EISCAT data analysis
From EISCAT data to ionospheric parameters

Carl-Fredrik Enell
✉ carl-fredrik.enell@eiscat.se

Radar School
Pikku-Syöte, Finland
August 2019
1 Overview and some theory

2 Running GUISDAP

3 Calibration

4 GUISDAP results
Outline

1. Overview and some theory
2. Running GUISDAP
3. Calibration
4. GUISDAP results
Analysis — from data files to ionospheric parameters

Several of these

To one of these

EISCAT Scientific Association

EISCAT UHF RADAR

Several of these
A data dump

Principle:
- All possible 1st lags
- All possible 2nd lags
- ...
EISCAT data files

A data dump

Ion line data Plasma line data Calibration and background
EISCAT data storage

- Directory name structure: pulse code, antenna scan, version, affiliate code, @antenna
- Hourly subdirectories
- Compressed Matlab `.mat` compatible files
- Name is seconds since New Year
EISCAT data files

Contents of data files 1

d_data Lag profiles
autocorrelation domain (Level 2) data, complex vectors, sorted:

1. lag
2. range

d_raw
- transmitter samples
- received raw voltage domain (Level 1) data (available only from certain experiments)
EISCAT data files

Contents of data files 2

d_parbl Metadata

- Time
- Transmitter power
- Antenna azimuth and elevation
- and much more
More information about data and metadata

GUISDAP analysis package

- Originally “Grand Unified Incoherent Scatter Design and Analysis Package”, M. Lehtinen et al.
- Maintained by I. Häggström, EISCAT HQ
- Matlab software
- Direct theory of scattering spectrum
 - Electron density
 - Ion temperature
 - Temperature ratio
 - Line of sight velocity
 - etc
- Atmospheric models (IRI, MSIS)
 - Neutral temperature
 - Density / collision frequency
 - Ion composition
- Fitting to lag profiles (following slides)
Standard parameters found by fitting the Ion-acoustic line

Ion temperature (Ti) to ion mass (mi) ratio from the width of the spectra

Electron to ion temperature ratio (Te/Ti) from “peak_to_valley” ratio

Electron (= ion) density from total area (corrected for temperatures)

Line-of-sight ion velocity (Vi) from the Doppler shift
Standard parameters found by fitting the Ion-acoustic line

- Ion temperature (T_i) to ion mass (m_i) ratio from the width of the spectra

- Electron to ion temperature ratio (T_e/T_i) from “peak_to_valley” ratio

- Electron (= ion) density from total area (corrected for temperatures)

- Line-of-sight ion velocity (v_i) from the Doppler shift
Principle of GUISDAP analysis

- Applying Fourier transform theory, the theoretical spectra can be fitted directly to the lag profiles using precalculated spectral ambiguity functions (Nygrén 1996, p. 78)

\[
LP(t, t') = R \int_{\rho} P_z^0(\rho) \left[\int_{-\infty}^{+\infty} W_{tt'}(\nu, \rho) \Sigma(\nu, \rho) d\nu \right] d^3 \rho
\]

- \(\Sigma\) = ISR spectrum (parameters \(N_e, T_i, T_r, v_0\) ... not shown)
- \(\nu\) = frequency
- \(W\) = spectral ambiguity function (the Fourier transform of the 2-D pulse ambiguity function)
- \(P\) = single scattering power
- \(R\) = radar coefficient, with calibration

- Calculated by experiment initialization
- Stored with experiment definitions
Outline

1. Overview and some theory
2. Running GUISDAP
3. Calibration
4. GUISDAP results
Requirements

- Matlab
 - Matlab 2018a must be patched with the most recent upgrade
 - Other releases should be fine
- Unix environment preferred
- Windows needs bzip2 decompression utility
 - Option 1: run in cygwin
 - Option 2: install 7-Zip
Get the distribution

Download

- Download https://www.eiscat.se/scientist/user-documentation/guisdap-9-0/
- Unpack the tar archive where you want it

OS-specific configuration

- Unix: make a link to .../bin/guisdap (e.g. in /usr/local/bin)
- Windows:
 - Edit windows_start.m
 - Edit anal/canon.m and make sure the path to 7-Zip is correct
Starting GUISDAP

- Unix: type ”guisdap” in a console.
- Windows: Make sure windows_start.m has been edited. Right-click on this file and select Run.

