
consists of two separate areas, the resulting two-dimensional ambiguity function
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Figure 4.4: Two-dimensional ambiguity functions of a two-pulse code.

will consist of two pyramids around ν = 0 at different values of S as seen in
Fig. 4.4. The tops of the pyramids lie at S = t − T and S = t − 3T and their
edges touch at S = t − 2T .

The two-dimensional ambiguity function for the lag t′ − t is obtained as a
cross correlation function of the two amplitude functions W A

t and W A
t′ . In this

case the top region in W A
t and the bottom region in W A

t′ together form a single
pyramid which is located around ν = 2T , next to the top pyramid of the zero
lag ambiguity function as shown in Fig. 4.4.

Altogether, we observe that the ambiguity function of the lag corresponding
to the pulse separation (’first lag’) produces an ambiguity function with the same
shape as the zero-lag ambiguity function of a single pulse. The only difference
is that the function is shifted by 2T in ν-direction. The zero-lag ambiguity
function of the two-pulse code, on the other hand, covers a double range in
altitude. We say that the zero lag has a spatial ambiguity. Spatial ambiguity
is an unwanted effect because we would like to measure all lags with the same
altitude resolution.

With increasing time, the two-dimensional ambiguity functions drift upwards
along the S-axis. Hence, if the radar signal is sampled at intervals of 2T and
zero lag estimates of the signal autocorrelation function are calculated from
all samples as well as first lag estimates from all pairs of successive samples,
altitude profiles of zero lag and first lag are obtained. The ambiguity functions
of the lag profiles are obtained by shifting the ambiguity functions in Fig. 4.4
upwards in S-direction in steps of 2T . The lag profiles give information on the
altitude profiles of the respective lags of the plasma autocorrelation function.
The altitude range of each zero lag observation, however, is twice the range of
the first lag observation. The situation can be improved by sending a separate
single pulse (perhaps at a different frequency) for obtaining the zero lag with a
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better height resolution.
Two lag values are not enough for mapping a plasma autocorrelation func-

tion and therefore the modulation shown in this example has no practical value.
More lags are obtained if so called multipulse codes are used. These codes are
described later in Chapter 5.3. For each lag of these codes a two-dimensional
ambiguity function of equal shape is formed and an altitude profile of lag esti-
mate can be obtained. The physical parameters are obtained by least squares
fitting of the observations to theoretical ambiguity functions weighted by the
same ambiguity functions.

4.3 Range ambiguity function

Eq. (4.13) can be greatly simplified if the plasma autocorrelation function is
approximately constant within the lag or altitude range of the two-dimensional
ambiguity function. When σe(ν, r) depends only weakly on ν while Wtt′ 6= 0, the
signal autocorrelation functions can be presented in terms of range ambiguity
functions which is one of the two types of reduced ambiguity functions. In this
case we can use the approximation

σe(ν, r) ≈ σe(t
′ − t, r). (4.15)

Then, assuming monostatic case as in Chapter 4.2,

〈zh(t)z∗h(t′)〉 = R

∫ ∞

0

P o
Az(r)

[∫ ∞

−∞

Wtt′(ν, r)σe(t
′ − t, r)dν

]

dr

= R

∫ ∞

0

P o
Az(r)σe(t

′ − t, r)

[∫ ∞

−∞

Wtt′(ν, r)dν

]

dr

= R

∫ ∞

0

P o
Az(r)W

r
tt′ (S(r))σe(t

′ − t, r)dr, (4.16)

where W r
tt′ is the range ambiguity function defined as

W r
tt′(S) =

∫ ∞

−∞

Wtt′(ν, r(S))dν, (4.17)

i.e. the range ambiguity function is obtained by integrating the two-dimensional
ambiguity function in lag direction.

The range ambiguity function can be further developed using the definition
of the two-dimensional ambiguity function. In terms of the amplitude ambiguity
functions,

W r
tt′ (S) =

∫ ∞

−∞

[∫ ∞

−∞

W A
t (τ, r)W A∗

t′ (τ − ν, r)dτ

]

dν

=

∫ ∞

−∞

[∫ ∞

−∞

h(t − τ)env(τ − S) · h[t′ − (τ − ν)]env∗(τ − ν − S)dτ

]

dν
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=

∫ ∞

−∞

h(t − τ)env(τ − S)dτ ·
∫ ∞

−∞

h(t′ − τ)env∗(ν − S)dν. (4.18)

Using a new variable τ ′ = t− τ , the first integral in eq. (4.18) can be written as

∫ ∞

−∞

h(t − τ)env(τ − S)dτ =

∫ ∞

−∞

h(τ ′)env(t − S − τ ′)dτ ′ = (h ∗ env)(t − S).

Because the second integral is of the same form, it must be equal to

(h ∗ env)∗(t′ − S)

and therefore the range ambiguity function is

W r
tt′(S) = [(h ∗ env)(t − S)] · [(h ∗ env)∗(t′ − S)] . (4.19)

This shows that it is not necessary to first calculate the two-dimensional am-
biguity function in order to obtain the range ambiguity function, but it can be
directly obtained from the convolution of the impulse response and the modu-
lation envelope.

We can now examine the range ambiguity functions in the cases of the two
examples presented in Chapter 4.2. When both the modulation envelope and
the impulse response are single pulses with equal lengths, h∗env has a triangular
shape as shown in the top panel of Fig. 4.5. Therefore the factor (h∗env)(t−S)
in eq, (4.19) is also a triangle located between t and t−2T on the S-axis. This is
shown on the left hand side of the bottom panel. The range ambiguity function
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Figure 4.5: Generation of a zero lag range ambiguity function of a simple pulse.
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for zero lag is the square of this function and it is plotted on the right hand
side of the bottom panel. The same result is obtained, if the two-dimensional
ambiguity function in Fig. 4.2 is integrated in ν-direction.The function consists
of two parabolic shaped arcs on both sides of the point S = t − T .

The second example consists of a two-pulse code and a boxcar impulse re-
sponse which is as long as the pulses in the code. The code, the impulse response
and the convolution h ∗ env are shown on the top of Fig. 4.6. The convolution
consists of two triangles but, unlike in the case of the envelope, there is no gap
between the two elements.

The generation of the range ambiguity functions of zero lag and first lag is
shown at the bottom of Fig. 4.6. The two plots at the left hand side contain
the two factors (h ∗ env)(t − S) and (h ∗ env)∗(t′ − S) of the range ambiguity
function with the assumption t′ = t + 2T . With this choice the lower triangle
of (h ∗ env)∗(t′ − S) overlaps the upper triangle of (h ∗ env)(t − S). The range
ambiguity function of zero lag is obtained by taking a square of (h∗env)∗(t′−S)
and it consists of two peaks around S = t − T and S = t − 2T . The shape of
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Figure 4.6: Generation of range ambiguity functions of a two-pulse code.
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the peaks is the same as in Fig. 4.5. The same result is obtained by integrating
the two-dimensional ambiguity function of zero lag in Fig. 4.4 in ν-direction.
The presence of two peaks is an indication of the range ambiguity discussed in
Chapter 4.2.

The range ambiguity function for the lag t′ − t (the first lag) is obtained by
multiplying (h ∗ env)(t − S) and (h ∗ env)∗(t′ − S). The result contains only
a single peak within the region t − 2T < S < t. Again, this result would be
obtained by integrating the two-dimensional ambiguity function of the first lag
in Fig. 4.4 in ν-direction.

4.4 Lag ambiguity function

The second type of reduced ambiguity functions can be used if the plasma
autocorrelation function is approximately constant within the altitude range of
the two-dimensional ambiguity function. Then we have the approximation

σe(ν, r) ≈ σe(ν, rtt′), (4.20)

where rtt′ is the distance of the centre point of Wtt′(ν, r) from the transmitter.
In this case the signal autocorrelation function in a monostatic experiment is

〈zh(t)z∗h(t′)〉 = R

∫ ∞

0

P o
Az(r)

[∫ ∞

−∞

Wtt′(ν, r(S))σe(ν, rtt′ )dν

]

dr

= RP o
Az(rtt′ )

∫ ∞

−∞

[∫ ∞

−∞

Wtt′(ν, r(S))dr

]

σe(ν, rtt′)dν. (4.21)

Here Wtt′ (ν, r) is assumed to be so narrow in r-direction that P o
Az does not

change appreciably within the region where Wtt′ is non-zero. The autocorrela-
tion function of the signal can now be put in the form

〈zh(t)z∗h(t′)〉 = RP o
Az(rtt′ )

∫ ∞

−∞

W S
tt′(ν)σe(ν, rtt′)dν, (4.22)

where W S
tt′(ν) is the lag ambiguity function defined as

W S
tt′(ν) =

∫ ∞

−∞

Wtt′ (ν, r(S))dr. (4.23)

The lag ambiguity function can be further developed much in the same way
as the range ambiguity function in Chapter 4.3. By inserting Wtt′ in eq. (4.23)
in terms of the amplitude ambiguity functions, we obtain

W S
tt′(ν) =

∫ ∞

−∞

[∫ ∞

−∞

W A
t (τ, r(S))W A∗

t′ (τ − ν, r(S))dτ

]

dr

=

∫ ∞

−∞

[∫ ∞

−∞

h(t − τ)env(τ − S(r)) · h[t′ − (τ − ν)]env∗(τ − ν − S(r))dτ

]

dr

74



=

∫ ∞

−∞

[∫ ∞

−∞

env(τ − S(r))env∗(τ − ν − S(r))dr

]

h(t−τ)h(t′−τ+ν)dτ. (4.24)

Because S = 2r/c, the inner integral in eq. (4.24) is equal to

c

2

∫ ∞

−∞

env(τ−S)env∗(τ−ν−S)dS =
c

2

∫ ∞

−∞

env(S′)env∗(S′−ν)dS′ =
c

2
Renv(ν),

where Renv(ν) is the unnormalised autocorrelation function of the modulation
envelope. The result does not depend on the variable τ of the outer integral.
Using a new variable τ ′ = t − τ we then obtain

W S
tt′(ν) =

c

2
Renv(ν)

∫ ∞

−∞

h(τ ′)h(τ ′ + t′ − t + ν)dτ ′. (4.25)

This can be written as

W S
tt′(ν) =

c

2
Renv(ν)Rh(t′ − t + ν), (4.26)

where Rh is the unnormalised autocorrelation function of the impulse response.
Therefore it is not necessary to calculate the two-dimensional ambiguity function
in order to get the lag ambiguity function, but it can be obtained directly
from the autocorrelation functions of the modulation envelope and the impulse
response.

The generation of lag ambiguity functions is next demonstrated using the
previous two examples. In the case of a simple transmitted pulse, the autocor-
relation functions of both the modulation envelope and the impulse response
have a triangular shape as shown in Fig. 4.7. Consequently, the lag ambiguity
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ν0 T-T
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Figure 4.7: Generation of the lag ambiguity function of zero lag for a simple
pulse.
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function for zero lag is a single peak around ν = 0, composed of two curves of
parabolic shape.

The autocorrelation function of a two-pulse code consists of three triangles,
with the height of the centre triangle twice the height of the other two triangles.
The code and its autocorrelation function Renv(ν) are shown in the two topmost
panels in Fig. 4.8. The autocorrelation function of the boxcar impulse response
Rh(ν) is shown in the next panel. As before, the length of the impulse response
is equal to the pulse length. In order to obtain the lag ambiguity function for
zero lag, Renv(ν) and Rh(ν) must be multiplied. The result is a single peak
with a height cT around ν = 0, shown in the fourth panel.

The lag ambiguity function of the first lag corresponding to a delay t− t′ =
2T is obtained by multiplying Renv(ν) and the autocorrelation function of the
impulse response shifted by 2T . The latter is shown in the fifth panel and the
resulting ambiguity function in the bottom panel of Fig. 4.8. The lag ambiguity
function is a peak around ν = 2T and it has the same shape as the zero lag
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Figure 4.8: Generation of the lag ambiguity functions of zero lag and first lag
for a two-pulse code.
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ambiguity function, but with a peak value of only one half of the zero lag peak
value. This can be easily understood with the help of Fig. 4.4 remembering
that the lag ambiguity function is an integral of the two-dimensional ambiguity
function in S-direction. Since the the two-dimensional ambiguity function of
zero lag consists of two pyramids in νS-plane and that of the first lag contains
only one pyramid, the above result is obvious.

4.5 Spectral ambiguity function

The relation between the autocorrelation function of the observed signal and the
plasma autocorrelation function is completely determined by the two-dimensional
autocorrelation function. The calculation of the two-dimensional ambiguity
functions in an incoherent scatter experiment is a time-consuming task. It turns
out that a faster analysis programme can be built if plasma scattering spectra are
used instead of the plasma autocorrelation functions and the two-dimensional
ambiguity functions are replaced by so called spectral ambiguity functions. Al-
though these concepts are defined in frequency domain rather than lag domain,
they can be used in connection with the signal autocorrelation function defined
in lag domain, i.e. there is no need to calculate the signal spectrum.

Before going to the definition of the spectral ambiguity function, we give
a proof of a relationship known as the Parseval formula. If x(t) and y(t) are
complex signals which both have a Fourier transform,

∫ ∞

−∞

x(t)y∗(t)dt =

∫ ∞

−∞

x(t)

[∫ ∞

−∞

Y ∗(ω)e−iωtdν

]

dt

=

∫ ∞

−∞

Y ∗(ω)

[∫ ∞

−∞

x(t)e−iωtdt

]

dν =

∫ ∞

−∞

X(ω)Y ∗(ω)dν. (4.27)

We observe that eq. (3.8), which is associated with signal power in time and
frequency domains, is a special case of this formula.

The plasma scattering spectrum is defined as the Fourier transform of the
plasma autocorrelation function,

Σe(ν, r) =

∫ ∞

−∞

σe(ν
′, r)e−i2πνν′

dν′. (4.28)

Note carefully that here the notation ν is used for frequency in accordance with
the notation in Chapter 3, whereas the argument ν ′ of the two-dimensional am-
biguity function is lag. Although the plasma autocorrelation function is usually
complex, its real part is always an even and imaginary part an odd function of
time delay. Then, according to the properties of the Fourier transform presented
in Chapter 3.2, the scattering spectrum is always real.

