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The Need for Statistical Descriptions of ISR Signals

If I knew the positions of every single electron in the scattering volume, I
would know the received voltage exactly:

Exact expression for scattered electric field
as a superposition of Thompson scatterers:

Es = − re

r
E0

N0∆V
∑

p=1

e jk·rp

ISR theory predicts statistical aspects of the scattered signal:

Scattered Power:
〈

|Es |2
〉

Autocorrelation Function: 〈Es(t)E
∗
s (t − τ)〉

These statistical properties are functions of macroscopic properties of the
plasma: Ne , Te , Ti , ulos.
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Random Variables

A random variable is a variable whose numerical value depends on the
outcome of a probabilistic phenomenon.
Probability Density Function:

P (x1 < X < x2) =

∫ x2

x1

pX (x) dx

Expected Values:

E {g (X )} =

∫ ∞

−∞
g(x)pX (x) dx

Mean:

Mean {X} = E {X}
Variance:

Var {X} = E
{

(X − E {X})2
}

= E
{

X 2
}

− (E {X})2
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Collections of Random Variables

Multiple RVs must be described by joint-PDFs:

P (x0 < X < x1 ∪ y0 < Y < y1) =

∫ x1

x0

∫ y1

y0

pXY (x , y) dydx

If X and Y are independent:

pXY (x , y) = pX (x)pY (y) pX |Y (x |y) = pX (x)

Relationships between RVs are defined through covariances:

Cov {X ,Y } = E {(X − E{X}) (Y − E{Y })}

Uncorrelated RVs have Cov{X ,Y } = 0
Independent RVs are uncorrelated, but uncorrelated RVs are not
necessarily independent.
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Gaussian Distribution

A Gaussian random variable X has the following probability density
function (Normal Distribution):

p (x) =
1√
2πσ

exp

{

−x − µ

2σ2

}

E{X} = µ Var{X} = σ2

E
{

(X − µ)4
}

= 3σ4

A jointly-Gaussian vector of random variables
X = [X0,X1,X2, · · · ,XN−1]

T has the joint pdf:

p (x) =
1

(2π)
N
2 |C |

1
2

exp

{

−1

2
[x− µ]T C−1 [x− µ]

}

E {X} = µ

Cov {X} = E
{

[X− µ] [X− µ]T
}

= C
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Properties of Jointly Gaussian Random Variables

Linear combinations:

Z = αX + βY + γ E{Z} = αE{X} + βE{Y }+ γ

Var{Z} = α2Var{X} + β2Var{Y }+ 2αβCov{X ,Y }

Matrix generalization:
Y = AX+ b E{Y} = AX+ b Cov{Y} = ACov{X}AT

Special cases for zero mean random variables:

Odd moments are zero:
E {V1} = E {V1V2V3} = E {V1V2V3V4V5} = · · · = 0

Fourth moment theorem: E {V1V2V3V4} =
E {V1V2}E {V3V4}+ E {V1V3}E {V2V4}+ E {V1V4}E {V2V3}
General even moment theorem (Isserlis’ Theorem)
E {V1V2 · · ·V2n−1V2n} =

∑∏

E {ViVj}
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Central Limit Theorem

Given a set of finite-variance, independent and identically distributed RV,
[X0,X1, · · · ,XK−1], the distribution function of the average:

X̂ =
1

K

K−1
∑

n=0

Xn

will asymptotically approach a Gaussian distribution as K increases.

E
{

X̂
}

= E {Xn} Var
{

X̂
}

=
1

K
Var {Xn}

This is an amazingly useful theorem:

Only the mean and variances of the intermediate quantities need to
be calculated to predict the distribution of the final averaged result.

Distribution functions of intermediate quantities do not need to be
calculated in detail since the final averaged result will just be
Gaussian.
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Statistical Properties of ISR Voltages

Radar signals are complex-valued, zero-mean, Gaussian random vaiables
with variances related to their power P :

V = VR + jVI

E {VR} = E {VI} = 0

E
{

V 2
R

}

= E
{

V 2
I

}

=
1

2
P E {VRVI} = 0

E
{

|V |2
}

= E
{

V 2
R + V 2

I

}

= P

E
{

V 4
R

}

= E
{

V 4
I

}

=
3

4
P2 E

{

V 2
RV

2
I

}

= E
{

V 2
R

}

E
{

V 2
I

}

=
1

4
P2

Var
{

|V |2
}

= E

{

(

|V |2
)2

}

−
(

E
{

|V |2
})2

= E
{

V 4
R + V 4

I + 2V 2
RV

2
I

}

−
(

E
{

V 2
R + V 2

I

})2

= 2P2 − P2 = P2
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Power Estimation

Given K voltage samples with unknown signal power S , a known noise
power N, and total power P = S + N, an estimate of the signal power is:

Ŝ =
1

K

K−1
∑

n=0

|Vn|2 − N

Expected Value: E
{

Ŝ
}

= 1
K

∑K−1
n=0 E

{

|Vn|2
}

− N = P − N = S

Variance (Invoke the Central Limit Theorem):

