Basic Radar 3: Statistical Properties of Radar Signals

Roger H. Varney
${ }^{1}$ Center for Geospace Studies
SRI International

July 23, 2018

(1) Fundamentals of Probability Theory

(2) ISR Power

(3) Stochastic Processes
(4) Estimating ISR Autocorrelation Functions

The Need for Statistical Descriptions of ISR Signals

If I knew the positions of every single electron in the scattering volume, I would know the received voltage exactly:

Exact expression for scattered electric field as a superposition of Thompson scatterers:

$$
E_{s}=-\frac{r_{e}}{r} E_{0} \sum_{p=1}^{N_{0} \Delta V} e^{j \mathbf{k} \cdot \boldsymbol{r}_{p}}
$$

ISR theory predicts statistical aspects of the scattered signal:
Scattered Power: $\left.\left.\langle | E_{s}\right|^{2}\right\rangle$ Autocorrelation Function: $\left\langle E_{s}(t) E_{s}^{*}(t-\tau)\right\rangle$ These statistical properties are functions of macroscopic properties of the plasma: $N_{e}, T_{e}, T_{i}, u_{\text {los }}$.

Random Variables

A random variable is a variable whose numerical value depends on the outcome of a probabilistic phenomenon.

Probability Density Function:

$$
P\left(x_{1}<X<x_{2}\right)=\int_{x_{1}}^{x_{2}} p_{X}(x) d x
$$

Expected Values:

$$
E\{g(X)\}=\int_{-\infty}^{\infty} g(x) p_{X}(x) d x
$$

Mean:

$$
\operatorname{Mean}\{X\}=E\{X\}
$$

Variance:

$$
\operatorname{Var}\{X\}=E\left\{(X-E\{X\})^{2}\right\}=E\left\{X^{2}\right\}-(E\{X\})^{2}
$$

Collections of Random Variables

Multiple RVs must be described by joint-PDFs:

$$
P\left(x_{0}<X<x_{1} \cup y_{0}<Y<y_{1}\right)=\int_{x_{0}}^{x_{1}} \int_{y_{0}}^{y_{1}} p_{X Y}(x, y) d y d x
$$

If X and Y are independent:

$$
p_{X Y}(x, y)=p_{X}(x) p_{Y}(y) \quad p_{X \mid Y}(x \mid y)=p_{X}(x)
$$

Relationships between RV s are defined through covariances:

$$
\operatorname{Cov}\{X, Y\}=E\{(X-E\{X\})(Y-E\{Y\})\}
$$

Uncorrelated RVs have $\operatorname{Cov}\{X, Y\}=0$
Independent RVs are uncorrelated, but uncorrelated RVs are not necessarily independent.

Gaussian Distribution

A Gaussian random variable X has the following probability density function (Normal Distribution):

$$
\begin{aligned}
p(x) & =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{x-\mu}{2 \sigma^{2}}\right\} \\
E\{X\} & =\mu \quad \operatorname{Var}\{X\}=\sigma^{2} \\
E\left\{(X-\mu)^{4}\right\} & =3 \sigma^{4}
\end{aligned}
$$

A jointly-Gaussian vector of random variables
$\mathbf{X}=\left[X_{0}, X_{1}, X_{2}, \cdots, X_{N-1}\right]^{T}$ has the joint pdf:

$$
\begin{aligned}
p(\mathbf{x}) & =\frac{1}{(2 \pi)^{\frac{N}{2}}|C|^{\frac{1}{2}}} \exp \left\{-\frac{1}{2}[\mathbf{x}-\mu]^{T} C^{-1}[\mathbf{x}-\mu]\right\} \\
E\{\mathbf{X}\} & =\mu \\
\operatorname{Cov}\{\mathbf{X}\} & =E\left\{[\mathbf{X}-\mu][\mathbf{X}-\mu]^{T}\right\}=C
\end{aligned}
$$

Properties of Jointly Gaussian Random Variables

- Linear combinations:

$$
\begin{aligned}
Z & =\alpha X+\beta Y+\gamma \quad E\{Z\}=\alpha E\{X\}+\beta E\{Y\}+\gamma \\
\operatorname{Var}\{Z\} & =\alpha^{2} \operatorname{Var}\{X\}+\beta^{2} \operatorname{Var}\{Y\}+2 \alpha \beta \operatorname{Cov}\{X, Y\}
\end{aligned}
$$