The spectral ambiguity function Wtt′ is defined as a Fourier transform of
the two-dimensional ambiguity function. Hence

Wtt′(ν, r) =

∫ ∞

−∞

Wtt′ (ν
′, r)e−i2πνν′

dν′. (4.29)
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According to eq. (4.10), the signal autocorrelation function depends on the
integral over the lag variable of the function which is obtained as a product of the
two-dimensional ambiguity function and the plasma autocorrelation function.
This integral can be transformed using the Parseval formula into a form

∫ ∞

−∞

Wtt′(ν
′, r)σe(ν

′, r)dν′ =

∫ ∞

−∞

Wtt′(ν, r)Σe(ν, r)dν. (4.30)

When this is inserted in eq. (4.10), the result is

〈zh(t)zh(t′)〉 = R

∫

r

P o
z (r)

[∫ ∞

−∞

Wtt′(ν, r)Σe(ν, r)dν

]

d3r. (4.31)

This equation gives a possibility to fit a theoretical scattering spectrum to the
measured signal autocorrelation function. When the definition of the spectrum
ambiguity function in eq. (4.29) is further developed, a new form essentially
faster in numerical calculations is obtained. Using the definition of the two-
dimensional ambiguity function we get

Wtt′(ν, r) =

∫ ∞

−∞

Wtt′(ν
′, r)e−2πiνν′

dν′

=

∫ ∞

−∞

e−2πiνν′
[∫ ∞

−∞

W A
t (τ, r)W A∗

t′ (τ − ν′, r)dτ

]

dν′

=

∫ ∞

−∞

W A
t (τ, r)e−2πiντ







∫ ∞

−∞

W A∗
t′ (τ − ν′

︸ ︷︷ ︸

ν′′

r)e−2πiν(

ν′′

︷ ︸︸ ︷

τ − ν′) dν′
︸︷︷︸

−dν′′







dτ

=

[∫ ∞

−∞

W A
t (τ, r)e−2πiντ dτ

] [∫ ∞

−∞

W A∗
t′ (ν′′, r)e−2πiνν′′

dν′′

]

=

[∫ ∞

−∞

W A
t (τ, r)e−2πiντ dτ

] [∫ ∞

−∞

W A
t′ (τ ′, r)e−2πiντ ′

dτ ′

]∗

= F{W A
t (τ, r)} · F∗{W A

t′ (τ ′, r)}. (4.32)

In conclusion, the fitting of the plasma parameters to the observed signal
autocorrelation function takes place as follows. The amplitude ambiguity func-
tions are calculated from eq. (4.5) using the modulation envelope and the re-
ceiver impulse response. The spectral ambiguity functions are next obtained
according to eq. (4.32). The plasma scattering spectrum is then calculated for
a set of plasma parameter values and the product of the scattering spectrum
and the spectral ambiguity function is integrated over the frequency domain.
The result is used in calculating the right hand side of eq. (4.31). The process
is repeated by varying the plasma parameters in order to make the right hand
side of eq. (4.31) to fit the observed signal autocorrelation function in the least
squares sense.
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Chapter 5

Classical modulation

methods

5.1 Lag profile matrix

In a monostatic incoherent scatter experiment a certain modulation pattern
is usually transmitted at a few separate frequencies. The transmission may
consist of several types of modulation. Reception of the scattered signal starts
after transmission and continues during a period corresponding to the altitude
range of interest in the measurement. The experiment also contains detection
of the background noise level as well as power calibration via injection of known
power of white noise at the front end of the receiver. After the whole cycle
is completed, transmission starts again. The duration of the cycle is normally
about 5–10 ms. The next transmission may use the same frequencies if the
cycle is so long that no scattering signal from the pulses transmitted during
the previous cycle are observed, otherwise the frequencies must be alternated
between successive cycles.

In the receiver the complex signal from the quadrature detector is first low-
pass filtered and then sampled by an AD converter. The samples are taken
at equally spaced times ti = i∆t, where ∆t is the sampling interval and i =
1, 2, 3, . . .. The result is a set of complex samples

xi = zh(ti), i = 1, 2, 3, . . .

where i = 1 corresponds the first sample taken after the transmission period.
The samples are temporarily stored in a buffer memory. The correlator reads
the samples, calculates lagged products xi ·x∗

j and adds them in a result memory,
each product in its own location. The procedure is repeated for a great number
of transmission periods so that sums of the products are collected in the result
memory. The sums give estimates of the signal autocorrelation function, each
of them corresponding to a specific lag value and altitude range. The possible
lag values are multiples of the sampling interval. After a pre-set number of
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Figure 5.1: The lag profile matrix.

transmission periods the computer reads the contents of the result memory and
stores it in a data file. Then the result memory is cleared and data collection
can start again.

The basic temporal resolution of an incoherent scatter experiment is usually
determined by the time interval between successive data transfers from the
result memory to a computer file. A typical time resolution is 10 s. In such an
experiment the number of lagged products added to each location in the result
memory is of the order of 1000.

It is practical to organise the averaged lagged products (the contents of the
result memory divided by the number of additions) into a lag profile matrix
shown in Fig. 5.1. Here the data samples are indicated as a column on the
left hand side of the matrix and their complex conjugates as a row above the
matrix. Each matrix element is the mean product of the samples on same row
at the left hand side and on the same column on the top of the matrix. In other
words, the ij-element of the matrix is equal to the average value of xi · x∗

j . It
is not necessary to fill the lower left corner of this matrix since the elements in
this region would be simply complex conjugates of the elements on the opposite
side of the main diagonal.

The diagonal elements of the lag profile matrix are of the form xi · x∗
i . This

means that the estimates of the zero lag, which are proportional to the signal
power, are located on the main diagonal of the lag profile matrix. The first diag-
onal element x1 · x1 corresponds to the lowest altitude and it gives information
from the height range of the range ambiguity function W r

11. The range ambi-
guity function of the next element x2 · x∗

2 has a similar shape but it is shifted
by an amount c∆t/2 upwards in the direction of the radar beam. Altogether,
the diagonal elements give the profile of zero lags with a height separation of
c∆t/2 and each element contains contribution from a height interval defined by
the range ambiguity function of the zero lag.

The first side diagonal contains elements of the type xi ·x∗
i+1 corresponding to
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the delay ∆t, which is the first lag. These estimates are arranged in the matrix
to make a profile of the first lag. The element on the first row corresponds to
the lowest altitude and the separation of the estimates is c∆t/2 in the beam
direction. The ambiguity functions of all elements on this diagonal have the
same shape. All other side diagonals follow the same principle, the second side
diagonal containing the profile of the second lag with a delay 2∆t, etc. The
number of lag profiles in the matrix may vary from one experiment to another
depending on the length of the plasma autocorrelation function and the lag
resolution needed in the experiment.

5.2 Data sampling

When sampling an analogue signal it is essential to use a correct sampling
frequency which is determined by the spectral width of the signal. The rule is
given by the sampling theorem also known as the Nyquist theorem (not to be
confused with the Nyquist noise theorem):

A signal with a cut-off frequency νc can be reconstructed from data
samples taken at a sampling frequency νs if and only if νs ≥ 2νc.

This means that the sampling frequency must be at least twice the highest
frequency in the signal spectrum. The lowest possible sampling frequency is
called the Nyquist frequency. It is important to notice that the reconstruction
of the original signal does not mean approximate interpolation between data
points but an exact reproduction of the original signal value at any time instant.
No exact proof of the sampling theorem is given here, but it is only pointed
out that using the Nyquist frequency gives two data points per period for the
highest frequency component in the signal spectrum. This is sufficient for the
reproduction of this Fourier component as well as all lower frequencies in the
signal.

Breaking the sampling theorem leads to aliasing. Aliasing means that any
signal with a frequency ν0 > 2νs is observed as a virtual signal at a frequency

Figure 5.2: Aliasing due to undersampling of data.
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νs/2 − (ν0 − νs/2) = νs − ν0. Aliasing can be easily understood in terms of a
simple example shown in Fig. 5.2. Here a sinusoidal signal with a frequency of
1 unit is shown by the continuous line. This curve is sampled at a frequency 1.1
units so that the sampling interval is 1/1.1 ≈ 0.91 units. The sampling times
are indicated by the arrows below the horizontal axis and the data values by
the filled dots on the curve. It is obvious that, if the continuous line were wiped
off, the data points would seem to match the lower frequency curve indicated
by the dashed line. This is an artificial signal due to aliasing and its frequency
is 1.1 – 1 = 0.1 units.

In Chapter 3.11 it was noticed that, depending on the applied modulation,
the bandwidth of the scattering signal in the EISCAT UHF radar is of the order
of 25–250 kHz. This would imply sampling frequencies of 50–500 kHz which
means sampling intervals of 20–2 µs. The sampling interval also determines the
height difference c∆t/2 of the successive lagged products xi ·xj and xi+1 ·xj+1.
The above sampling intervals correspond to differences of 3km – 300 m.

In addition to the height resolution, the sampling interval also affects the
observed autocorrelation function and the corresponding spectrum. The lag res-
olution ∆τ cannot be smaller than the sampling interval since the lag estimates
are obtained only at multiple values of ∆t. The spectrum, on the other hand,
cannot contain frequencies higher than twice the sampling frequency. There-
fore, when the signal spectrum is calculated from the sampled autocorrelation
function using a discrete Fourier transform, the resulting spectral points are
evenly distributed within the region (−1/2∆τ, 1/2∆τ) on the frequency axis.
This means that improving the lag resolution (diminishing ∆τ) increases the
width of the calculated spectral range. The widest frequency band is obtained
when ∆τ = ∆t.

For a better understanding of the relation of a sampled autocorrelation func-
tion and the corresponding spectrum we first notice that the real and imaginary
parts of the autocorrelation function are even and odd functions of lag, respec-
tively. Hence the measured autocorrelation function can be easily expanded to
negative lag values. If the longest measured lag is τn = n∆τ , the spectrum is
obtained as a discrete Fourier transform of 2n + 1 complex lag estimates. The
result consists of 2n + 1 spectral values evenly distributed within the interval
(−1/2∆τ, 1/2∆τ) so that the centre frequency is zero. Hence the frequency step
in the spectrum will be 1/(2n∆τ) = 1/(2τn). This shows that the longest mea-
sured lag determines the frequency resolution and the lag resolution determines
the frequency range of the calculated spectrum.

In planning an incoherent scatter experiment it is essential to know how
densely an autocorrelation function should be sampled and how long the sam-
pling should be continued; that is, what is the longest lag to be measured. This
can be decided using the above results. The problem is enlightened by the fol-
lowing example, where the incoherent scatter spectrum is approximated by a
boxcar function

Sz(ν) =

{
1/2νc ,when − νc < ν < νc

0 , when ν < −νc or ν > νc.
(5.1)
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Figure 5.3: The autocorrelation function of a signal with a boxcar-shaped spec-
trum, sampled at intervals of 0.3.

The corresponding autocorrelation function is

Rz(τ) = F−1{Sz} =

∫ ∞

−∞

Sνe2πiντ dν =
1

2νc

∫ νc

−νc

e2πiντ dν

=
1

ωcτ
· eiωcτ − e−iωcτ

2i
=

sin ωcτ

ωcτ
= sinc(ωcτ). (5.2)

The autocorrelation function is shown in Fig. 5.3 within the interval (-10, 10)
together with sample points taken at intervals of 0.3. Here n = 33 and ∆τ = 0.3
so that τn = n∆τ = 9.9. Then the spectral width of the discrete calculated
spectrum is νc = 1/(2∆τ) = 1.67 and the frequency step ∆ν ≈ 0.05. When
the discrete data values in Fig. 5.3 are transformed using a discrete Fourier
transform, the resulting spectral points are shown by filled dots in Fig. 5.4.
We indeed observe that they are located within the frequency range (-1.67,
1.67) at intervals of about 0.05. We also see that the spectrum calculated from
the discrete samples does not produce an exact boxcar shape, but a sawtooth
pattern is generated. This is known as the Gibbs phenomenon.

Fig. 5.4 shows that the sampling interval of the autocorrelation function in
Fig. 5.3 is sufficient to produce a frequency axis wide enough for the whole
spectrum to be visible. The continuous line in Fig. 5.4 is calculated using the
same length of autocorrelation function but with a sampling interval 0.01. The
step in the frequency domain is not changed and the Gibbs phenomenon remains
the same. The difference is that the highest frequency of the calculated spectrum
is νc = 1/(2 · 0.01) = 50, i.e. the frequency axis is unnecessarily wide for the

83



FREQUENCY

PO
W

ER
 S

PE
CT

RA
L 

D
EN

SI
TY

-3 -2 -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Figure 5.4: The spectrum of the autocorrelation function in Fig. 5.3 calculated
from discrete samples taken at two different lag resolutions, 0.3 (dots) and 0.01
(continuous line).

presentation of the spectrum. This means that the autocorrelation function is
heavily oversampled. In other words, the extra data points between those shown
in Fig. 5.3 do not contain any essential new information.

In addition to a wide enough frequency axis, a sufficient frequency resolution
is also needed for a proper presentation of a spectrum. The frequency step is
determined by the longest lag in the autocorrelation function. In Fig. 5.4 the
frequency step is short enough, as a matter of fact, even a longer step might be
used. The extreme limit for observing a boxcar spectrum would be three points

0 νc−νc ν

Figure 5.5: A boxcar spectrum sampled by three points.
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within the box as shown in Fig. 5.5. Then the frequency step would be equal
to the cut-off frequency of the spectrum,

∆ν = 1/(2τn) = νc.

Because the ith zero point of the function sinc(ωcτ) is at

τ0
i = i/(2νc),

this means that the autocorrelation function should be measured to the first
zero point.

In order to obtain some sort of information on the spectrum shape, at least
five points are needed within the ion line. Then the frequency step would be

∆ν =
1

2τn
=

νc

2

and the maximum lag

τn =
2

2νc
= τ0

2 .

Hence the autocorrelation must be sampled at least up to the second, perhaps
even up to the third or fourth zero point. Table 5.1 shows zero-points of the
autocorrelation functions corresponding to boxcar spectra of various widths. In
real incoherent scatter signals the spectral widths and the zeros of the autocorre-
lation functions do not follow precisely this table but, anyway, the table gives an
idea of the magnitudes involved. Using the spectral widths estimated in Chap-
ter 3.11 for the EISCAT UHF radar, one can decide that the autocorrelation
functions should be measured maximally up to lags of 300–400 µs.

Table 5.1.
Lag values of zero points for autocorrelation functions corresponding to boxcar

spectra of various cut-off frequencies.

νc (kHz) τ0
1 (µs) τ0

2 (µs) τ0
3 (µs) τ0

4 (µs)
2 250 500 750 1000
5 100 200 300 400
7 70 140 210 280
10 50 100 150 200

In conclusion, we can say that an incoherent scatter experiment must have
a sufficient
• altitude resolution
• spectral width (lag resolution of the autocorrelation function)
• spectral resolution (length of the autocorrelation function).
Two factors are connected to the altitude resolution, the height span and height
separation of the range ambiguity functions. The former is determined by two
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factors, the modulation envelope and the receiver impulse response, and the
latter by the sampling interval. In many experiments the height span and
separation are the same but experiments also exist with height spans larger
than height separation. This means that successive elements in lag profiles
contain information partially from a same altitude region.

The height separation of the range ambiguity functions and the spectral
width are closely associated since they are determined by the sampling interval.
On the other hand, the height span of the range ambiguity functions and the
maximum length of the signal autocorrelation function are connected to each
other because they are determined by the modulation envelope.

The properties of the ionosphere are height dependent; the width of the inco-
herent scatter spectrum, for example, increases steeply with height in the E and
lower F regions. The vertical scales of the ionospheric structures also vary with
altitude. In E region, structures with a thickness of a few hundreds of metres are
sometimes encountered whereas the scales in F region are usually of the order
of tens of kilometres. An ideal incoherent scatter experiment should be able
to fulfil both the spectral and height resolution demands at various altitudes.
In addition, it should give a sufficient temporal resolution and signal-to-noise
ratio. A single modulation is usually not able to meet all these demands and
therefore different experiments are designed for different purposes. Experiments
designed for simultaneous probing of different height ranges, E and F regions for
instance, normally contain a different modulation for each region to be studied.
The modulation methods most widely used in the present incoherent scatter
experiments are introduced in the next chapters.