Var
{

Ŝ
}

= Var

{

1

K

K−1
∑

n=0

|Vn|2
}

=
1

K
Var

{

|Vn|2
}

=
1

K
P2 =

1

K
(S + N)2

Relative Error:
√

Var
{

Ŝ
}

S
=

1√
K

S + N

S
=

1√
K

(

1 +
1

S/N

)
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Statistical Uncertainty and SNR are Different Concepts
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K = 256

0 10 20 30 40 50 60 70 80
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K = 2560

For SNR = 0.25:

K = 256 → Relative Error = 31.25%

K = 2560 → Relative Error = 9.88%
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Required Integration Times
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Effects of Incoherent Integration

SNR = inf dB

SNR = 6.0 dB

SNR = 3.0 dB

SNR = 0.0 dB

SNR = -3.0 dB

SNR = -6.0 dB

SNR = -10.0 dB

At
SNR = −3 dB,
20% error
requires
K = 225.

If the inter-pulse
period is 5 ms,
225 pulses takes
1.125 s.

If you cycle
between 25
beams, 225
pulses in all
beams takes
28.125 s.
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Problem with Short IPP: Range Aliasing

Range

Time

v00 v01 v02 v03 v04 v10 v11 v12 v13 v14 v20 v21 v22 v23 v24

rn =
ctn

2
+m

cτIPP
2

for any integer m
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Exploiting Frequency Diversity
Pulses close together produce range aliasing problems:

Range

Time
Change frequencies every other pulse:

Range

Time
The RISR 3-frequency ImagingLP experiments:

Range

Time
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Stochastic Processes: Definitions and Terminology

Stochastic Process (aka Random Process): V (t) where value at every
time is a random variable
Gaussian Stochastic Process:

PDF of each V (t) is a Gaussian distribution (aka normal distribution)
Joint PDF of any subset of samples of V (t) is a jointly Gaussian
distribution (aka Multivariate Normal Distribution)

Moments of a Stochastic Process:
Mean: V̄ (t) = E {V (t)}
Autocorrelation: RV (t, t − τ) = E {V (t)V ∗(t − τ)}
Autocovariance:
CV (t, t − τ) = E

{[

V (t) − V̄ (t)
] [

V ∗(t − τ)− V̄ ∗(t − τ)
]}

=

R (t, t − τ) − V̄ (t)V̄ ∗(t − τ)
(Wide Sense) Stationary Stochastic Process

V̄ (t) = V̄ is independent of t
R(t, t − τ) = R(τ) is independent of t

ISR signals are Gaussian, zero mean, and stationary as long as the
ionospheric state parameters are constant.
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Power Spectra of Deterministic Signals

Given a signal f (t) and its fourier transform
F (ω) = F {f (t)} =

∫∞
−∞ f (t)e−jωt dt, the power spectrum is:

SF (ω) = |F (ω)|2 = F ∗(ω)F (ω)

= F
{

f (−t ′) ∗ f (t ′)
}

= F
{
∫ ∞

−∞
f (t ′)f (t ′ − t) dt ′

}

When you filter a signal:

g(t) = h(t) ∗ f (t)
G (ω) = H(ω)F (ω)

SG (ω) = |H(ω)|2 SF (ω)
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Power Spectra of Stochastic Signals

Fourier transforms of stationary random processes do not exist.
Fourier transforms of ACFs will exist, and are the power spectra:

SV (ω) =

∫ ∞

−∞
RV (τ)e

−jωτ dτ =

∫ ∞

−∞
E{V (t)V ∗(t − τ)}e−jωτ dτ

Properties:

S(ω) is real and S(ω) ≥ 0

Short correlation times ↔ wide bandwidth and vice versa
∫∞
−∞ SV (ω) dω = R(0) = E{|V |2} (total power)

If U = h * V, SU(ω) = |H(ω)|2 SV (ω)
Intuitive interpretation:

∫ ω2

ω1
SV (ω) dω is the power in the frequency band

from ω1 to ω2.
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Example: Running Average of White Noise

Continuous white noise:

E {W (t)} = 0 SW (ω) = S0 RW (τ) = S0δ(τ)

Running average of white noise:

V (t) =
1

T

∫ t+T/2

t−T/2
W (t ′) dt ′

RV (τ) = E

{

1

T

∫ t+T/2

t−T/2
W (t ′) dt ′

1

T

∫ t+τ+T/2

t+τ−T/2
W (t ′′) dt ′′

}

=
1

T 2

∫ t+T/2

t−T/2

∫ t+τ+T/2

t+τ−T/2
S0δ

(

t ′ − t ′′
)

dt ′′dt ′

=

{

S0
T−|τ |
T 2 |τ | < T

0 |τ | ≥ T
⇒ SV (ω) = S0

(

sin (ωT/2)

ωT/2

)2
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Correlation Time and Bandwidth

Short correlation times → wide-bandwidth and vice versa
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A Hypothetical CW Bistatic ISR Experiment

CW Tx Ideal Rx

ISR theory gives the PSD and ACF of the received voltages as a function
of Ne , Te , Ti , and ulos in the overlap volume.
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ACF Estimation (Pulse-to-Pulse)

Assume pulses are taken close together and are correlated.