- Matrix generalization:

$$
\mathbf{Y}=\mathbf{A X}+\mathbf{b} \quad E\{\mathbf{Y}\}=\mathbf{A} E\{\mathbf{X}\}+\mathbf{b} \quad \operatorname{Cov}\{\mathbf{Y}\}=\mathbf{A} \operatorname{Cov}\{\mathbf{X}\} \mathbf{A}^{T}
$$

Special cases for zero mean random variables:

- Odd moments are zero:

$$
E\left\{V_{1}\right\}=E\left\{V_{1} V_{2} V_{3}\right\}=E\left\{V_{1} V_{2} V_{3} V_{4} V_{5}\right\}=\cdots=0
$$

- Fourth moment theorem: $E\left\{V_{1} V_{2} V_{3} V_{4}\right\}=$

$$
E\left\{V_{1} V_{2}\right\} E\left\{V_{3} V_{4}\right\}+E\left\{V_{1} V_{3}\right\} E\left\{V_{2} V_{4}\right\}+E\left\{V_{1} V_{4}\right\} E\left\{V_{2} V_{3}\right\}
$$

- General even moment theorem (Isserlis' Theorem)

$$
E\left\{V_{1} V_{2} \cdots V_{2 n-1} V_{2 n}\right\}=\sum \prod E\left\{V_{i} V_{j}\right\}
$$

Central Limit Theorem

Given a set of finite-variance, independent and identically distributed RV, [$X_{0}, X_{1}, \cdots, X_{K-1}$], the distribution function of the average:

$$
\hat{X}=\frac{1}{K} \sum_{n=0}^{K-1} X_{n}
$$

will asymptotically approach a Gaussian distribution as K increases.

$$
E\{\hat{X}\}=E\left\{X_{n}\right\} \quad \operatorname{Var}\{\hat{X}\}=\frac{1}{K} \operatorname{Var}\left\{X_{n}\right\}
$$

This is an amazingly useful theorem:

- Only the mean and variances of the intermediate quantities need to be calculated to predict the distribution of the final averaged result.
- Distribution functions of intermediate quantities do not need to be calculated in detail since the final averaged result will just be Gaussian.

Statistical Properties of ISR Voltages

Radar signals are complex-valued, zero-mean, Gaussian random vaiables with variances related to their power P :

$$
\begin{aligned}
V & =V_{R}+j V_{l} \\
E\left\{V_{R}\right\} & =E\left\{V_{l}\right\}=0 \\
E\left\{V_{R}^{2}\right\} & =E\left\{V_{I}^{2}\right\}=\frac{1}{2} P \quad E\left\{V_{R} V_{l}\right\}=0 \\
E\left\{|V|^{2}\right\} & =E\left\{V_{R}^{2}+V_{l}^{2}\right\}=P \\
E\left\{V_{R}^{4}\right\} & =E\left\{V_{l}^{4}\right\}=\frac{3}{4} P^{2} \quad E\left\{V_{R}^{2} V_{I}^{2}\right\}=E\left\{V_{R}^{2}\right\} E\left\{V_{I}^{2}\right\}=\frac{1}{4} P^{2} \\
\operatorname{Var}\left\{|V|^{2}\right\} & =E\left\{\left(|V|^{2}\right)^{2}\right\}-\left(E\left\{|V|^{2}\right\}\right)^{2} \\
& =E\left\{V_{R}^{4}+V_{I}^{4}+2 V_{R}^{2} V_{l}^{2}\right\}-\left(E\left\{V_{R}^{2}+V_{I}^{2}\right\}\right)^{2} \\
& =2 P^{2}-P^{2}=P^{2}
\end{aligned}
$$

Power Estimation

Given K voltage samples with unknown signal power S, a known noise power N, and total power $P=S+N$, an estimate of the signal power is:

$$
\hat{S}=\frac{1}{K} \sum_{n=0}^{K-1}\left|V_{n}\right|^{2}-N
$$

Expected Value: $E\{\hat{S}\}=\frac{1}{K} \sum_{n=0}^{K-1} E\left\{\left|V_{n}\right|^{2}\right\}-N=P-N=S$ Variance (Invoke the Central Limit Theorem):

$$
\operatorname{Var}\{\hat{S}\}=\operatorname{Var}\left\{\frac{1}{K} \sum_{n=0}^{K-1}\left|V_{n}\right|^{2}\right\}=\frac{1}{K} \operatorname{Var}\left\{\left|V_{n}\right|^{2}\right\}=\frac{1}{K} P^{2}=\frac{1}{K}(S+N)^{2}
$$