5.3 Pulse codes

Although pulse codes are not the simplest modulations applied in incoherent
scatter experiments, they are probably easiest to understand. The simplest
modulation consists of single long pulses, but complexities not present in pulse
codes are associated with their use in measuring the plasma autocorrelation
function.

A set of two pulses, a two-pulse code, was adopted in Chapter 4 to demon-
strate the ambiguity functions and it was observed that this modulation allows
the determination of the ’first lag’, i.e. the autocorrelation function estimate at
a delay corresponding to the separation of the two pulses. The two-dimensional
ambiguity function of the first lag was found to be a pyramid located between
T and 3T in the lag direction with its centre at 2T , where T is the pulse
length. With this method, different lags of the autocorrelation function could
in principle be measured by transmitting pulse pairs with different separations.
Then each separation would give a different lag but the shapes of the ambiguity
functions for all lags would be identical. The zero lag would be obtained by
transmitting a single pulse.

The use of pulse pairs with variable separations would be a very ineffective
way of observing the autocorrelation function. A more powerful method is
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Figure 5.6: A three-pulse code and its convolution with a boxcar impulse re-
sponse.

offered by multipulse codes, which are extensions of the two-pulse code. A
multipulse code consists of a set of pulses with equal lengths, separated by gaps
of odd multiples of the pulse length. The receiver impulse response is chosen
to have the same length as the pulse. In our examples, which are designed
for demonstration purposes, we use a boxcar-shaped impulse response. With a
suitable choice of pulses and gaps in the modulation it is possible to measure
not only a single lag but several lags of the autocorrelation function from a
single transmitted pulse sequence. This greatly increases the efficiency of the
modulation as compared to transmitting pulse pairs with variable separations.

The idea of a multipulse code is easily understood using a three-pulse code
as an example. A three-pulse code is actually not useful in practical work since
it gives only three lags of the autocorrelation function, but is serves well as
an example. The most common multipulse codes contain five pulses. In a few
cases, four-pulse codes have also been used.

The modulation envelope env(t) of a three pulse code is shown in Fig. 5.6
together with (h ∗ env)(t) calculated using a boxcar impulse response. We ob-
serve that (h ∗ env)(t) contains three triangles, the last of them being separated
from the other two by a distance equal to the length of the triangle.

When samples are taken at intervals of 2T , the sampling times are ti =
2iT, i = 0, 1, 2, 3, . . . and non-zero ambiguity functions are obtained for lagged
products of the form xi · x∗

i+1, xi · x∗
i+2 and xi · x∗

i+3, i.e. the first, second and
third lag. For longer lags the ambiguity functions are zero. The generation
of the range ambiguity functions for the three lags is shown in Fig. 5.7. The
left hand panel shows (h ∗ env)(ti − S) corresponding to the data sample xi

and the next three panels the same functions for the next three samples. The
change of (h ∗ env)(t−S) from sample to sample is obtained by moving the set
of three triangles upwards by 2T , which is the length of a triangle. The result
is that only a single triangle in (h ∗ env)(ti − S) overlaps one of the triangles
in (h ∗ env)(ti+1 − S), (h ∗ env)(ti+2 − S) or (h ∗ env)(ti+3 − S). Because the
range ambiguity functions are obtained as products of the (h ∗ env)-terms, the
ambiguity functions for the three lags contain only a single peak as shown by
the three panels on the right hand side of Fig. 5.7.

Note that, although associated with the same sample xi, the three range
ambiguity functions in Fig. 5.7 are not at the same altitude, but the ambiguity
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Figure 5.7: Generation of range ambiguity functions of a three-pulse code.

function of the second lag lies at a lower height than the other two. However,
when the three lag profiles are calculated using each data sample as the first
factor of xi ·x∗

j , all three range ambiguity functions are obtained at each height,
except at the very bottom and top of the profiles. From Fig. 5.7 one can easily
see that the lagged product xi+1 · x∗

i+3 gives a second-lag ambiguity function
at the same altitude as the first and third lags plotted in the figure. Fig. 5.7
also shows why lags longer than three are not obtained for this code. This is
because the bottom triangle of h ∗ env for all samples after xi+3 would lie at
greater heights than the top triangle for xi and, consequently, the product of
the h ∗ env-terms would be zero. The range ambiguity function for zero lag,
of course, would consist of three peaks and therefore it has a range ambiguity
much in the same way as the two-pulse code in Chapter 4.

The three-pulse code is built in such a way that only one pair of pulses
overlaps simultaneously when the code is shifted with respect to itself in steps
of 2T . Longer pulse codes can be constructed using the same principle. The
separations of the leading edges of the successive pulses in Fig. 5.6 are 1 and 2
in units of 2T and therefore a brief notation (1,2) is sometimes used of the code.
The possible pulse separations obtained from the code are 1, 2 and 1 + 2 = 3.
This fulfils the condition that the same pulse separation should not appear
twice in the code. If that happens, a range ambiguity appears. Since it is only
the pulse separations which matters, the pulses can also be transmitted in the
opposite order. In the case of the three-pulse code, the second possibility is
(2,1).
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The altitudes where the autocorrelation functions are determined are usually
called ’gates’ or ’range gates’. A gate has a centre point and a width determined
by the range ambiguity functions. In the case of multipulse codes the centre
points and widths of the gates are the same as those of the range ambiguity
functions, but this is not necessarily true for other modulations. The idea of a
gate is that lag estimates from the same gate are combined to make an autocor-
relation function estimate which is used for determining the plasma parameters.
Hence the height separation and the width of the gates determine the height res-
olution of the experiment. The gates are usually numbered in ascending order
starting from the bottom of the profile.

In multipulse codes all range ambiguity functions have the same shape and
therefore a single lagged product from each lag value is taken into a single gate.
The lag profile matrix is a handy tool for showing how this is done. In the
case of a three-pulse code we measure three side diagonals of the lag profile
matrix as indicated in Fig. 5.8. Although it contains range ambiguities, the
main diagonal is also often measured. In Fig. 5.7 we noticed that the lagged
products xi · xi+1, xi+1 · xi+3 and xi · xi+3 give the three lags for the same
altitudes. Therefore the grey-shaded elements of the lag profile matrix in Fig. 5.8
make a single range gate. The gate forms a fixed pattern which can be moved
diagonally in the matrix. A single step down the diagonals means a shift of one
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Figure 5.8: Lag profile matrix presentation of a gate in a three-pulse code.
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Figure 5.9: A four-pulse code in system (1,3,2) and the associated lags.

gate separation upwards along the radar beam and vice versa. Obviously, the
pattern gradually glides out of the lag profile matrix at both ends so that there
will be one incomplete gate at the bottom and two incomplete gates on the top
of the profile.

A three-pulse code is not useful in practice, because it does not produce
enough lags for fulfilling the demands discussed in Chapter 5.2. The number
of lags can be effectively increased by adding the number of pulses in the code.
The next possibility is a four-pulse code which can be constructed using the
system (1,3,2). This code is shown in Fig. 5.9 together with the various lags it
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Figure 5.10: Lag profile matrix presentation of a gate in a four-pulse code.
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Figure 5.11: Five-pulse codes in systems (2,5,1,3) and (1,3,5,2) with the associ-
ated lags.

can produce. The lags are obtained as time differences of the leading edges of
all pulse pairs and it is observed that the code is able to produce all lags from
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Figure 5.12: Lag profile matrix presentation of a gate in the case of the five-pulse
code in system (2,5,1,3).
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1 to 6. Hence, by adding the number of pulses by one, it was possible to double
the number of lags. When the zero lag is measured using a separate short pulse,
this number of lags is just about sufficient for fitting for instance the electron
density, the ion velocity and the two temperatures.

The pattern of a single gate in the lag profile matrix is shown in Fig. 5.10.
Because the first pulse takes part in lags 1, 4 and 6, the elements corresponding
to these lags are found on the same row. The second pulse takes part in creating
lags 3 and 5, and therefore the respective elements lie on the following row.
Because the second lag is due to the third and fourth pulse and the separation
of the second and third pulse is three units, the corresponding element is found
on the third row below the previous two elements.

Finally, five-pulse codes using the systems (2,5,1,3) and (1,3,5,2) are shown
in Fig. 5.11. The first one of these codes gives lags 1–9 and lag 11 so that lag
10 is missing and the second one lags 1–5 and 7–11 so that lag 6 is missing.
Since the pulses can be sent in the opposite order, the mirror images (3,1,5,2)
and (2,5,3,1) are also valid five-pulse codes. The gate pattern in the lag profile
matrix is obtained in the same way as above. The pattern for the code (2,5,1,3)
is shown in Fig. 5.12. Here we see that lags 2, 7, 8 and 11 are found on the
same row, lags 5, 6 and 9 two rows further down, lags 1 and 4 still five rows
downwards and, finally, lag 3 one row below the the previous one.

Because a pulse code is sparse, a single code does not use the duty cycle of
a radar in an effective way. This fault can be avoided by interspersing pulse
codes at different frequencies in such a manner that, during a gap in a single
code, a second code is transmitted at another frequency. An example of this
idea is presented in Fig. 5.13 where the five-pulse code (2,5,1,3) is transmitted
at two frequencies and its mirror image (3,1,5,2) also at two frequencies. When
the successive codes are started at intervals of T , no pulses overlap and there
are only three gaps with a length 2T in the modulation pattern. These gaps
can be filled by single pulses at other frequencies. The single pulses are useful
in the determination of the zero lag.

0 2T 4T 6T 8T 10T 12T 14T 16T 18T 20T 22T 24T

Figure 5.13: A modulation pattern containing four five-pulse codes transmitted
at four frequencies.
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5.4 Gating

The accuracy of a measured autocorrelation function can be improved by adding
two or more neighbouring elements from a lag profile to make a single lag esti-
mate. This means that a few elements from each lag profile are included in the
same gate. The method is called gating. The effect of gating is to reduce the
statistical error of the measurement while simultaneously reducing the height
resolution.

Gating is demonstrated in Fig. 5.14 where the four-pulse code in Fig. 5.9 is
used as an example. The difference between this and Fig. 5.10 is that the set
of samples {xi} is divided into two subsets, {yi} and {zi} in such a way that
every second term in {xi} belongs to {yi} and every second to {zi}. Unprimed
and primed numbers are used in Fig. 5.14 to separate the members of {yi} and
{zi}, respectively. Autocorrelation function estimates of lags 1–6 are calculated
separately for the two data sets, which means that only every second side di-
agonal is calculated in the lag profile matrix. The gate patterns for both data
sets have the same shape as in Fig. 5.10. These are indicated by shading in
Fig. 5.14, where darker grey corresponds a gate for the set {yi} and lighter grey
for {zi}. By adding the two elements for each lag to make single lag estimates,
an autocorrelation function estimate is obtained with increased statistical accu-
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Figure 5.14: Gating of a three-pulse code with lag increment 1 and gating 1.
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racy but reduced height resolution. It is, however, possible avoid the reduction
of range resolution by using double sampling rate of the data.

In this example, the correlator programme only has to calculate every second
side diagonal of the lag profile matrix. Then we say that the lag increment of the
experiment is 2. This means that the step in lag domain is twice the sampling
interval. Another property of the experiment is called gating. Gating has a
numerical value which is equal to the number of lag profile elements added to
a single gate minus one. In the present example gating is 1. If no gating is
done, gating is zero. By varying lag increment and gating, one can construct
very different experiments using the same transmitter modulation. Gating is
not only associated with pulse codes but it can also be used in connection with
other modulations. It is, however, a rather exceptional technique in experiment
design and therefore it is no more discussed in the continuation.

5.5 Barker codes

Amplitude and phase modulation are two important modulation methods in
radio transmissions. In these techniques the signal is presented in terms of
variations in the amplitude or phase of a carrier wave. The modulation methods
used in incoherent scatter radars can also be classified in this way. The pulse
codes discussed above can be considered as amplitude modulation with only two
amplitude values, zero and one. The principle of phase modulation is applied
by phase codes, which alter the phase of the carrier wave according to a certain
pattern.

In phase codes the transmitted pulse is divided into a number of elements
and the phase of the carrier wave has a fixed value within each element. Two
phase values, zero and 180o, are used in practice, and therefore the elements
are called bits. A sudden phase jump takes place at the boundary of elements
with different phases. If the carrier waveform is cosωt, the waveform within each
element of zero and 180o phase is cosωt and cos(ωt+π) = − cosωt, respectively.
Therefore phase 180o can be interpreted as multiplication of the carrier by −1
and the modulation envelope of such a phase code gets values of +1 and −1.

The first phase codes used in incoherent scatter work were Barker codes
which, however, were not originally constructed for this purpose. The Barker
codes have a property that their autocorrelation functions have a triangular
peak around zero, surrounded symmetrically on both sides by a set of smaller
triangular peaks of equal height. If a Barker-coded signal is filtered by an
impulse response which is the mirror image of the transmission envelope, the
result is that both the range and lag ambiguity functions contain a sharp peak
with a width corresponding to the length of a single modulation element. The
values of the lag profile estimates also nearly correspond to the total energy
of the transmitted pulse. Hence the modulation works approximately as if the
transmitted pulse were compressed to the length of a single modulation element
conserving the total energy and thus increasing the transmitting power. This is
the reason why the method is sometimes called the pulse compression technique.
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Figure 5.15: Modulation envelope of the 13-bit Barker code.

The known Barker codes up to the length of 13 bits are shown in Table
5.2. Here the phases zero and 180o are indicated by + and −, respectively. In
the EISCAT radars, the 13-bit Barker code is commonly used. Its modulation
envelope is plotted in Fig. 5.15.

A Barker-coded signal is filtered in the receiver with a special filter known as
the Barker decoder. Since this filter is closely associated with the transmitted
envelope, it is sometimes also called the matched filter. As explained later, a
Barker decoder actually operates with digital data samples but the idea can be
explained in terms of analogue signal processing.

Table 5.2.
Modulation envelopes of Barker codes of various lengths.

length/bits envelope
2 +− or ++
3 + + −
4 + + −+ or + + +−
5 + + + − +
7 + + + −− + −
11 + + + −−− + −− + −
13 + + + + + −− + + − + − +

If the envelope of a Barker-code is env(t), the impulse response of the Barker
decoder is

h(t) = env(−t). (5.3)

Then

(h ∗ env)(τ) = [env(−t) ∗ env(t)](τ) =

∫

env(τ + t)env(t)dt = Renv(τ), (5.4)

so that the range ambiguity function is

W r
tt′(S) = (h ∗ env)(t−S) · (h ∗ env)(t′ −S) = Renv(t−S) ·Renv(t

′ −S). (5.5)

The autocorrelation function or (h ∗ env)(τ) for the 13-bit Barker code is
shown in Fig. 5.16. This result is easily obtained by letting a copy of the
modulation envelope in Fig. 5.15 to glide on the time axis, multiplying the two
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Figure 5.16: The autocorrelation function (equal to h ∗ env) for the modulation
envelope of the 13-bit Barker code.

envelopes and observing the integral of the resulting function. When the copy
completely overlaps the original envelope (zero lag), the multiplication gives the
square of the envelope. This is a rectangle with a height of one unit and length
of 13 units so that the value of the integral is 13. When the envelope copy
is shifted to either direction, the integral decreases linearly to zero, which is
reached at a time shift equal to one bit length. At this stage the multiplication
produces a function which is equal to +1 during the first four time units, then
alternately −1 and +1 during the next four time units and, finally, −1 during
the last four time units. Thus the positive and negative areas cancel and the
integral is zero. Continuing in the same manner, a sawtooth pattern is formed
on both sides of the main peak with zeros and peak values of unity at odd and
even multiples of the bit length, respectively. The small triangles are sometimes
called side bands or side lobes of the autocorrelation function.

