Unravelling long-term behaviour in historic geophysical data sets

Thomas Ulich Sodankylä Geophysical Observatory, Sodankylä, Finland thomas.ulich@sgo.fi - http://cc.oulu.fi/~thu/ (2019-08-15)

Greenhouse high up?

- Model results, assuming doubling of CO₂ and CH₄:
- Stratopause cools by 8 K, stratosphere by 15 K. (Brasseur & Hitchman, 1988)
- Mesosphere and thermosphere cool by 10 K and 50 K, respectively. (Roble & Dickinson, 1989)
- F2-layer peak (hmF2) lowers by 15-20 km. (Rishbeth, 1990)
- Riometer absorption decreases. (Serafimov & Serafimova, 1992)

Stratopause cools by 14 K, mesosphere by 8 K, thermosphere by 50 K. (Akmaev & Fomichev, 1998)

the Bar differences

Greenhouse Cooling Doubling of [CO₂] and [CH₄] cools Mesosphere by IO K and Thermosphere by 50 K.

Layer of maximum electron density N_{ers} by 15-20 km.

Sodankylä lonosonde

- Sodankylä ionosonde measurements began Ist August 1957.
- Until Nov 2005: I sounding per 30 min.
- Until Mar 2007: I sounding per 10 min.
- IPY (Apr ´07-Mar ´08): I sounding per minute.
- April 2008: we forgot to turn off IPY mode.
- Tody: close to 5 million ionograms.
- High data quality: first 800.000+ ionograms were analysed by the very same person!

Sodankylä lonosonde

Empirical hmF2 Formulae

Shimazaki [1955]

$$hpF2 = \frac{1490}{M} - 176$$

$$hmF2 = \frac{1490}{M - \Delta M} - 176$$

$$\Delta M = \frac{F1 \times F4}{x - F2} + F3$$

 $F1 = 0.00232 \times R + 0.222$ $F2 = 1.2 - 0.016 \exp(0.0239 \times R)$ $F3 = 0.00064 \times (R - 25)$

$$F4 = 1 - \frac{R}{150} \exp\left(\frac{-\Phi^2}{1600}\right)$$

Bradley, Dudeney [1973], eq. (3)

 $hmF2 = a \times M^b$

$$a = 1890 - \frac{355}{x - 1.4}$$
$$b = (2.5x - 3)^{-2.35} - 1.6$$

Dudeney [1974], eq. (56)

$$hmF2 = \frac{1490(M \times F)}{M - \Delta M} - 176$$

$$\Delta M = \frac{0.253}{x - 1.215} - 0.012$$

$$(M \times F) = M \sqrt{\frac{0.0196M^2 + 1}{1.2967M^2 - 1}}$$

M = M(3000)F2x = foF2 / foE

 ΔM = Correction Term

 Φ = Geomagnetic Latitude R = Sunspot Number

hmF2 & Solar Activity

Note: hmF2 computed using the empirical formula of Dudeney (eq. 56; 1974), which has been tested against true height at Sodankylä estimated during different periods of the time series using Titheridge's (1969) single-polynomial method.

Sodankylä hmF2 Trend

Almaty hmF2

.

hmF2 Trends

Global hmF2 Trends

Problems

Data resolution (h, 3-h, day, month(?), ...)
Low-pass filtering or polynomial fitting...

Running Mean Filter

Problems

Data resolution (h, 3-h, day, month(?), ...)
Low-pass filtering or polynomial fitting...
Removal of underlying (cyclic) variability:
Choice of proxy (sinusoid, SSN, Group SSN, F10.7 (adj./obs.), Ly-α, Mg II, E10.7, ...)

Resolution of proxy: compatibility with data

hmF2 & Solar Activity

Ringing

Ringing

The ringing idea was first introduced by Jarvis et al., 2002. The plots shown here are from a followup paper by Clilverd et al., 2003.

Problems

Data resolution (h, 3-h, day, month(?), ...)
Low-pass filtering or polynomial fitting...
Removal of underlying (cyclic) variability: ...
Data gaps

Example: Data Gaps

Time, e.g. I day, resolution I/min

Data Gaps

Data Gaps

Data Gaps

Problems

Data resolution (h, 3-h, day, month(?), ...) Low-pass filtering or polynomial fitting... • Removal of underlying (cyclic) variability: ... Data gaps Measurement errors Mathematics of trend detection stepwise or multi-parameter fit error propagation

Making models

- Base functions of the model(s) are, e.g.:
 - $m_i = \varepsilon_i$ $+ X_{I}$ $+ x_2 t_i$ + $x_5 sin(2\pi t_i)$ + $x_7 sin(4\pi t_i)$

+ ...