Relative Error:

$$
\frac{\sqrt{\operatorname{Var}\{\hat{S}\}}}{S}=\frac{1}{\sqrt{K}} \frac{S+N}{S}=\frac{1}{\sqrt{K}}\left(1+\frac{1}{S / N}\right)
$$

Statistical Uncertainty and SNR are Different Concepts

For $S N R=0.25$:

$$
\begin{aligned}
& K=256 \rightarrow \text { Relative Error }=31.25 \% \\
& K=2560 \rightarrow \text { Relative Error }=9.88 \%
\end{aligned}
$$

Required Integration Times

- At
$S N R=-3 \mathrm{~dB}$, 20\% error requires $K=225$.
- If the inter-pulse period is 5 ms , 225 pulses takes 1.125 s .
- If you cycle between 25 beams, 225 pulses in all beams takes 28.125 s .

Problem with Short IPP: Range Aliasing

Exploiting Frequency Diversity

Pulses close together produce range aliasing problems:

Change frequencies every other pulse:

The RISR 3-frequency ImagingLP experiments:
Range

Time

Stochastic Processes: Definitions and Terminology

- Stochastic Process (aka Random Process): $V(t)$ where value at every time is a random variable
- Gaussian Stochastic Process:
- PDF of each $V(t)$ is a Gaussian distribution (aka normal distribution)
- Joint PDF of any subset of samples of $V(t)$ is a jointly Gaussian distribution (aka Multivariate Normal Distribution)
- Moments of a Stochastic Process:
- Mean: $\bar{V}(t)=E\{V(t)\}$
- Autocorrelation: $R_{V}(t, t-\tau)=E\left\{V(t) V^{*}(t-\tau)\right\}$
- Autocovariance:

$$
\begin{aligned}
& C_{V}(t, t-\tau)=E\left\{[V(t)-\bar{V}(t)]\left[V^{*}(t-\tau)-\bar{V}^{*}(t-\tau)\right]\right\}= \\
& R(t, t-\tau)-\bar{V}(t) \bar{V}^{*}(t-\tau)
\end{aligned}
$$

- (Wide Sense) Stationary Stochastic Process
- $\bar{V}(t)=\bar{V}$ is independent of t
- $R(t, t-\tau)=R(\tau)$ is independent of t
- ISR signals are Gaussian, zero mean, and stationary as long as the ionospheric state parameters are constant.

Power Spectra of Deterministic Signals

Given a signal $f(t)$ and its fourier transform $F(\omega)=\mathcal{F}\{f(t)\}=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t$, the power spectrum is:

$$
\begin{aligned}
S_{F}(\omega)=|F(\omega)|^{2} & =F^{*}(\omega) F(\omega) \\
& =\mathcal{F}\left\{f\left(-t^{\prime}\right) * f\left(t^{\prime}\right)\right\} \\
& =\mathcal{F}\left\{\int_{-\infty}^{\infty} f\left(t^{\prime}\right) f\left(t^{\prime}-t\right) d t^{\prime}\right\}
\end{aligned}
$$

When you filter a signal:

$$
\begin{aligned}
g(t) & =h(t) * f(t) \\
G(\omega) & =H(\omega) F(\omega) \\
S_{G}(\omega) & =|H(\omega)|^{2} S_{F}(\omega)
\end{aligned}
$$

Power Spectra of Stochastic Signals

Fourier transforms of stationary random processes do not exist. Fourier transforms of ACFs will exist, and are the power spectra:

$$
S_{V}(\omega)=\int_{-\infty}^{\infty} R_{V}(\tau) e^{-j \omega \tau} d \tau=\int_{-\infty}^{\infty} E\left\{V(t) V^{*}(t-\tau)\right\} e^{-j \omega \tau} d \tau
$$

Properties:

- $S(\omega)$ is real and $S(\omega) \geq 0$
- Short correlation times \leftrightarrow wide bandwidth and vice versa
- $\int_{-\infty}^{\infty} S_{V}(\omega) d \omega=R(0)=E\left\{|V|^{2}\right\}$ (total power)
- If $U=\mathrm{h} * V, S_{U}(\omega)=|H(\omega)|^{2} S_{V}(\omega)$

Intuitive interpretation: $\int_{\omega_{1}}^{\omega_{2}} S_{V}(\omega) d \omega$ is the power in the frequency band from ω_{1} to ω_{2}.