If the transmission consists of a single pulse modulated by a Barker-code,
the range ambiguity function for zero lag is

W r
00(S) = Renv(0 − S) · Renv(0 − S) = [Renv(S)]2. (5.6)

The last equality is valid because the autocorrelation function is even. Hence
the range ambiguity function is given by the square of the autocorrelation func-
tion of the modulation envelope. In the multiplication all straight lines in the
autocorrelation function will produce curves of parabolic shape. In the case of
the 13-bit code, the central peak produces a spike with a height of 169 units and
the smaller triangles create peaks with heights of unity, six of them on each side
of the main peak. Also here the small peaks are sometimes called side lobes or
side bands of the ambiguity function. The result is plotted in Fig. 5.17 using
two different scales. The left hand panel shows the central peak and the right
hand panel a magnified view revealing the structure of the side bands. The
intensity ratio of the main peak and a side lobe is 132/1 = 169 which is equal
to log(13/1)2 = 22.3 dB.
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Figure 5.17: The range ambiguity function for zero lag of the 13-bit Barker
code.

As indicated by eq. (4.16), the received power at a given instant of time is
obtained as a sum of powers from the heights determined by the range ambiguity
function of the zero lag. The power from each height is determined by both the
electron density and the value of the ambiguity function. Hence, in the absence
strong electron density gradients, the range ambiguity function in Fig. 5.17
indicates that almost all the received power must come from the main peak,
i.e. from a height range corresponding to the length of a single bit in the 13-bit
code. Only a small fraction comes from altitudes covered by the side bands.

Consider a fictitious experiment in which a single pulse with a length equal
to that of a single bit would be transmitted with a 13-fold power and filtered
with a boxcar-shaped impulse response of the same length. The range ambiguity
function of this modulation would be equal to the main peak in Fig. 5.17 and
the received power the same as the power from the main peak. Hence our 13-bit
modulation works almost in the same way as this short pulse; only the small
power from the side bands makes a small difference. Thus the Barker-coded
experiment works as if a single pulse with a length of 13 bits were compressed
into a length of a single bit conserving the energy and hence increasing the
power to a 13-fold value. This is the explanation of the term ’pulse compression
technique’ discussed above.

One should notice that the above discussion is only valid if the electron
density within the main peak is of the same order of magnitude as within the
side bands. In some extreme situations it is possible that the electron density
within several sidebands is about ten times higher than within the main peak.
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Then the power emerging from the range of the side bands is not negligible and
the idea of Barker-coding breaks down. The error thus created, however, can
be corrected in the data analysis by a method called ’side band correction’.

As seen later, the digital filtering in the Barker decoder implies that data
samples are taken at intervals of one bit length. The zero-lag range ambiguity
function for each sample has the same shape as that shown in Fig. 5.17 and the
separation of the main peaks for the successive samples is equal to a single bit
length on the S-axis. Hence the height resolution obtained by a Barker-coded
measurement corresponds to the bit length of the code. If, for example, the bit
length is 4 µs, the height resolution is

∆h =
3 · 108 m/s · 4 · 10−6 s

2
= 600 m.

This shows that Barker-coding drastically improves the height resolution in
incoherent scatter experiments.

For understanding the working principle of the Barker code, it is useful to
study its amplitude ambiguity function

W A
t (τ, S) = h(t − τ)env(τ − (S(r)) = env(τ − t)env(τ − (S(r)). (5.7)

This function is shown for the 13-bit Barker code in Fig. 5.18. We see that
W A

t 6= 0 only in a parallelogram-shaped area, which is split into 13× 13 = 169
smaller parallelograms. In each of them the value of W A

t is either +1 or −1;
this is indicated by the pluses and minuses in the figure and the positive regions
are shaded. A data sample zh(t) consists of voltages caused by elementary
scattering signals dz(τ, r) from different heights and times, weighted by the
amplitude ambiguity function as indicated by eq. (4.6). The elementary signals
from a given height come from time intervals shorter than 13 bits. If this time
interval is short enough, the plasma fluctuation does not change much and
the elementary signal dz from each height also remains unchanged. Therefore
dz can be taken as constant at a given height in eq. (4.6). Thus the impulse
response calculates the total signal from this height by summing and subtracting
a constant value of the elementary signal dz as indicated by the corresponding
sign sequence at constant S in Fig. 5.18. When considering only the S values of
the apices of the small parallelograms, we observe that the sums will be either
zero or +1 times the elementary signal, except for a single height which gives
a factor of +13. Hence the combined effect of the Barker modulation and the
corresponding matched filter is to add and subtract signals from all heights and
times in such a manner that they nearly cancel except at the height of the main
peak of the range ambiguity function.

Because the idea of Barker codes is to add and subtract the amplitudes of
elementary signals, we say that the Barker codes work in amplitude domain.
There are also phase codes which are designed for adding and subtracting au-
tocorrelation function estimates (powers) rather than amplitudes. We say that
these codes work in power domain. A necessary condition for a phase code
working in amplitude domain is that the plasma autocorrelation function is
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Figure 5.18: The amplitude ambiguity function of the 13-bit Barker code.

practically constant during the length of the impulse response of the matched
filter. If this is not the case, the matched filter will add and subtract different
values of elementary signals and the principle of Barker coding breaks down.

An incoherent scatter signal always contains random noise. Since the noise
changes rapidly, its amplitudes do not cancel in the matched filter in the same
way as the amplitudes of the elementary signal do. This necessarily increases
the noise level of the experiment. The corresponding fictitious experiment with
a compressed pulse has no elementary signals from altitudes outside the main
peak of the range ambiguity function, and the associated noise is also missing.

The amplitude ambiguity function in Fig. 5.18 can be used for calculating the
two-dimensional ambiguity function. The result is shown in Fig. 5.19, in terms
of a three-dimensional plot in the top panel and in grey scale with contours in
the bottom panel. It is enlightening to compare this with the two-dimensional
ambiguity function of a simple pulse in Fig. 4.2. Obviously, Barker-coding a
single pulse leads to a complicated deformation of its pyramid-shaped ambiguity
function.

The above discussion only involves the measurement of power using a Barker
coded modulation, although our aim is to measure the whole signal autocorre-
lation function with a suitable lag resolution. In pulse codes this was carried
out by measuring lagged products of the form xi · x∗

i+1, xi · x∗
i+2, etc. If the
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Figure 5.19: The two-dimensional ambiguity function of the 13-bit Barker code.
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same is carried out for Barker-coded data samples, it will be found that the
range ambiguity functions of lags longer than zero will not be composed of a
single peak and a set of very small sidebands, but strong ambiguities will ap-
pear. Furthermore, the lags thus determined are not long enough. The longest
lag obtained for a 13-bit code, for instance, is 12 times the bit length. If the
bit length is 4 µs, which is needed for a 600 m height resolution, the longest lag
obtained is only 48 µs. According to the estimates made in Chapter 5.2, this is
not sufficient for a proper sampling of the signal spectrum.

5.6 Barker-coded pulse codes

The problem of meeting the demand of long lags and still maintaining the high
altitude resolution offered by a Barker code can be solved by using pulse codes
in which each pulse is modulated by a Barker code. In this combination of two
modulations the height resolution will be determined by the Barker code and
the lag resolution by the pulse code.

In the ordinary pulse codes introduced in Chapter 5.3 the time separation
of the pulse front ends is equal to an even number of pulse lengths. This is
necessary since, in calculating h ∗ env, the pulse lengths are doubled by the
effect of the impulse response of the post-detection filter (see Fig. 5.6). In the
case of Barker codes the width of the main peak in h ∗ env is equal to two bit
lengths rather than two pulse lengths, which leads to the fact that all pulse
separations can be reduced to one half of their values in ordinary pulse codes.

Following the line of thought in Chapter 4, a two-pulse code is taken as
an example for demonstrating the working principle of Barker-coded multipulse
codes. The modulation envelopes of ordinary and Barker-coded two-pulse codes
are shown in Fig. 5.20, where the complicated amplitude of a Barker code is
briefly denoted by ’B’. In addition to phase coding, the difference in the mod-
ulations is that the Barker-coded modulation contains no gap between the two
pulses; in fact it only makes sense to talk about two pulses because of the
repetition of the phase code.

The convolution of the impulse response and the modulation envelope is
easily obtained in the same way as for a single pulse in Chapter 5.5. The result
for a 13-bit Barker code is plotted in Fig. 5.21. Obviously, each of the pulses
produces a function of a shape similar to that in Fig. 5.16 and the total function
is their sum. The two main peaks, however, do not overlap but their distance is

env
t0 2

env
t0 2

BB

Figure 5.20: Comparison of modulation envelopes of an ordinary two-pulse code
(left) and a Barker-coded two-pulse code (right). The envelope of the Barker
code is denoted by ’B’.
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Figure 5.21: The convolution of the impulse response and modulation envelope
for a two-pulse code modulated by a 13-bit Barker code.

equal to the pulse separation, i.e. 13 bit lengths. This separation is such that
the sum of the side bands is constant between the main peaks. Since the side
bands of one main peak reach only up to the other main peak, the side bands
outside the double-peak structure remain untouched and consist of six triangles
just like in Fig. 5.16.

The range ambiguity function of zero lag, given by the square of h ∗ env, is
shown in Fig. 5.22. This function contains two peaks with a height of 169 units
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Figure 5.22: The range ambiguity function for zero lag of a two-pulse code
modulated by a 13-bit Barker code.
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Figure 5.23: The range ambiguity function for first lag of a two-pulse code
modulated by a 13-bit Barker code.

and side bands with heights of a single unit. The double-peak structure is an
indication of range ambiguity of the zero lag, which is analogous to the range
ambiguity in Fig. 4.6. This means that, in order to obtain a zero lag estimate
with no range ambiguity, a Barker-coded single pulse must be transmitted in
the same way as in ordinary multipulse experiments.

The first lag is obtained from data samples taken at intervals equal to the
pulse separation. Because the sampling interval is equal to one bit length, the
first lags for a 13-bit Barker code are given by lagged products of the form
xi · x∗

i+13. The corresponding range ambiguity function (Fig. 5.23) is obtained
by inserting two copies of h ∗ env on the S-axis with a separation of 13 units
and multiplying them. Then the lower peak of one of the functions overlaps
the upper peak of the other and a single main peak with a height of 169 units
is formed by the product. The main peak is surrounded by side bands which
consist of five triangles and higher peaks. The triangles are generated at a region
where the constant values of h ∗ env overlap the triangles and the higher peaks
where one of the main peaks in h∗ env partially overlaps the last triangle in the
side band structure.

Longer Barker-coded multipulse sequences can be constructed with the same
principle. A Barker-coded multipulse sequence is similar to the corresponding
ordinary multipulse code except that the separations of the front ends of the
pulses are divided by two. This means that the same number of lags will be
obtained, but the lag separations and the length of the measured autocorrelation
function will be halved. The Barker-coded modulations corresponding to those
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Figure 5.24: Modulation envelopes of different Barker-coded multipulse codes.

in Figures 5.6, 5.9 and 5.11 are shown in Fig. 5.24.
A practical point in designing Barker-coded experiments is that a gap of one

bit length is included in each pulse. This gap is sometimes called the ’zero bit’.
Hence, in effect, a single pulse in a 13-bit experiment takes 14 bits in time. The
lengths of the gaps in the code are also increased to correspond to the increased
’pulse length’. The reason for this practice is that, due to the effect of filtering,
the correlation length of the noise in the signal is increased, and the first lag
will be contaminated by noise. In the case of a low signal-to-noise ratio the
contamination may be serious. Adding the zero bit will lead to a lag increment
just sufficient to give a first lag longer than the correlation length of the filtered
noise.

As discussed in Chapter 3.11, the bandwidth of the post detection filter must
be fitted to the bandwidth of the modulation envelope. If the bit length is 4 µs,
for instance, the bandwidth of the filter should be

νc = νenv =
1

2 · 4 µs
= 125 kHz.

Without phase coding the bandwidth of the same pulse would only be

νenv =
1

2 · 13 · 4 µs
≈ 10 kHz.

This means that the use of Barker coding extends the filter pass band into a
value much wider than the pass band of the incoherent scatter spectrum. The
power of noise in the filtered signal, on the other hand, is proportional to the
filter band width, and therefore the use of Barker coding necessarily reduces the
signal-to-noise ratio of the experiment.
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The altitude resolution is determined by the bit length of the Barker code
and, after the bit length is fixed, the lag resolution is given by the number of
bits in the code. Finally, the selected pulse code determines the number of lags
and the length of the measured autocorrelation function. As shown in Chapter
5.5, a bit length of 4 µs leads to a height resolution of 600 m. A 13-bit Barker
code with this bit length gives a lag increment of 14 × 4 µs = 56 µs and, if
a four-pulse code is used, the longest lag is 6 × 56 µs = 336 µs. According to
the estimates made in Chapter 5.2, this is a reasonable sampling of the signal
autocorrelation function in the case of the EISCAT UHF radar. In fact, many
experiments with 600 m height resolution have been constructed for studying
the ionospheric E region using Barker-coded pulse codes.

5.7 Barker decoder

When a signal is filtered by two linear filters connected in series as shown in
Fig. 5.25, the output of the first filter is

y(t) = (h1 ∗ x)(t) (5.8)

and that of the second filter is

z(t) = (h2 ∗ y)(t) = [h2 ∗ (h1 ∗ x)](t). (5.9)

The Fourier transforms of these equations are

Y (ν) = H1(ν) · X(ν) (5.10)

and

Z(ν) = H2(ν) · Y (ν) = H2(ν) · H1(ν) · X(ν) = H(ν) · X(ν) (5.11)

Here the total transfer function of the filter system is

H(ν) = H1(ν) · H2(ν). (5.12)

The total impulse response of the filter system is obtained by an inverse Fourier
transform of eq. (5.12) and the result is

h(t) = F−1{H} = F−1{H1 ·H2} = F−1{H1}∗F−1{H2} = (h1 ∗h2)(t). (5.13)

When more than two filters are connected in series, analogous equations are
valid. In an incoherent scatter radar the post detection filter and the Barker

x(t) y(t) z(t)
h1(t) h2(t)

Figure 5.25: Two filters connected in series.

105



xxx

R0 R11 R12R1 R13

b13

+

b12

+

b2

+

b1

+

...

...

...

= 0

xi

xi
B

x

Figure 5.26: A 13-bit Barker decoder.

decoder are connected in series and the total impulse response of the resulting
filter is a mirror image of the envelope of the Barker code.

Unlike the post detection filter, the Barker decoder works in digital domain.
It receives the samples from AD converter and calculates their weighted av-
erages. The number of samples included in the weighted sum is equal to the
number of bits in the Barker code. In the case of a 13-bit code, the ith sample
in the output of the Barker decoder is

xB
i =

13∑

k=1

bkxi−k+1, (5.14)

where the Barker coefficients bk are

bk =

{
1 , when k = 1, 3, 5, 6, 9− 13

−1 , when k = 2, 4, 7, 8.
(5.15)

These numbers obviously give the values of the modulation envelope in the 13
bits of the Barker code in the inverse order.