Matlab will start with paths set up.
The GUISDAP main window

- Type "analyse" (NB "s" spelling).
- This window will appear
- Click and main window appears
GUISDAP settings

- Path to data
- Time interval
- Experiment definition
- Integration (seconds), 0=antenna dwell
- Save path (Set filename to AUTO)
- Wait for real-time data (do not use)
- Figures to show

Additional parameters

Set and click GO
GUISDAP run example

Note: plot fit parameters only for short tests, it is slow
Outline

1. Overview and some theory
2. Running GUISDAP
3. Calibration
4. GUISDAP results
Need for calibration?

GUISDAP corrects for

- Measured transmitter power
- Geometry
 - Antenna gain
 - Range
- Receiver chain response
 - Noise source with known power
But...

Difference between calculated and actual antenna gain may be caused by snow or water in the antenna, etc.

Absolute calibration — Compare electron density

1. Electron density maximum and ionosonde foF2
2. Plasma lines
Calibration with ionosonde

- Find measured F (or E) layer peak N_e
- Get ionosonde critical frequency f_{oF2} (f_{oE})
- Calculate "true" N_e using the relation

$$f_{\text{crit}} = f_p = \frac{\omega_p}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{N_e e^2}{\varepsilon_0 m_e}} \quad (1)$$

Available in Tromsø. Svalbard ionosonde has been discontinued, unfortunately.
Calibration routine

- You can do ionosonde calibration by hand...
- However an automatic routine exists: `calib_ne.m`
Calibration routine

EISCAT Scientific Association
EISCAT UHF RADAR

Calibration routine

C.-F. Enell (EISCAT)

EISCAT analysis

Radar school 2019
Plasma line calibration

- A direct measure of N_e
- Not always detectable by EISCAT
- Only available in certain pulse code experiments, see experiment document

In practice

- Integrate plasma line data with GUISDAP
 - **ESR folke** Separate receiver, data in @32p directories
- Run *calib_pl_ne.m*
- Modify parameters in order to avoid misidentifying interference as plasma line peak
Plasma line calibration

EISCAT Scientific Association
EISCAT UHF RADAR

[Graph showing plasma line calibration data]

C.-F. Enell (EISCAT)
EISCAT analysis
Radar school 2019
Reanalysis with calibration

- Uncomment and set the “Magic_const” to
- This will scale the measured transmitter power

After this, we have results in physical units
Outline

1. Overview and some theory
2. Running GUISDAP
3. Calibration
4. GUISDAP results
GUISDAP output

AUTO directory naming structure
Directory name consists of: date, pulse code, integration time @antenna

Contents
- Matlab files
- Name is also time in seconds
Content of GUISDAP output

Experiment metadata

name_ variables e.g.
- site name
- experiment name

Results and instrument parameters

r_ variables
Important result (r_-) variables 1

- Time
- Azimuth
- Elevation
- Magic constant
- Tx power
- gfd structure (GUISDAP config)
Important result (r_) variables 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_pprange</td>
<td>Ranges of raw power</td>
</tr>
<tr>
<td>r_pp</td>
<td>Raw power</td>
</tr>
<tr>
<td>r_ppw</td>
<td>Resolution</td>
</tr>
</tbody>
</table>
The actual analysis results

- **r_range** Ranges (weighted)
- **r_h** Heights
- **r_param** Fitted parameters
 - Fitting is user definable e.g. ranges of fitting vs taken from models, limits
 - Usually 6 of the 8 columns are used
Contents of `r_param`

1. Electron density N_e [m$^{-3}$]
2. Ion temperature T_i [K]
3. Ratio between electron and ion temperature
4. Ion to neutral collision frequency [Hz] (default: taken from atmospheric models, not fitted)
5. Ion drift velocity v_i (the component along the line of sight, positive toward the radar) [m/s]. Note: By convention positive is away from the radar, so Vizu plot changes the sign of this parameter.
6. Composition $c = [O^+]/N_e$ [%], under the assumption that the ions are composed to c % of $[O^+]$ and to $(100 - c)$ % of an imaginary ion with a mass of 30.5 u, that is, a typical value for a mixture of NO$^+$ and O$_2^+$ (default: constant at each altitude, not fitted)
Error estimates

- **r_error**: Errors of fitted parameters
- **r_pperr**: Errors of power profile

Fit status
Results are also converted to Madrigal format and uploaded regularly (manual operation)
Questions?

https://www.eiscat.se
@ carl-fredrik.enell@eiscat.se