Example: Running Average of White Noise

Continuous white noise:

$$
E\{W(t)\}=0 \quad S_{W}(\omega)=S_{0} \quad R_{W}(\tau)=S_{0} \delta(\tau)
$$

Running average of white noise:

$$
\begin{aligned}
V(t) & =\frac{1}{T} \int_{t-T / 2}^{t+T / 2} W\left(t^{\prime}\right) d t^{\prime} \\
R_{V}(\tau) & =E\left\{\frac{1}{T} \int_{t-T / 2}^{t+T / 2} W\left(t^{\prime}\right) d t^{\prime} \frac{1}{T} \int_{t+\tau-T / 2}^{t+\tau+T / 2} W\left(t^{\prime \prime}\right) d t^{\prime \prime}\right\} \\
& =\frac{1}{T^{2}} \int_{t-T / 2}^{t+T / 2} \int_{t+\tau-T / 2}^{t+\tau+T / 2} S_{0} \delta\left(t^{\prime}-t^{\prime \prime}\right) d t^{\prime \prime} d t^{\prime} \\
& =\left\{\begin{array}{ll}
S_{0} \frac{T-|\tau|}{T^{2}} & |\tau|<T \\
0 & |\tau| \geq T
\end{array} \Rightarrow S_{V}(\omega)=S_{0}\left(\frac{\sin (\omega T / 2)}{\omega T / 2}\right)^{2}\right.
\end{aligned}
$$

Correlation Time and Bandwidth

Short correlation times \rightarrow wide-bandwidth and vice versa

A Hypothetical CW Bistatic ISR Experiment

ISR theory gives the PSD and ACF of the received voltages as a function of N_{e}, T_{e}, T_{i}, and $u_{\text {los }}$ in the overlap volume.

ACF Estimation (Pulse-to-Pulse)

Assume pulses are taken close together and are correlated. Range

v_{0}
V_{1}
Time
Unbiased Estimator:

$$
\begin{array}{lll}
\hat{R}_{\ell}=\frac{1}{K-\ell} \sum_{n=\ell}^{K-1} v_{n} v_{n-\ell}^{*} & \tilde{R}_{\ell}=\frac{1}{K} \sum_{n=\ell}^{K-1} v_{n} v_{n-\ell}^{*} & \tilde{S}_{n}=\left|\sum_{k=0}^{K-1} v_{k} e^{-2 \pi j \frac{n k}{2 K}}\right|^{2} \\
E\left\{\hat{R}_{\ell}\right\}=R_{\ell} & E\left\{\tilde{R}_{\ell}\right\}=\frac{K-\ell}{K} R_{\ell} & \tilde{R}_{\ell}=\frac{1}{2 K} \sum_{n=0}^{2 K-1} \tilde{S}_{n} e^{2 \pi j \frac{n \ell}{2 K}}
\end{array}
$$

Biased Estimator:
Zero-padded Periodogram

Biased ACF estimator equals the iFFT of the zero-padded periodogram.

Underspread vs Overpread Targets

- If the IPP is short compared to the correlation time of the signal (inverse bandwidth), pulse-to-pulse processing works great.
- If the IPP is long compared to the correlation time, all pulse-to-pulse lag products give ≈ 0.
- Shortening the IPP is not always an option due to range aliasing.