A Barker decoder is constructed from multipliers, adders and shift registers.
A circuit diagram for a 13-bit Barker decoder is shown in Fig. 5.26. When a
digital sample xi enters the decoder, it is multiplied separately by all Barker
coefficients, each product is added to the contents of the previous register in the
shift register line and the result is stored to the next register. As a result, the
filtered sample xB

i calculated according to eq. (5.15) will be transferred to the
the last register R13. It is clear that no meaningful output values are obtained
before at least 13 samples have been fed to the input.

Barker decoder is a filter, which calculates weighted averages from a finite
number of samples. Because the length of the impulse response of such filters
is finite, they are called finite impulse response filters or FIR filters.

Let us finally show that the combined impulse response of the post detection
filter and the Barker decoder is really a mirror image of the Barker code. The
queue of data samples given by the AD converter can be presented using the
Dirac comb in the form

xi =

∫ ∞

−∞

zh(τ)δ(τ − i)dτ, (5.16)
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where zh is the complex output signal of the post detection filter and the sam-
pling interval is taken as the time unit. The Barker decoder calculates the
weighted averages

xB
i =

13∑

k=1

bk · xi−k+1 =
13∑

k=1

bk

∫ ∞

−∞

zh(τ)δ[τ − (i − k + 1)]dτ

=

∫ ∞

−∞

zh(τ)
13∑

k=1

bkδ[k − 1− (i − τ)]dτ. (5.17)

Using the notation

hB(t) =

13∑

k=1

bkδ(k − 1 − t) (5.18)

this can be put in the form

xB
i =

∫ ∞

−∞

zh(τ)hB(i − τ)dτ = (zh ∗ hB)(i). (5.19)

This means that our digital samples xB
i can be considered as values of a fictitious

signal

xB(t) =

∫ ∞

−∞

zh(τ)hB(t − τ)dτ = (zh ∗ hB)(t) (5.20)

at times i. Hence the filtered samples are the same as those obtained by digi-
tising the signal in eq. (5.20), i.e. xB

i = xB(i).
Obviously, hB(t) is the impulse response of the Barker decoder. According to

eq. (5.13) the total impulse response is given by the convolution of the impulse

hPDF
t1050

hB
t1050

h
t

1050

Figure 5.27: Convolution of the impulse responses of the post detection filter
and the Barker decoder.
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responses of the post detection filter and the Barker decoder. Thus the total
impulse response is

h(t) = (hPDF ∗ hB)(t). (5.21)

The calculation of this convolution is demonstrated in Fig. 5.27, where hPDF is
assumed to have a boxcar shape and a length equal to the bit length. The im-
pulse response of the Barker decoder is a Dirac comb with positive and negative
peaks. When the box is allowed to slide along the time axis, it overlaps only a
single peak in the Dirac comb at the same time. Hence, depending on the sign
of the Dirac peak, the convolution integral gives a value of +1 or −1 and the
resulting impulse response is indeed a mirror image of the Barker envelope.

5.8 Long-pulse code

The simplest modulation which can be used in incoherent scatter measurements
is a plain long pulse. Although the modulation is simple itself, some problems
are associated with data sampling and use of the lag profile matrix. This leads
to the fact that long-pulse experiments are in a sense more complicated than
multipulse experiments are. Long-pulse experiments are mostly used in the F
region, where a height resolution of 10–30 km is sufficient.

The modulation bandwidth of a long pulse is small so that the bandwidth of
the post detection filter is mainly determined by the bandwidth of the incoherent
scatter spectrum. Therefore the impulse response of the post detection filter is
shorter than the pulse. This is a major difference as compared to the previous
modulations. Another difference is that the sampling interval is shorter than
the pulse length. This gives a possibility to measure several lag profiles using a
single pulse.

A normal practice in a long-pulse experiment is to use a sampling interval
equal to the length of the impulse response, which leads to independent data
samples. The pulse length is also usually a multiple of the sampling interval. If
the sampling interval is τ , the lag value of the lag profile matrix element xi · x∗

j

is
(j − i)τ = kτ

where k = j − i. According to eq. (4.19), the corresponding range ambiguity
function is

W r
ij(S) = (h ∗ env)(iτ − S) · (h ∗ env)∗(jτ − S). (5.22)

In a real long-pulse experiment the pulse length may be of the order of 300 µs
and the length of the impulse response 20 µs (see Chapter 3.11) so that the ratio
of these lengths may be about 15. In explaining the general principle of the
method it is more convenient to use a shorter pulse length, and therefore a ratio
of 5 or 10 is used instead in the following discussion. Plots of a boxcar-shaped
impulse response, a modulation envelope and their convolution are shown in
Fig. 5.28, where the pulse length is assumed to be five times the length of the
impulse response. If the latter is equal to the sampling interval, the lengths of
these functions are τ , 5τ and 6τ , respectively.
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Figure 5.28: Convolution of the impulse response and modulation envelope of a
simple long pulse.

The range ambiguity functions for different lag values can now be easily
calculated using eq. (5.22). Their generation is presented in Fig. 5.29, where
the functions h ∗ env(ti − S) for five successive sampling times are plotted in
the left hand panel and, given by their products, the range ambiguity functions
for lags 0–4 in the right hand panel. The range ambiguity function for the fifth
lag would also be non-zero but it is so small that this lag is not measured. The
ambiguity functions of all subsequent lags are zero.

S S S S
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Figure 5.29: Generation of range ambiguity functions of a simple long pulse.
Left panel: h ∗ env(ti − S) for five successive sampling times. Right panel:
resulting range ambiguity functions for lags 0–4.
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Fig. 5.29 reveals that, unlike in pulse codes, the range ambiguity functions of
a simple long pulse have different lengths for different lags. The shorter lags give
information from a wider altitude range so that their height resolution is worse,
but on the other hand, they are more heavily weighted in the autocorrelation
function than the long lags are. In this example the zero lag gives informa-
tion from a height range corresponding to six sampling intervals, whereas the
corresponding number for the fourth lag is two.

For general interest, the two-dimensional ambiguity functions for the long-
pulse code are plotted in Fig. 5.30. We see that they are partially overlapping
ridges elongated in the S-direction. The length of a two-dimensional ambiguity
function is the same as that of the corresponding range ambiguity function in
Fig. 5.29 and the width is equal to two time units.

The ambiguity functions shown above are properties of individual elements
in the lag profile matrix. In a true long-pulse experiment more than one matrix
element is usually included in the same gate, and therefore the ambiguity func-
tions will also be different. The height resolution of a long-pulse experiment
cannot be better than that of a matrix element for zero lag. If, for instance, the
pulse length is 300 µs and the length of the impulse response is 20µs, the range
resolution of the zero lag is

320 µs · 3 · 108 m/s

2
= 48 km.

One should also notice that the height separation is not the same as the height
resolution. When the sampling rate is 20 µs, the separation of successive ele-
ments in a lag profile is

20 µs · 3 · 108 m/s

2
= 3 km

and the zero lag of each gate contains information from a 48 km height range.
In order to compare the weights of the lag profile elements xi · x∗

j , we ap-
proximate eq. (4.16) to give

〈xi · x∗
j 〉 ≈

c

2
RP o

Azσe(i − j, r0)

∫ ∞

−∞

W r
ij(S)dS, (5.23)

where r0 is the range of the centre point of the ambiguity function W r
ij . In

this approximation the range ambiguity function is assumed to be so short that
both the plasma autocorrelation function and the power P o

Az can be taken as
constants in calculating the integral in eq. (4.16). If the pulse is long, the
assumption may be poorly valid especially at low altitudes.

The weight of each lag profile element relative to that of the zero lag can now
be estimated using eq. (5.23). According to the principle shown in Fig. 5.29,
the integral of the range ambiguity function W r

ij for the lag kτ = (j − i)τ is
equal to (n− k)τ , where nτ is the pulse length. This is not exactly true for the
zero lag, because the ends of its ambiguity function have parabolic rather than
linear shapes. Nevertheless, it is a reasonable approximation to use nτ for the
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Figure 5.30: Two-dimensional ambiguity functions of a simple long pulse.
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integral of the zero lag ambiguity function, especially if the pulse is long. Then
the relative weight of lag kτ is

Wk =
n − k

n
. (5.24)

This result is used when estimating the relative weights in true long-pulse exper-
iments where several lag profile matrix elements are summed to make a single
gate.

In a classical long pulse experiment the signal autocorrelation function esti-
mate for lag k in the ith gate is given by

Rz(i, k) =

n+i−k−1∑

j=i

〈xj · x∗
j+k〉, k = 0, 1, . . . , (n − 1). (5.25)

The idea of this algorithm is to take a string of samples from a time interval
equal to the pulse length (five samples in the case of the example in Figures
5.28 and 5.29), to calculate all possible lagged products and to add all those
with the same lag value. The result is that the zero-lag estimate will be a sum
of n elements from the main diagonal of the lag profile matrix. Similarly, n− 1
elements from the first side diagonal will be added to make the first-lag estimate,
etc. Hence a single gate will cover a triangular region in the lag profile matrix
as shown in Fig. 5.31, where the pulse length is assumed to be five times the
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Figure 5.31: Generation of a single gate in a classical long-pulse experiment.
The pulse length is assumed to be five times the sampling interval.
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sampling interval. In this case five successive data samples are used for a single
gate and lags 0–4 can be calculated from eq. (5.25). The next gate is obtained
by shifting the triangular region diagonally by a fixed number of steps. If the
shift is greater than a single step, some of the matrix elements at the longer
lags are not utilised.

The classical long-pulse experiment dates back to the times when the concept
of lag profile matrix was not known and the theory of ambiguity functions
was not properly developed. It is a poor algorithm which is no more used.
The method has two main drawbacks associated with the height ranges and
relative weights of the different lags in a single gate. As shown by Fig. 5.29,
the height ranges covered by the elements of the lag profile matrix are longest
on the main diagonal and decrease with increasing lag number. The classical
experiment increases this imbalance because it adds into a single gate more
elements at short lag values than at long lags. The second point is that the
classical experiment also amplifies the imbalance of the relative weights of the
different lags. Therefore the long lags will contain more noise than the short
lags do. This may be disastrous since the autocorrelation function is small at
long lag values and it would be essential to measure it accurately there.

An obvious way of improving the experiment is to have more matrix elements
in a single gate at long lag values than at short ones. In modern long-pulse
experiments the autocorrelation function estimate for lag k in the ith gate is

Rz(i, k) =

i+k+v−1∑

j=i

〈xj−k · x∗
j 〉, k = 0, 1, . . . , (n − 1). (5.26)

According to this formula the number of matrix elements included in a single
gate is equal to the lag number plus the volume index v, which determines the
number of elements for zero lag. The generation of a gate is demonstrated in
terms of the lag profile matrix by the shaded areas in Fig. 5.32, where two
partially overlapping gates are shown. Here n = 5 so that lag profiles 0–4 can
be calculated, and v = 3, which means that three elements are taken to make
the zero lag. At the bottom part of the profiles a complete gate can only be
constructed if i ≥ 5 and, similarly, defective gates will also be formed at the
top of the profiles. Gates are not necessarily calculated for all values of i. One
possibility is to use the idea shown in Fig. 5.32, where i is incremented in steps of
the volume index so that the zero lags will be independent. With this choice the
longer lags of neighbouring gates will always consist partly of the same matrix
elements so that these lags are not independent.

In a classical experiment the weight of lag k relative to the zero lag is

Wc
k =

(n − k)Wk

nW0
=

(n − k)(n − k)/n

n · 1 =
k2

n2
− 2

n
k + 1. (5.27)

In a modern experiment, on the other hand, the corresponding equation is

Wm
k =

(v + k)Wk

vW0
=

(v + k)(n − k)/n

v · 1 = − 1

nv
k2 +

n − v

nv
k + 1. (5.28)
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Figure 5.32: Generation of a gate in a modern long-pulse experiment. The pulse
length is assumed to be five times the sampling interval and the volume index
is 3. Two gates are shown, which partially overlap within the area indicated by
darker shading.
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sical and modern long-pulse experiments relative to the weight of the zero lag.
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The relative weights are plotted in Fig. 5.33 together with the weights of the
individual lag profile matrix elements. In this example n = 10 and v = 3. It is
seen that the weights of the classical and modern experiment lie on upward and
downward opening parabolas, respectively, and those of the matrix elements on
a descending straight line. The relative weights of different lags are much more
in balance in a modern than in the classical long-pulse experiment. Therefore,
although the weights are not quite the same, problems similar to that in the
classical experiment do not arise in the modern experiment.

The second point in the comparison of the classical and modern long-pulse
experiment is the height resolution of the different lags. An individual matrix
element for lag k obviously covers a range (see Fig. 5.29)

∆rk =
c

2
(n − k + 1)τ. (5.29)

In the classical experiment n− k elements are added in the kth lag. Since they
are separated by τ in S-direction, the height resolution of the kth lag is

∆rc
k =

c

2
[(n + 1 − k) + (n − k − 1)]τ = c(n − k)τ. (5.30)

Finally, in the modern experiment v + k elements are added in the kth lag so
that

∆rm
k =

c

2
[(n − k + 1) + (v + k − 1)]τ =

c

2
(n + v)τ. (5.31)

These results show that the height resolutions of both the matrix elements and
the the lags of the classical experiment decrease linearly with lag number, the
latter one with a double rate. In the case of the modern experiment, on the
other hand, the gate has the same width for all lags,which is convenient from the
data analysis point of view. In this respect the modern long-pulse experiment
resembles the multipulse experiments.

In conclusion, a modern long-pulse experiment is constructed to give the
same gate width for all lags. This is obtained by adding lag profile matrix
elements to create lag estimates in a proper way. Although the weights of
these estimates are not quite identical, they are anyway close enough to give an
accuracy of the same order for most of the measured lags. Only the very longest
lags are measured with a smaller accuracy.

The range ambiguity functions of the measured lags are obtained as sums
of the range ambiguity functions of the individual matrix elements. This is
demonstrated in Fig. 5.34, where a long pulse experiment with n = 5 and v = 3
is chosen. The range ambiguity functions of the individual matrix elements are
of the same form as those in Fig. 5.29. In Fig. 5.34 each ambiguity function is
plotted at at v + k altitudes on the S-axis, separated by τ , and their sums are
formed graphically. The results are the range ambiguity functions of the long-
pulse experiment. They indicate that the form of the range ambiguity function
changes from gate to gate, but its length on the S-axis remains as constant,
equal to (n + v)τ = 8τ .
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Figure 5.34: Generation of range ambiguity functions in a modern long-pulse
experiment.
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Chapter 6

Alternating codes

6.1 Working principle of alternating codes

The multipulse and Barker-coded multipulse modulations introduced in Chapter
5 are designed for a height resolution of a few kilometres or hundreds of metres,
respectively. Although they can effectively make use of the radar duty cycle
when interlaced on several frequencies, they are not optimal modulation meth-
ods. This is because lag estimates can only be calculated from pulse pairs at
the same frequency channel so that samples from different frequencies cannot be
correlated. A more efficient experiment would be produced if a single long pulse
could be divided into a number of shorter elements and signals from all element
pairs could be correlated without a disturbance from the other elements. In
1980’s new modulation methods were invented which fulfil this demand. They
are known as alternating codes and random codes.