+ x₈cos(4πt_i) -> semi-annual variation

- -> measurement errors -> constant
- -> sampling times
- + $x_3F_{10.7}(t_i)$ -> solar activity
- $+ x_4 Ap(t_i)$ -> geomagnetic activity
- + $x_6 cos(2\pi t_i)$ -> annual variation

Modelling the data

The ionospheric property of interest is function of time and a number of other parameters. The model of the data is therefore

$$m(t) = \mathcal{F}(t, x_1, \dots, x_M)$$

where

$$\mathcal{F}(t, x_1, \dots, x_M) = \sum_{i=1}^M x_i f_i(t)$$

The actual measurements m_i observed at time t_i are equal to the model plus some measurement error ε_i

$$m_i = \mathcal{F}(t_i, x_1, \dots, x_M) + \varepsilon_i$$

Inverse problem I

This can be expressed as a matrix equation. Usually there are many more data points than unknowns x_i and the problem is over-determined:

$\left(\begin{array}{c} m_1 \\ m_2 \end{array} \right)$		$\begin{pmatrix} f_1(t_1) \\ f_1(t_2) \end{pmatrix}$	$\begin{array}{c} f_2(t_1) \\ f_2(t_2) \end{array}$	 	$ \begin{pmatrix} f_M(t_1) \\ f_M(t_2) \end{pmatrix} $		$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$		$\begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \end{pmatrix}$
$\left(\begin{array}{c} \vdots \\ m_N \end{array}\right)$	=	\vdots $f_1(t_N)$	\vdots $f_2(t_N)$	••. •••	$\vdots f_M(t_N)$	•	\vdots x_M ,) +	$\left(\begin{array}{c} \varepsilon_N \end{array}\right)$

In other words:

 $\mathbf{m} = \mathbf{A} \cdot \mathbf{x} + \boldsymbol{\varepsilon}$

Inverse problem II

Measurements and theory are weighted by the measurement errors:

$$B_{ij} := \frac{A_{ij}}{\varepsilon_i}$$
 and $b_i := \frac{m_i}{\varepsilon_i}$

The solution is the vector **x**, which minimises the following expression: $\chi^2 = |\mathbf{B} \cdot \mathbf{x} - \mathbf{b}|^2$

We are left with a general least squares problem. Solving this results in the most probable solution for **x**.

And the second s

Signal Spectrum by Stochastic Inversion

Left: 100 pts for Fourier, 90 for inversion. Above: 59 pts.

T. Nygrén and Th.Ulich, Calculation of signal spectrum by means of stochastic inversion, Ann. Geophys., 28, 1409-1418, 2010.

Signal Spectrum by Stochastic Inversion

T. Nygrén and Th.Ulich, Calculation of signal spectrum by means of stochastic inversion, Ann. Geophys., 28, 1409-1418, 2010.

Sodankylä F2-layer peak height hmF2

Dynamic Linear Model

New approach using a dynamic linear model based on constant, trend, annual & semi-annual wave, as well as F10.7cm radio fluxes. Here, hmF2 is based on the same Dudeney (1974) computation as earlier plots. (Roininen, Ulich, and Laine, Cambridge (UK) Trend Workshop 2014)

Trends in other Observations

Height	Method	Parameter	Trend	Reference
in km			per Year	
75	Sounding rocket	Temperature	-0.6 K	Kokin and Lysenko, 1994
70	Sounding rocket	Temperature	-0.7 K	Golitsyn et al., 1996
60-70	Lidar	Temperature	-0.4 K	Hauchecorne et al., 1991
60	Sounding rocket	Temperature	-0.4 K	Golitsyn et al., 1996
60	Sounding rocket	Temperature	-0.33 K	Keckhut et al., 1999
50-60	Lidar	Temperature	-0.25 K	Aikin et al., 1991
50	Sounding rocket	Temperature	-0.25 K	Golitsyn et al., 1996
40	Sounding rocket	Temperature	-0.1 K	Golitsyn et al., 1996
30-60	Sounding rocket	Temperature	-0.17 K	Dunkerton et al., 1998
30-50	Sounding rocket	Temperature	-0.17 K	Keckhut et al., 1999
30	Sounding rocket	Temperature	-0.1 K	Golitsyn et al., 1996
25	Sounding rocket	Temperature	-0.1 K	Golitsyn et al., 1996
25	Sounding rocket	Temperature	-0.11 K	Keckhut et al., 1999

Direct F-Region Temperature

Long-term temperature trends in the ionosphere above Millstone Hill

J. M. Holt1 and S. R. Zhang1

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L05813, doi:10.1029/2007GL031148, 2008

Conclusion

(the last one, I promise!)

- Definitely, there's long-term change in the ionosphere and thermosphere!
- The enhanced greenhouse effect is probably a part of it.
- Other (unknown?) processes are involved.
- Solution in modelling?
- We don't understand what's going on.
- Student exercise: Find out!

Conclusion

(I lied to you!)

lonsondes, originally deployed for monitoring ionospheric conditions for HF radio communication and for studying short-term events, are becoming useful in an <u>environmental</u> <u>context</u>.

They provide long-term measurements of our environment!

Do not discontinue atmospheric observations at a time of climate change!