Terminology:

- Underspread target: There exists an IPP that is short compared to the correlation time but long enough to avoid range aliasing.
- D-region ISR
- Perpendicular to B ISR
- MST radar
- Overspread target: All practical IPP are long compared to the correlation time.
- Most ISR experiments
- SuperDARN

Uncoded Long Pulse Experiments

Scattered signals from outside the overlap region do not affect the expected value of a lag product, but they do affect the variance

Range-Lag Ambiguity Functions

$E\left\{v\left(t_{2}\right) v^{*}\left(t_{1}\right)\right\}=R_{N}(\tau)+\int d \tau d r R_{S}(r, \tau) W\left(r, \tau ; t_{1}, t_{2}\right)$
$W\left(r, \tau ; t_{1}, t_{2}\right) \equiv \int d t s\left(t+\tau-\frac{2 r}{c}\right) h^{*}\left(t_{2}-t-\tau\right) s^{*}\left(t-\frac{2 r}{c}\right) h\left(t_{1}-t\right)$

- $R_{N}(\tau)$ is the noise ACF
- $R_{S}(r, \tau)$ is the theoretical signal ACF as a function of $N_{e}(r), T_{e}(r)$, $T_{i}(r), u_{\text {los }}(r)$
- s is the envelope of the transmitted waveform
- h is the receiver impulse response
- $W\left(r, \tau ; t_{1}, t_{2}\right)$ describes how different ranges and lags blur together when taking the variance of two samples

2-D Range-lag Ambiguity Function of Long Pulse

Ambiguity function with a boxcar filter. 480μ s long pulse, 30μ s sampling.

Coded Pulse Experiments

$$
\begin{gathered}
a_{0} a_{1} v_{0} v_{1}^{*}=a_{0}\left(a_{0} s_{h}^{t}+a_{1} s_{h-1}^{t+\frac{1}{2}}+a_{2} s_{h-2}^{t+1}+a_{3} s_{h-3}^{t+\frac{3}{2}}\right) \times \\
a_{1}\left(a_{0} s_{h+1}^{t+\frac{1}{2}}+a_{1} s_{h}^{t+1}+a_{2} s_{h-1}^{t+\frac{3}{2}}+a_{3} s_{h-2}^{t+2}\right)^{*} \\
E\left\{a_{0} a_{1} v_{0} v_{1}^{*}\right\}=E\left\{s_{h}^{t} s_{h}^{* t+1}\right\}+a_{0} a_{2} E\left\{s_{h-1}^{t+\frac{1}{2}} s_{h-1}^{* t+\frac{3}{2}}\right\} \\
+a_{0} a_{1} a_{2} a_{3} E\left\{s_{h-2}^{t+1} s_{h-2}^{* t+2}\right\}
\end{gathered}
$$

Range-lag Ambiguity Function of Alternating Codes

Ambiguity function for a boxcar filter. $480 \mu \mathrm{~s}$ (16-baud, $30 \mu \mathrm{~s}$ baud, 32 pulse).
Full 2d Ambiguity Function

ISR Analysis

(1) After pulse k, take N samples $v_{0}^{k}, v_{1}^{k}, \ldots, v_{N-1}^{k}$

- Each v_{n}^{k} will be complex-valued, Gaussian, and zero mean
(2) Tabulate the products between samples $L_{n, m}^{k}=v_{n}^{k *} v_{m}^{k}$
- Ambiguity function theory gives the expected value of each of these lag products as a function of the plasma parameters and the known s and h.
- $4^{\text {th }}$ moment theorem can be used to derive (Hysell et al. [2008]):

$$
\begin{aligned}
& \operatorname{Var}\left\{\Re\left(L_{n, m}^{k}\right)\right\}=\frac{1}{2} \Re\left(E\left\{L_{n, n}^{k}\right\} E\left\{L_{m, m}^{k}\right\}+E\left\{L_{n, m}^{k}\right\} E\left\{L_{n, m}^{k}\right\}^{*}\right) \\
& \operatorname{Var}\left\{\Im\left(L_{n, m}^{k}\right)\right\}=\frac{1}{2} \Re\left(E\left\{L_{n, n}^{k}\right\} E\left\{L_{m, m}^{k}\right\}-E\left\{L_{n, m}^{k}\right\} E\left\{L_{n, m}^{k}\right\}^{*}\right)
\end{aligned}
$$

(3) Average over many pulses $\hat{L}_{n, m}=\frac{1}{K} \sum_{k=0}^{K-1} L_{n, m}^{k}$

- By the central limit theorem, real and imaginary $\hat{L}_{n, m}$ will be Gaussian and their variances will scale as $1 / K$
(4) Real and imaginary parts of $\hat{L}_{n, m}$ and their variances are inputs to fitting algorithm

Error Propagation Through the ISR Processing Chain