Both alternating and random codes are phase codes which use two phase
values, 0o and 180o just like Barker codes do. The transmission consists of
long pulses which are divided into a number of bits. Reception takes place
after each transmission before the next pulse is transmitted. Unlike in Barker
codes, these phase patterns change from pulse to pulse and the length of the
impulse response is equal to the bit length rather than pulse length, i.e. no
decoding filter is applied (except when individual bits are further modulated
by Barker codes). The codes work in power domain rather than in amplitude
domain. This means that the process corresponding to decoding is not done
in terms of amplitudes but in terms of lagged products; lagged products from
successive pulses are added and subtracted according to certain rules so that
the corresponding ambiguity functions cancel except at a single short altitude
range corresponding to the bit length. In alternating codes the phase patterns
are designed so that this happens exactly but in random codes the patterns
are produced randomly by a code generator and the ambiguity functions cancel
only in a statistical sense. The patterns change continuously in random codes
but in alternating codes they make a finite set which is repeated all over again.
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Two basic types of alternating codes exist, the Sulzer type and the Lehtinen-
Häggström type. The benefit of the Sulzer codes is that their cycle length (the
number of phase patterns in the cycle) is shorter than the number of bits in a
single pattern whereas in the Lehtinen-Häggström codes the cycle length is equal
to or twice the number of bits. On the other hand, the Sulzer codes have a draw-
back that they are known only up to the length of 12 bits, whereas much longer
Lehtinen-Häggström codes are known than needed in any practical application.
Also, Sulzer codes can be used only if the radar power remains constant during
the transmitted pulse. There is no such limitation in the Lehtinen-Häggström
codes, but they allow the transmitting power to vary in a systematic way.

In this chapter only alternating codes of the Lehtinen-Häggström type are
considered. These codes are divided into two types, weak and strong. Weak
codes are applicable if each bit of the code is further modulated by a Barker
code, otherwise strong codes must be used. The number of bits in both codes is
equal to a power of two. The cycle length of a weak code is equal to the number
of bits in a single phase pattern and that of a strong code twice the number of
bits.

The working principle of a four-bit weak alternating code is demonstrated
in Fig. 6.1, where the matrix denoted by ’env’ contains all phase patterns in
the code cycle. Here the phases 0o and 180o are indicated by plus and minus,
respectively. Each row in the matrix indicates a 4-bit modulation envelope in a
single pulse and the four rows together make the whole cycle. The rows, i.e. the
phase patterns of the individual pulses, are sometimes called scans and their
order in the cycle is indicated by a number called the scan count.

The matrix denoted by W r
1 in Fig. 6.1 is obtained by multiplying the suc-

cessive columns in the original sign matrix; the first column is the product of
the first and second, the second a product of second and third, and the third
a product of third and fourth. The next matrix in Fig. 6.1 is obtained from
W r

1 by multiplying all its columns by the first column so that the first column
will be all pluses. When the sums of the three columns are calculated, it turns
out that only the first column will give a non-zero result (equal to 4), in the
other two columns the pluses and minuses cancel. The last two matrices are

+ + +
+ + −
+ − −
+ − +

+ + +
+ + −
− + +
− + −

+ + + +
+ − + +
+ + − +
+ − − +

+ + +
− − +
+ − −
− + −

+ + +
− − +
− + +
+ − +

4  0  0env W1
r 0  4  0 0  0  4

S S SS

1

2

3

4SC
A

N
 C

O
U

N
T

Figure 6.1: Generation of the first lag in a four-bit weak alternating code.
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obtained in a similar manner using the signs of the second and third column
of W r

1 . Also in these two cases the sums of only a single column (second and
third) are non-zero.

For interpreting this result, assume that the signal is sampled at intervals
equal to the bit length. After each transmission in the cycle, a different set of
samples and lag estimates is obtained. If the impulse response of the system is
equal to the Dirac δ-function, each row in the matrix W r

1 corresponds simply
to multiplication of two h ∗ env-terms separated by a single bit length on the S-
axis. Therefore the pluses and minuses on each row indicate values of the range
ambiguity functions of lag estimates xi · xi+1 at integer values of S. Between
these points the range ambiguity functions vary linearly. The sums below the
last three matrices in Fig. 6.1 correspond to weighted sums of lag estimates
xi ·xi+1 of the four data sets, calculated using the signs of each of the columns of
W r

1 as weights. The zeros indicate that the ambiguity functions of the different
scans will partly cancel in this calculation and a total range ambiguity function
for the alternating code will be formed which is non-zero only within a range
corresponding to a length of a single bit on the S-axis. This ambiguity function
is similar to that of a simple two-pulse code. Altogether, this means that two
successive data samples give first lag estimates at three different heights. These
correspond to the three bit pairs which have a separation of a single bit length
in a four-bit sequence.

The second and third lag can be studied in an analogous way by calculating
the matrices W r

2 and W r
3 , which consist of two columns and one column, re-

spectively. Because a four-bit sequence contains two bit pairs with a separation
of two bit lengths, samples xi and xi+2 will give second lag estimates at two
heights. Similarly, samples xi and xi+3 give only a single third-lag estimate,
since only the separation of the first and fourth bit is equal to three bit lengths.

When lags 1–3 are calculated for all data samples xi in the way described
above, three lag estimates will be obtained at each height for the first lag, two
for the second lag and one for the third lag. Longer weak codes work in an
analogous way; if the code length is n (must be a power of two), n − i lag
estimates are obtained for the lag i, i = 1, . . . n − 1. The zero lag cannot be
determined with the same height resolution, but it contains range ambiguities
much in the same way as the zero lag of a multipulse code does.

In the above discussion we assumed that the impulse response is equal to
the Dirac δ-function, so that the neighbouring bits will be kept separate in
calculating h ∗ env. With a realistic impulse response the successive bits will
be mixed and the conclusions are no more valid. It is, however, possible to
apply Barker coding to individual bits of the alternating code so that the range
ambiguity functions of different scans will consist of narrow peaks and weak
sidebands. Then the principle of Fig. 6.1 will apply to the main peaks which
will cancel each other in the weighted sums except at a single altitude, and the
alternating code will work.

In conclusion, weak alternating codes like that shown in Fig. 6.1 can be used
if each bit is further modulated by a Barker code. In strong alternating codes
Barker modulation is not needed. The number of scans in strong codes is twice
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Figure 6.2: Modulation envelopes of a four-bit strong alternating code and
their convolutions with a boxcar-shaped impulse response. Bit boundaries are
indicated by vertical dashed lines.

the number of bits so that a four-bit strong code corresponding to the weak one
in Fig. 6.1 contains eight scans. The modulation envelopes of a four-bit strong
code are shown in the left hand panel of Fig. 6.2 and their convolutions with
a boxcar-shaped impulse response in the right hand panel. The length of the
impulse response is equal to the bit length. The code could be presented more
briefly in terms of a 8 × 4 matrix of pulses and minuses in the same way as
the weak code in Fig. 6.1. However, the same notation does not apply to the
convolution h ∗ env since it does not consist of boxcar-shaped functions.

The range ambiguity functions can now be formed for all eight modulations
using the convolutions h ∗ env. When copies of the convolutions are moved by
one bit length and multiplied by the original ones, the eight range ambiguity
functions shown in the left panel in Fig. 6.3 are obtained. The ambiguity func-
tions of the strong code are obtained in the same way as those for the weak code
in Fig. 6.1. The weights are given by the values of the range ambiguity functions
at S = ti−T , ti−2T and ti−3T , where T it the bit length. In these three cases
the weights are +−+−+−+−, +−−++−−+ and ++−−−−++, respec-
tively, and each choice gives a peak around the respective S-value. The peaks
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Figure 6.3: The range ambiguity functions of the first lag for the strong four-bit
code in Fig. 6.2. Left panel: range ambiguity functions of the eight scans. Right
panel: Range ambiguity functions of the alternating code obtained as weighted
sums of the ambiguity functions of the individual scans.

are shown in the right hand panel. Hence the code gives first lag estimates at
three heights separated by a distance corresponding to the bit length and each
of these estimates contains information from a height range corresponding to
two bit lengths.

scan count:
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Figure 6.4: Same as Fig. 6.3 for the second lag.
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scan count:
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Figure 6.5: Same as Fig. 6.3 for the third lag.

The range ambiguity functions for the second and third lag are calculated in
the same way, only the copies of the convolutions are shifted by two and three
bit lengths, respectively. The results are plotted in Figures 6.4 and 6.5 in the
same format as Fig. 6.3. It is observed that two lag estimates are obtained for
the second lag (weights + +−−+ +−− and +−+−−+−+) and one for the
third lag (weights ++++−−−−). The shapes of the range ambiguity functions
for all lag estimates are identical and similar to that of a simple two-pulse code,
plotted in Fig. 4.6.

This example shows that a four-bit strong alternating code is capable of
correlating signals from all possible bit pairs in the modulation pattern when
the length of the impulse response is equal to the bit length. A weak code can
do the same thing only, if the impulse response is a δ-function or an additional
Barker coding is used. For this achievement a strong code needs a double number
of modulation patterns as compared to the corresponding weak code.

The working principle of alternating codes was demonstrated here in terms
of range ambiguity functions. One can show that two-dimensional ambiguity
functions of an alternating code can be calculated in the same way and they
have the same shape as the two-dimensional ambiguity function of a simple
two-pulse code. As an example, all two-dimensional ambiguity functions of a
strong four-bit code are plotted in Fig. 6.6. For lags 1–3 each of them is a single
pyramid but the ambiguity function of the zero lag is a structured ride elongated
in the S-direction. Note that the different ambiguity functions partly overlap,
and only the topmost surface is visible in the figure.

The strong four-bit code works as an example but it has not much practical
value. This is because it gives only three lags. Longer codes are needed for
measuring signal autocorrelation functions with sufficient lag resolutions. It is
fairly easy to study whether a given sign matrix makes an alternating code or
not; finding the proper matrices is a much more difficult task. Going systemati-
cally through all possible sign combinations is hopeless. Consider, for example,
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Figure 6.6: Two-dimensional ambiguity functions of a four-bit strong alternating
code.
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a strong four-bit code. The number of possible combinations is

24×8 = 232 ≈ 4.3 · 109.

If your computer is able to test one combination in 0.1 s, testing all possibil-
ities would take 13.6 years. In the case of an eight-bit code the number of
combinations is

28×16 = 2128 ≈ 3.4 · 1038

and the time needed would be about 1031 years. Considering that the age of
the universe is about 15 · 109 years, a search for an eight-bit strong code does
not look like a promising project! In spite of these pessimistic views, very long
alternating codes codes have been found, and the longest strong code known at
the moment has a length of 4194304 bits. This, of course, is much more than
needed in any practical application.

6.2 Properties of alternating codes

As pointed out in Chapter 5.2, the signal autocorrelation function must be
observed up to a certain length with a proper lag resolution. In the case of
alternating codes the applied pulse length is determined by the maximum lag
needed. On the other hand, the bit length determines the width of the range
ambiguity function as well as the range resolution. Therefore the maximum lag
also fixes the range resolution for a given code, which can only be improved
by increasing the number of bits. This means that long alternating codes are
needed for high resolution experiments. Consider, for instance, a typical length
of an E region autocorrelation function which is of the order of 300 µs for the
EISCAT UHF radar. In this case the bit length of a 32-bit code would be 10 µs
and the gate separation 1.5 km. Longer codes are needed in order to obtain a
better range resolution; going down to 300–400 m, for instance, implies 128-bit
codes.

Because alternating codes cannot be found by a systematic testing of all sign
combinations, their properties must be studied in order to find more effective
search methods. The codes can be considered as strings of elementary pulses of
the form

qi(t) =

{
1 , when i < t < i + 1
0 , when t ≤ i or t ≥ i + 1.

(6.1)

Here the bit length is taken as the time unit. Both positive and negative pulses
may appear in the string so that a single modulation envelope of a N -bit code
is

env(t) =

N−1∑

i=0

siqi(t), (6.2)

where each si is either +1 or −1. If, for instance, N = 4 and s0 = 1, s1 = −1,
s2 = −1 and s3 = 1, the modulation envelope is the same as the fourth scan in
Fig. 6.2.
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Using this notation, an N -bit alternating code with a cycle length M (M
scans in the cycle) can be written in the form

env(c)(t) =

N−1∑

i=0

s
(c)
i qi(t), (6.3)

where c = 1, 2, . . . , M is the scan count. The task is to find such sign sequences

{s(c)
i , i = 0, 1, . . . , N − 1}, c = 1, 2, . . . , M

that they generate an alternating code.
The range ambiguity function of a given scan c for the lag t′ − t is

W
(c)
tt′ (S) = (h ∗ env(c))(t − S) · (h ∗ env(c))(t′ − S)

=

[
N−1∑

i=0

s
(c)
i (h ∗ qi)(t − S)

]

·





N−1∑

j=0

s
(c)
j (h ∗ qj)(t

′ − S)





=

N−1∑

i=0

N−1∑

j=0

s
(c)
i s

(c)
j [(h ∗ qi)(t − S)][(h ∗ qj)(t

′ − S)]. (6.4)

Next we multiply the signs of the (k + 1)th and (l + 1)th elementary pulse in
each transmission envelope separately and calculate the weighted sum of the
range ambiguity functions of all scans using the sign products as weights. The
result is

W kl
tt′ (S) =

M∑

c=1

s
(c)
k s

(c)
l W

(c)
tt′ (S)

=

N−1∑

i,j=0

[
M∑

c=1

s
(c)
k s

(c)
l s

(c)
i s

(c)
j

]

[(h ∗ qi)(t − S)][(h ∗ qj)(t
′ − S)]

=
N−1∑

i,j=0

Aijkl [(h ∗ qi)(t − S)][(h ∗ qj)(t
′ − S)], (6.5)

where

Aijkl =

M∑

c=1

s
(c)
i s

(c)
j s

(c)
k s

(c)
l . (6.6)

Because (s
(c)
i )2 = 1 for all values of i, we find that

Aklkl =

M∑

c=1

(s
(c)
k )2(s

(c)
l )2 = M (6.7)

and eq. (6.5) can be written in the form
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W
(c)
tt′ (S) = M [(h ∗ qk)(t − S)][(h ∗ ql)(t

′ − S)]

+
∑

i6=k,j 6=l

Aijkl [(h ∗ qi)(t − S)][(h ∗ qj)(t
′ − S)]. (6.8)

In this formula the first term depends only on the (k + 1)th and (l + 1)th
elementary pulses, which have a separation l − k. For the lag t′ − t = l − k
this term is the same as M times the range ambiguity function of a two-pulse

code consisting of these two elementary pulses. If the sign sequences {s(c)
i } can

be chosen in such a way that the sum term in eq. (6.8) is zero for all values
t and t′ with a separation t′ − t = l − k, the whole range ambiguity function
for this lag will be similar to that of a two-pulse code consisting of elementary

pulses qk+1 and ql+1. Further, if such sign sequences {s(c)
i } could be chosen that

this would be true for all pairs of elementary pulses, the code would produce the
same ambiguity functions as an experiment which contains all possible two-pulse
codes taken from an N -pulse sequence. The difference is that, in an alternating
code, these pulse pairs are contained in a single modulation envelope, whereas
in a two-pulse experiment they should be transmitted separately.