Range

Time

v0 v1 v2

Unbiased Estimator:

R̂ℓ =
1

K − ℓ

K−1
∑

n=ℓ

vnv
∗
n−ℓ

E
{

R̂ℓ

}

= Rℓ

Biased Estimator:

R̃ℓ =
1

K

K−1
∑

n=ℓ

vnv
∗
n−ℓ

E
{

R̃ℓ

}

=
K − ℓ

K
Rℓ

Zero-padded Periodogram

S̃n =

∣

∣

∣

∣

∣

K−1
∑

k=0

vke
−2πj nk

2K

∣

∣

∣

∣

∣

2

R̃ℓ =
1

2K

2K−1
∑

n=0

S̃ne
2πj nℓ

2K

Biased ACF estimator equals the iFFT of the zero-padded periodogram.
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Underspread vs Overpread Targets

If the IPP is short compared to the correlation time of the signal
(inverse bandwidth), pulse-to-pulse processing works great.

If the IPP is long compared to the correlation time, all pulse-to-pulse
lag products give ≈ 0.

Shortening the IPP is not always an option due to range aliasing.

Terminology:

Underspread target: There exists an IPP that is short compared to
the correlation time but long enough to avoid range aliasing.

D-region ISR
Perpendicular to B ISR
MST radar

Overspread target: All practical IPP are long compared to the
correlation time.

Most ISR experiments
SuperDARN
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Uncoded Long Pulse Experiments

Scattered signals from outside the overlap region do not affect the
expected value of a lag product, but they do affect the variance
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Range-Lag Ambiguity Functions

E {v(t2)v∗(t1)} = RN (τ) +

∫

dτdr RS (r , τ)W (r , τ ; t1, t2)

W (r , τ ; t1, t2) ≡
∫

dt s

(

t + τ − 2r

c

)

h∗ (t2 − t − τ) s∗
(

t − 2r

c

)

h (t1 − t)

RN (τ) is the noise ACF

RS (r , τ) is the theoretical signal ACF as a function of Ne(r), Te(r),
Ti(r), ulos(r)

s is the envelope of the transmitted waveform

h is the receiver impulse response

W (r , τ ; t1, t2) describes how different ranges and lags blur together
when taking the variance of two samples
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2-D Range-lag Ambiguity Function of Long Pulse

Ambiguity function with a boxcar filter. 480 µs long pulse, 30 µs sampling.

R. H. Varney (SRI) Radar Statistics July 23, 2018 25 / 29



Fundamentals of Probability Theory ISR Power Stochastic Processes Estimating ISR Autocorrelation Functions

Coded Pulse Experiments

a0a1v0v
∗
1 =a0(a0s

t
h + a1s

t+ 1
2

h−1 + a2s
t+1
h−2 + a3s

t+ 3
2

h−3 )×

a1(a0s
t+ 1

2

h+1 + a1s
t+1
h + a2s

t+ 3
2

h−1 + a3s
t+2
h−2)

∗

E {a0a1v0v∗1 } =E
{

sths
∗t+1
h

}

+ a0a2E

{

s
t+ 1

2

h−1 s
∗t+ 3

2

h−1

}

+ a0a1a2a3E
{

st+1
h−2s

∗t+2
h−2

}
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Range-lag Ambiguity Function of Alternating Codes

Ambiguity function for a boxcar filter. 480 µs (16-baud, 30 µs baud, 32 pulse).
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ISR Analysis

1 After pulse k , take N samples vk0 , v
k
1 , . . . , v

k
N−1

Each vk
n will be complex-valued, Gaussian, and zero mean

2 Tabulate the products between samples Lkn,m = vk∗n vkm
Ambiguity function theory gives the expected value of each of these lag
products as a function of the plasma parameters and the known s and
h.
4th moment theorem can be used to derive (Hysell et al. [2008]):

Var
{

ℜ
(

Lkn,m
)}

=
1

2
ℜ
(

E
{

Lkn,n
}

E
{

Lkm,m

}

+ E
{

Lkn,m
}

E
{

Lkn,m
}∗

)

Var
{

ℑ
(

Lkn,m
)}

=
1

2
ℜ
(

E
{

Lkn,n
}

E
{

Lkm,m

}

− E
{

Lkn,m
}

E
{

Lkn,m
}∗

)

3 Average over many pulses L̂n,m = 1
K

∑K−1
k=0 Lkn,m

By the central limit theorem, real and imaginary L̂n,m will be Gaussian
and their variances will scale as 1/K

4 Real and imaginary parts of L̂n,m and their variances are inputs to
fitting algorithm
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Error Propagation Through the ISR Processing Chain

Signal

Voltages

Noise
Voltages

Variances

Lag

Products

Noise ACF

ISR Theory
Ambiguity

Functions

Predicted
Lag Products

Fitter
Ne , Te , Ti , ulos

Error Bars
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