The convolutions in the sum term in eq. (6.8) can be simplified when noticing
that

qi(t) = q0(t − i).

Then
(h ∗ qi)(t − S) = (h ∗ q0)(t − S − i)

and the product of the convolutions in the sum term of eq, (6.8) can be put in
the form

[(h ∗ qi)(t−S)][(h ∗ qj)(t
′ −S)] = [(h ∗ q0)(t−S − i)][(h ∗ q0)(t

′ −S − j)]. (6.9)

If the impulse response is a δ-function (weak code) the convolution h ∗ q0 is
non-zero only between the argument values 0 and 1. This means that all terms
in the sum in eq. (6.8) are automatically zero, except those which satisfy the
condition t − S − i = t − S + l − k − j. In the case of a strong code the
length of the impulse response is equal to the bit length and the corresponding
interval is between 0 and 2. Then the convolutions will put all terms in the sum
to zero except those satisfying both the previous and the additional condition
t − S − i = t − S + l − k − j ± 1. These two relations are equivalent to

j − i = l − k (6.10)

and
j − i = l − k ± 1. (6.11)

If we can choose the sign sequences {s(c)
i } in such a way that the coefficients

Aijkl are zeros in all cases when the convolution part in the sum term is non-
zero, the sum in eq. (6.8) will disappear for all lag values. Therefore a sign

sequence {s(c)
i } generates a weak alternating code, if Aijlk = 0 for all values of
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i, j, k and l satisfying eq. (6.10), when i 6= k and j 6= l. If the same is true for
indices satisfying both eq. (6.10) and eq. (6.11), the sign sequence generates a
strong alternating code.

The zero lag is obtained when k = l. In this case eq. (6.10) gives i = j and

Aiikk =

M∑

c=1

s
(c)
i s

(c)
i s

(c)
k s

(c)
k = M, (6.12)

which is necessarily non-zero. Therefore the sum term cannot disappear for zero
lag and the alternating codes cannot give zero lag estimates with a range reso-
lution corresponding to the bit length. This was already seen in Fig. 6.6, where
the zero lag ambiguity function is a single long ridge rather than a pyramid.

In conclusion, we have formulated a mathematical condition such that any

sign sequence {s(c)
i } satisfying it is necessarily an alternating code. This condi-

tion can be applied in the code search.

6.3 Walsh matrix

It turns out that a search method of alternating codes can be developed using
so called Walsh or Hadamard matrices. An n × n Walsh matrix can be defined
by the recursive formulas

Wsh1 = 1 (6.13)

and

Wshn =

(
Wshm Wshm

Wshm −Wshm

)

, (6.14)

where n = 2k+1 and m = 2k, k = 0, 1, . . .. Hence the dimension of a Walsh
matrix is always a power of 2. All columns (and rows) of a Walsh matrix consist
of an equal number of pluses and minuses, except the first one which is all pluses.
This property gives a possibility to construct sign matrixes of alternating codes
from columns of the Walsh matrix.

It is possible to derive alternative formulations to the Walsh matrix which
are useful in later analysis. If i and j are non-negative integers, they can be put
in binary form

i =

∞∑

n=0

an2n (6.15)

and

j =

∞∑

n=0

bn2n, (6.16)

where each coefficients an or bn is either zero or one. In terms of this presentation
the Walsh matrix can be written as

Wsh(i, j) = (−1)
∑∞

n=0
anbn . (6.17)
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This means that the (i, j)th element of the Walsh matrix is unity if, in the
binary presentations of i and j, there is an even number of bits with both an

and bn equal to unity, otherwise the element is equal to −1. Note carefully that
here the indexing of matrix elements starts from zero.

It is easily seen that the definition in eqs. (6.13) and (6.14) is equivalent to
eq. (6.17). Eq. (6.17) obviously gives Wsh(0, 0) = 1, which is equal to Wsh1 in
eq. (6.13). When the matrix is expanded in the way shown in eq. (6.14), one
has to study what happens when 2k is added to one or both of the indices of
the matrix elements of Wshm. Doing this to one of the indices corresponds to
a shift in the column or row directions and doing it to both indices corresponds
to a diagonal shift. Since the indices of Wshm are always smaller than 2k,
the addition means that a single ’one’ will appear at the position 2k in the bit
pattern of the index and all ’ones’ in the original pattern will remain unaffected.
Therefore, if the addition is done only to one of the indices, the sum in eq. (6.17)
does not change, so that Wsh(i, j + 2k) = Wsh(i, j) and Wsh(i + 2k, j) =
Wsh(i, j). If the addition is done to both indices, the sum will add by one; it
will be odd if it was previously even and vice versa. Hence Wsh(i+2k, j+2k) =
−Wsh(i, j) and the two definitions indeed agree.

For later use, we now define the binary ’and’ and ’exclusive or’ operations
as follows. If i and j are binary numbers of the form (6.15) and (6.16), their
binary ’and’ is

i ∧ j =

∞∑

n=0

anbn2n (6.18)

and binary ’exclusive or’ is

i ⊕ j =

∞∑

n=0

cn2n, (6.19)

where cn = 0 when an = bn and cn = 1 when an 6= bn. Thus i ∧ j is a binary
number which has a ’one’ in every position of its bit pattern where both i and j
have a ’one’ and i⊕ j is a number which has a ’one’ in every position where the
digits of i and j are not the same. In addition, we define the parity of a binary
number as

par(i) = (−1)
∑∞

n=0
an . (6.20)

This means that the parity of a binary number is 1, if its bit pattern contains
an even number of ’ones’, otherwise it is −1.

These definitions allow us to write the Walsh matrix in two different forms.
Starting from eq. (6.17) and using eqs. (6.20) and (6.18) we readily obtain

Wsh(i, j) = par(

∞∑

n=0

anbn2n) = par(i ∧ j). (6.21)

Using the above definitions we finally show that the Wash matrix obeys the
following two theorems:
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Theorem 1:
Wsh(i, j) · Wsh(i, k) = Wsh(i, j ⊕ k). (6.22)

Proof:
Using eq. (6.17) we obtain

Wsh(i, j) · Wsh(i, k) = (−1)
∑

∞

n=0
anbn · (−1)

∑
∞

n=0
ancn

= (−1)
∑

∞

n=0
an(bn+cn) = (−1)

∑
∞

n=0
andn ,

where {cn} is the bit pattern of k and dn = bn + cn. Since, for a given
index n′, bn′ and cn′ can only be either ones or zeros, we have three
alternatives:

• bn′ = cn′ = 0 =⇒ dn′ = 0 ,
• bn′ 6= cn′ =⇒ dn′ = 1 ,
• bn′ = cn′ = 1 =⇒ dn′ = 2 .

In the last case

(−1)
∑

∞

n=0
andn = (−1)2a

n
′ · (−1)

∑

n6=n
′ andn = (−1)

∑

n6=n
′ andn ,

so that, instead of dn′ = 2, one can put dn′ = 0. Then the numbers {dn}
make a bit pattern of the binary number

l =

∞∑

n=0

dn2n,

such that dn = 0 when bn = cn, and dn = 1 when bn 6= cn. This means
that

l = j ⊕ k

so that

Wsh(i, j) · Wsh(i, k) = (−1)
∑∞

n=0
andn = Wsh(i, l) = Wsh(i, j ⊕ k),

Q.E.D.

Theorem 2:
If N is a power of two, and 0 ≤ j ≤ N − 1,

N−1∑

i=0

Wsh(i, j) = 0 (6.23)

for all values of j 6= 0.
Proof:

The statement means that the column sums of a Walsh matrix WshN

are always zeros, except for the first column. All elements in the first
column are ones so that their sum is N. Because

Wsh2 =

(
1 1
1 −1

)

,

and because the Walsh matrix is built according to eq. (6.14), eq. (6.23)
is necessarily valid for all values j 6= 0, Q.E.D.
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6.4 Search of alternating codes

The original method of alternating code search is based on the properties of
the Walsh matrix. In this approach only codes are investigated where the cycle

length M is a power of two, i.e. M = 2m. The sign sequences {s(c)
i }, c =

1, 2, . . . , M are chosen in such a way that

s
(c)
i = Wsh(c − 1, ai), i = 0, 1, . . . , N − 1 (6.24)

where N is the number of elementary pulses in a single scan and 0 ≤ ai ≤ M−1.
This means that the signs of a single scan come from the same row of the Walsh
matrix and the signs of the same elementary pulses in all scans come from the
same column. Thus it is supposed that a complete alternating code can be
obtained by taking N columns from the Walsh matrix WshM in a proper order
and arranging them into an M × N matrix. The rows of this matrix are the
different scans of the alternating code.

The idea of using the Walsh matrix means that the set of sign combinations
to be tested is radically limited. Because only those sign combinations which can
be obtained from the Walsh matrix are studied, there is no guarantee (at least
without a further mathematical study) that all possible alternating codes of a
certain length are found. This is, however, quite unessential for the practical
purpose of the search, since even knowing a single code of a given length is
sufficient for incoherent scatter work.

It is not obvious without further proof that any sign combination calculated
from eq. (6.24) will make an alternating code. Nevertheless, it is possible to
show that certain conditions are valid, if such codes do exist. For the first,
if a code with a cycle length M can be constructed from columns of a Walsh
matrix, the columns can be chosen from the interval 0 ≤ ai ≤ M−1 and, for the
second, none of the columns appears twice in the same strong code. Finally, in
a weak code the number of columns to be chosen (the number of bits) is equal
to N = M and in a strong code N = M/2. Hence the cycle length of a strong
code is twice the cycle length of a weak code with the same number of bits, a
fact which was already seen in the example shown in Chapter 6.1.

In view of the discussion in Chapter 6.2, the effect of the choice in eq. (6.24)

on the sums Aijkl should be next studied. When s
(c)
i from eq. (6.24) is inserted

in eq. (6.6), the result is

Aijkl =

M∑

c=1

Wsh(c−1, ai)·Wsh(c−1, aj)·Wsh(c−1, ak)·Wsh(c−1, al). (6.25)

By applying Theorem 1 we immediately see that

Aijkl =
M∑

c=1

Wsh(c − 1, ai ⊕ aj ⊕ ak ⊕ al). (6.26)

Because 0 ≤ ai ≤ M , 0 ≤ aj ≤ M , 0 ≤ ak ≤ M and 0 ≤ ai ≤ M , also

0 ≤ ai ⊕ aj ⊕ ak ⊕ al ≤ M.
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Then, according to Theorem 2, Aijkl = 0 when the condition

ai ⊕ aj ⊕ ak ⊕ al 6= 0 (6.27)

is valid. Thus the sign sequences {s(c)
i } obtained using eq. (6.24) make a weak

alternating code, if eq. (6.27) is valid for all indices i, j, k and l satisfying the
condition (6.10) when i 6= j and k 6= l. If the indices satisfy both eq. (6.10) and
eq. (6.11), the sign sequences make a strong code.

These results show that alternating codes can be searched by choosing the
cycle length M = 2m and finding such a chain of N = M or N = M/2 non-
negative integers {ai} that condition (6.27) is valid for all combinations of four
numbers in the chain within the given limitations. In this way the search has
been converted to testing binary ’exclusive or’ operations of small binary num-
bers, which is essentially faster than testing the condition Aijkl = 0.

The search has been carried out with this method up to the length of 32
bits. The results for weak and strong codes are shown in Tables 6.1 and 6.2,
respectively. The first column indicates the cycle length. The 32-bit codes
are continued on two rows and the continuation lines are indicated by dots.
Since every Walsh matrix index ai in eq. (6.24) fixes a single column in the
alternating code sign matrix, each code can be presented in terms of a string of
Walsh indices. This is a convenient shorthand notation which is used in these
tables and later on. Note that the Walsh indices are given in octal rather than
decimal base.

A closer inspection of Tables 6.1 and 6.2 shows that a weak code can be
obtained from a strong code by dividing the Walsh indices by two and neglect-
ing the possible remainder. Because the search of weak codes is much faster
than strong codes, this property can be made use of. Once a weak code has

Table 6.1
Walsh sequences of weak alternating codes up to the length of 32 bits.
The first column indicates the cycle length and the Walsh indices are
shown in octal base.

M a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

. . .
2 00 00 01
4 00 00 01 02
8 00 00 01 02 04 01 03 07

16 00 00 01 02 04 06 02 05
16 00 00 01 02 04 10 07 17 10 06 14 16 12 03 06 15
16 00 00 01 02 04 10 17 01 03 07 16 03 06 15 05 12
32 00 00 01 04 04 10 20 03 06 15 32 27 15 33 24 13
. . . 27 14 30 22 07 17 37 35 31 20 02 05 13 26 17 36
32 00 00 01 02 04 10 20 14 30 35 26 02 03 07 16 34
. . . 24 04 11 23 12 24 05 12 25 06 14 31 36 20 15 33
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Table 6.2
Walsh sequences of strong alternating codes up to the length of 32 bits.
The first column indicates the cycle length and the Walsh indices are
shown in octal base.

M a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

. . .
4 00 01 02
8 00 01 02 04

16 00 01 02 04 10 03 07 16
16 00 01 02 04 10 14 05 13
32 00 01 02 04 10 20 17 37 21 14 31 35 24 06 15 32
32 00 01 02 04 10 20 36 03 07 16 34 06 15 32 12 25
64 00 01 02 04 10 20 40 06 15 32 64 56 33 67 50 27
. . . 57 30 61 44 17 37 76 72 63 41 05 13 26 54 36 75
64 00 01 02 04 10 20 40 30 61 72 55 03 07 16 34 70
. . . 50 11 23 46 24 51 12 25 52 14 31 62 74 41 33 67

been found, its Walsh indices are multiplied by two. Then the search of the
corresponding strong codes is started from these indices and there is no need
to vary them by more than one upwards. This greatly reduces the number of
alternatives to be tested. The 32-bit strong codes in Table 6.2 were found in
this way.

Although the above search method is effective, it is still very time consuming.
The complete search for alternating codes up to the length of 32 bits took months
of CPU time. It has been estimated that chances of finding 64-bit codes with
the present computers are not very high. Luckily enough, a new search method
has been developed which is still unpublished at the moment (February 1996).
It searches directly for strong codes and it is so effective that codes up to any
length needed in practice are easily found. The longest code known at the
moment contains 222 = 4194304 bits. The new method was found by studying
the regular behaviour of the strong 8-, 16- and 32-bit codes. Although these
Walsh sequences seem to show no regularities except at the very beginning, a
more careful investigation reveals a hidden structure which is repeated in codes

Table 6.3
Walsh sequence of a 64-bit strong code.

M a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

. . .
128 000 001 002 004 010 020 040 100 137 140 036 075 172 053 127 161
. . . 074 171 055 133 151 014 031 062 144 027 057 136 143 030 061 142
. . . 033 067 156 003 007 016 034 070 160 077 177 041 103 131 154 006
. . . 015 032 064 150 017 037 076 174 047 117 101 134 146 022 045 112
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Table 6.4
Walsh sequence of a 128-bit strong code.

M a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

. . .
256 000 001 002 004 010 020 040 100 200 204 215 237 273 363 143 307
. . . 012 025 052 124 250 324 055 133 266 350 125 253 322 041 103 206
. . . 210 225 257 333 063 147 316 030 061 142 304 014 031 062 144 310
. . . 024 051 122 244 314 035 073 166 354 134 271 366 151 323 042 105
. . . 212 220 245 317 033 067 156 334 074 171 362 140 301 006 015 032
. . . 064 150 320 044 111 222 240 305 017 037 076 174 370 164 351 126
. . . 255 336 071 163 346 110 221 246 311 027 057 136 274 374 175 373
. . . 162 345 116 235 276 371 167 357 132 265 356 131 263 342 101 203

of various lengths and allows an easy construction of a strong code of any length.
It is important to notice that this new method could only be found because codes
up to the length of 32 bits were known. For demonstration, strong 64-bit and
128-bit codes are shown in Tables 6.3 and 6.4.

The sign matrices of alternating codes are constructed from their Walsh
sequences in the way demonstrated in Fig. 6.7. The code in this example is

00 01 02 04 10 14 05 13

00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17

Figure 6.7: Construction of an 8-bit alternating code sign matrix from columns
of an 8 × 8 Walsh matrix.

133



strong and 8-bits long with a Walsh sequence {00, 01, 02, 04, 10, 14, 05, 13}
shown on the top of the figure. Hence we have to start from a 16 × 16 Walsh
matrix, shown on the left. The columns of the matrix are numbered in octal
base. The elements in the Walsh sequence are simply numbers of the columns
which must be picked from the Walsh matrix and arranged in the order indicated
by the sequence. The resulting sign matrix of the 8-bit code is shown on the
right.

6.5 Efficiency of alternating codes

As discussed in Chapter 5.3, pulse codes can be intersperced at different fre-
quencies in order to make use of the radar duty cycle in a maximal way. An
example of such a modulation pattern is shown in Fig. 6.8, where four-pulse
codes are transmitted at four frequencies and the remaining gaps are filled with
two-pulse codes at two frequencies. Since no single pulses are transmitted, the
zero lag cannot be measured.

The number of different lag estimates given by this modulation for a single
gate is as follows:

◦ four-pulse codes, lags 1–6: 4 × 6 = 24
◦ two-pulse codes, lag 5: 2 × 1 = 2

total 26

The total length of the pattern is 20 pulse lengths. The alternating code clos-
est to this length is 16 bits. Hence, if we use the same range resolution, the
multipulse experiment takes 25 % more of the duty cycle than the alternating
code does. In an alternating code experiment the extra time available could be
used for power profile measurements. Since an alternating code gives a single

0 2T 4T 6T 8T 10T 12T 14T 16T 18T 20T

Figure 6.8: A modulation pattern consisting of four four-pulse codes and two
two-pulse codes.
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lag estimate for each bit pair, the total number of estimates is

16× (16 − 1)

2
= 8 × 15 = 120.

The above alternating code experiment is obviously more efficient than the
multipulse experiment, because it gives many more lag estimates than the mul-
tipulse experiment can give in the same time. A useful number for comparing
the relative efficiency of two experiments would be the ratio of observational
errors when the same time is used in the measurement. A thorough analysis of
such a comparison is a rather difficult task. Furthermore, the accuracy cannot
often even be expressed in terms of a single number because the relative accu-
racy of different plasma parameters may vary from experiment to experiment.
The reason for this is that the weight which a given lag has in determining
the accuracy depends on the plasma parameter and experiments often do not
measure the lags at the same relative accuracy, even if their lag increments and
maximum lags were identical.

In general, it is well known that, if a quantity is measured several times, the
standard deviation of the mean value of the measurements from the expectation
value of the quantity is inversely proportional to the square root of the number
of measurements made. If we neglect the fact that we actually observe different
lags which have different weights in the accuracy of the plasma parameters, we
can define a rough estimate to the efficiency of an experiment to be proportional
to the square root of number of lag estimates it can give in unit time. Therefore
the relative accuracy of the above experiments would be

√

120

26
≈ 2.1

This means that, if both experiments have the same temporal resolution, the

0 2T 4T 6T 8T 10T 12T 14T 16T 18T 20T 22T 24T 26T 28T

Figure 6.9: A modulation pattern consisting of four five-pulse codes and four
two-pulse codes.
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errors of the multipulse modulation would be more than twice the errors of the
alternating code.

A modulation sequence of 28 pulse lengths can be constructed as shown in
Fig. 6.9 using four five-pulse codes and four two-pulse codes. This experiment
gives the following lag estimates:

◦ five-pulse codes, lags 1–9,11 4 × 10 = 40
◦ two-pulse codes, lag 3 2 × 1 = 2
◦ two pulse codes, lag 4 2 × 1 = 2

total 44

The length of the closest alternating code is 32 bits and it gives

32× (32 − 1)

2
= 16 × 31 = 496

estimates. The ratio of the efficiencies of the two experiments is in this case

√

496

44
= 3.4.

These examples show that an alternating code experiment is 2–3 times more
effective than a multipulse experiment utilising the same fraction of the radar
duty cycle. The difference is caused by the fact that an alternating code can
produce 5–10 times more lag estimates than a multipulse experiment can. The
alternating code has this property because it allows signals from all elementary
pulse pairs to be correlated, which is not possible in a multipulse experiment
using several frequencies.
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Chapter 7

Noise and offset

In the previous chapters interest was paid mainly to the scattering signal and
only occasional references to noise were made. Like any electronic system, the
incoherent scatter receiver generates noise of thermal origin which adds to the
scattering signal. Cooled preamplifiers are used to reduce this effect. In addition
to the thermal noise, the signal also contains radio noise of astronomical origin,
which cannot be reduced by any means. The power of this noise component
depends on the direction of the antenna beam. Because the incoherent scatter
signal is very weak, the signal-to noise level (the ratio of singal power to noise
power) is smaller than unity, often no more than about 10–20 %.

In addition to the noise, the radar signal is contaminated by a second effect.
This is the offset voltage which is present at the output of the post-detection
filter even in the absence of a scattering signal. The offset varies very slowly as
compared to the scattering signal so that it can be considered to be constant
in calculating a single autocorrelation function. The noise singal, on the other
hand, is quickly varying and its power spectral density can be taken as constant
before it enters the post-detection filter so that we can treat it as white noise.

Based on the above considerations, the complex output signal of the post-
detection filter can be written in the form

zh(t) = z
(s)
h (t) + z

(n)
h (t) + z

(o)
h (t), (7.1)

where z
(s)
h (t), z

(n)
h (t) and z

(o)
h (t) are the incoherent scatter signal, the noise

signal and the offset voltage, respectively. The autocorrelation function of this
signal for the lag (t′ − t) is

〈zh(t)z∗h(t′)〉 = 〈[z(s)
h (t) + z

(n)
h (t) + z

(o)
h (t)][z

(s)
h (t′) + z

(n)
h (t′) + z

(o)
h (t′)]∗〉

= 〈z(s)
h (t)z

(s)∗
h (t′)〉 + 〈z(n)

h (t)z
(n)∗
h (t′)〉 + 〈z(o)

h (t)z
(o)∗
h (t′)〉

+ 〈z(s)
h (t)z

(n)∗
h (t′)〉 + 〈z(s)

h (t)z
(o)∗
h (t′)〉 + 〈z(n)

h (t)z
(s)∗
h (t′)〉

+ 〈z(n)
h (t)z

(o)∗
h (t′)〉 + 〈z(o)

h (t)z
(s)∗
h (t′)〉 + 〈z(o)

h (t)z
(n)∗
h (t′)〉.

(7.2)
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Because z
(s)
h (t), z

(n)
h (t) and z

(o)
h (t) are independent random variables and

〈z(s)
h (t)〉 = 〈z(n)

h (t)〉 = 0, (7.3)

the last six terms on the right hand side of eq. (7.2) are all zeros. Therefore

〈zh(t)z∗h(t′)〉 = 〈z(s)
h (t)z

(s)∗
h (t′)〉 + 〈z(n)

h (t)z
(n)∗
h (t′)〉 + 〈z(o)

h (t)z
(o)∗
h (t′)〉. (7.4)

This means that the autocorrelation function of the total output signal is a sum
of autocorrelation functions of the scattering signal, noise and offset. Hence, in

order to obtain a lag estimate 〈x(s)
h (i)x

(s)∗
h (j)〉 of the scattering signal, one has

to measure the lag estimates of the total signal, noise and offset and the result
is given by

〈x(s)
h (i)x

(s)∗
h (j)〉 = 〈xh(i)x∗

h(j)〉 − 〈x(n)
h (i)x

(n)∗
h (j)〉 − 〈x(o)

h (i)x
(o)∗
h (j)〉. (7.5)

In principle, eq. (7.4) implies that the lag estimates of noise and offset should
be measured simultaneously with the lag estimate of the total signal. The noise,
however, has no height dependence as the scattering signal does, and therefore
its statistical properties can equally well be measured at a different time. A
normal practice is to carry out noise measurements and the calibration of the
received power just before the transmission on each channel. In this way the
previous transmitted pulses are already travelling well beyond the ionosphere
and no significant scattering signal is received from them.

When a noise measurement is carried out, the observation also contains the
offset signal. Therefore, if the total signal in a noise measurement is zhn(t), the
autocorrelation function of the noise signal is

〈z(n)
h (t)z

(n)∗
h (t′)〉 = 〈z(n)

hn (t)z
(n)∗
hn (t′)〉 − 〈z(o)

h (t)z
(o)∗
h (t′)〉. (7.6)

Thus we have to determine an estimate for the offset term before we can de-
termine the noise term estimate. On the other hand, one might say that any
measurement of the offset signal also contains noise and, at the first sight, we
may think to find ourselves in a vicious circle. Luckily enough, the situation
is better than that since a solution to the problem is offered by the different
correlation lengths of the noise and offset signals.

Obviously the post-detection filter restricts the bandwidth of the noise and
increases its correlation length. If the noise signal entering the post-detection
filter is z(n)(t), the filtered noise signal is

z
(n)
h (t) = (h ∗ z(n))(t) (7.7)

and the noise term in eq. (7.4) is

〈z(n)
h (t)z

(n)∗
h (t′)〉 = 〈

∫ ∞

−∞

h(t − τ)z(n)(τ)dτ ·
∫ ∞

−∞

h(t′ − τ ′)z(n)∗(τ ′)dτ ′〉

=

∫ ∞

−∞

∫ ∞

−∞

h(t − τ)h(t′ − tau′)〈z(n)(τ)z(n)∗(τ ′)〉dτdτ ′.

(7.8)
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Since z(n)(t) is white noise, its correlation length is zero and we can write

〈z(n)(t)z(n)∗(t′)〉 = RPnδ(t − t′), (7.9)

where Pn is the noise power and R is the receiver resistance. Then the autocor-
relation function of the filtered noise is

〈z(n)
h (t)z

(n)∗
h (t′)〉 = RPn

∫ ∞

−∞

∫ ∞

−∞

h(t − τ)h(t′ − τ ′)δ(τ − τ ′)dτdτ ′

= RPn

∫ ∞

−∞

h(t − τ)h(t′ − τ)dτ

= RPn

∫ ∞

−∞

h(τ ′′)h(τ ′′ − t′ + t)dτ ′′. (7.10)

The integral on the bottom line of eq. (7.9) is obviously the unnormalised au-
tocorrelation function Rh of the impulse response, which has been previously
used in eq. (4.26). Hence we see that

〈z(n)
h (t)z

(n)∗
h (t′)〉 = RPnRh(t − t′). (7.11)

This means that the autocorrelation length of filtered noise is equal to the length
of the the autocorrelation function of the filter impulse response.

Because the offset voltage varies very slowly, its autocorrelation function is
much longer than that of the scattering signal or noise. Therefore the offset
autocorrelation function can be taken as constant within a lag interval longer
than the length of the autocorrelation function of the scattering signal. This
means that an estimate of the offset term in eq. (7.5) can be obtained by mea-
suring the autocorrelation function of the total signal at such long lags that the
autocorrelation function of the scattering signal is zero. At these lag values the
noise autocorrelation function is also zero and therefore no noise term is present
in the calculated autocorrelation function estimate. Hence the offset correction
is made by subtracting the same constant at all lag values and it is done in the
same way both in calculating the noise correction term and in calculating the
lag estimates of the scattering signal. This is how we find our way out of the
vicious circle.

Sometimes a single offset term is measured for the whole height profile, but
often the offset is measured for each gate separately. This is a good practice,
because the offset can vary from gate to gate. The reason for this is that during
each period of transmission the receiver experiences an electric shock. Before
the beginning of reception the receiver has not necessarily recovered from the
shock completely, especially if the lag profiles start at low altitudes. Therefore
an offset voltage changing from gate to gate may be present in the lower part
of the profile, in the upper part the offset voltage is more likely to be constant.
In all cases, however, the time scale of offset variations is such that the above
assumption on constant offset voltage during a length of signal autocorrelation
function is valid.
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In the case of zero lag eq. (7.11) gives

〈z(n)
h (t)z

(n)∗
h (t)〉 = 〈|z(n)

h (t)|2〉 = RPnRh(0), (7.12)

so that solving for RPn we obtain

RPn =
〈|z(n)

h (t)|2〉
Rh(0)

, (7.13)

and the noise autocorrelation function can be put in the form

〈z(n)
h (t)z

(n)∗
h (t′)〉 =

Rh(t′ − t)

Rh(0)
〈|z(n)

h (t)|2〉. (7.14)

This means that, due to filtering, the correlation length of the noise increases
so much that a fraction Rh(t′ − t)/Rh(0) of the noise power ”leaks” to the lag
(t′ − t).

An incoherent scatter experiment is usually designed in such a way that
Rh = 0 already for the first lag. For instance in multipulse experiments (see
Chapter 5.3) the length of the impulse response is equal to the pulse length T
and then Rh 6= 0 only within the interval (−T, T ). The sampling interval is 2T
so that the first lag is also obtained at 2T . Thus the lag ambiguity function of
the first lag (see Chapter 4.4) extends from T to 3T which is beyond the range of
the noise correlation function and the noise term is zero already in the first lag.
When an experiment is designed following this principle, the noise correction
must be made only to the zero lag.

In the case of Barker coding the situation is a bit more complicated. A
detailed analysis shows that in Barker-coded multipulse experiments a small
but non-negligible fraction of noise leaks to the first lag when the length of the
impulse response is equal to the bit length. The contamination can be removed
by adding a ”zero bit” with no transmission at the end of each sequence of 13
bits and also stretching all gaps correspondingly.

Still another point associated with noise is that, in addition to thermal and
astronomical sources, the signal itself can act as a source of noise. Each signal
sample contains information from a height range determined by the amplitude
ambiguity function and, when two signal samples are used in calculating lag
estimates other than zero lag, the corresponding height ranges only partly over-
lap. The correlating parts of the signals come from the common region and
produce the autocorrelation function of the scattering signal. The other parts
of the signals do not correlate and they show as additional noise known as self
noise, which increases the statistical error of the results. Unlike ordinary noise,
this is not present in the zero lag.

As a final comment it is worth pointing out that the lag estimates of the
total signal, noise and offset are determined with a certain statistical accuracy.
When a lag estimate of the scattering signal is calculated according to eq. (7.5),
the errors of all three terms affect the error of the autocorrelation function which
is used in determining the plasma parameters. This is the starting point in the
error analysis of incoherent scatter measurements.
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