Advanced Modular Incoherent Scatter Radar

Roger H. Varney

¹Center for Geospace Studies SRI International

August 16, 2019

With thanks to Ashton Reimer, Mike Greffen, Leslie Lamarche, Pablo Reyes, Rob Gillies, Mike Nicolls, and Craig Heinselman.

- Modular Design
- Electronic Beam Steering Capabilities
- Fields of View

AMISR Analysis Products

- Scalar Imaging
- Velocity Estimation
- 3 AMISR Science Highlights
 - PFISR Hightlights
 - RISR Hightlights

AMISR Science Highlights

AMISR Modular Design

AMISR Analysis Products

AMISR Science Highlights 00

Antenna Element Unit (AEU) Specifications

- Distributed Solid State Power Amplifiers (SSPAs)
- 430-450 MHz instantaneous bandwidth
- 10% Maximum duty cycle
- Minimum PRF interval 500 usec
- Maximum pulsewidth 2 msec
- Passive cooling (no moving parts
- 400 Hz prime power

- Crossed dipoles, circular polarization on axis
- Balun built into the antenna support shaft
- Constant impendence over bandwidth and scan angle
- Spacing is hexagonal for efficiency
- Tx/Rx polarizations are opposite and fixed (not measureable)

AMISR Science Highlights

The AMISR UHF System

R. H. Varney (SRI)

AMISR Analysis Products

AMISR Science Highlights

Poker Flat Incoherent Scatter Radar (PFISR)

AMISR Analysis Products

AMISR Science Highlights

Ideal AMISR Radiation Pattern

AMISR Analysis Products

AMISR Science Highlights

AMISR Graceful Degradation

Transmit Power [W]

AMISR Science Highlights

Electronic Beam Steering

- Time to steer beam is \sim 400 μ s. Less than typical IPP (1-10 ms).
- Beam steering happens pulse-to-pulse.

AMISR Science Highlights oo

Mechanical Steering vs Electronic Steering

Mechanical Steering Experiment

- Steer to position 1
- Send many pulses for 1 min
- Steer to position 2
- Send many pulses for 1 min
- Steer to position 3
- Send many pulses for 1 min
- Steer to back to position 1

Advantages of Electronic Steering:

- Each beam is revisited once every $N\tau_{IPP}$.
- Can average data at any multiple of $N\tau_{IPP}$. Incoherent integration time is adjustable after the fact.
- Data being combined is nearly simultaneous.
- No time lost steering between pulses.

R. H. Varney (SRI)

AMISR

Electronic Steering Experiment

- Pulse in beam 1
- Pulse in beam 2
- Pulse in beam 3

- Pulse in beam N
- Pulse in beam 1 again

AMISR Analysis Products

AMISR Science Highlights

Combined RISR and Sondrestrom View of Patches

AMISR Analysis Products

AMISR Science Highlights

Electronic Steering with Delay Shifters

Example 4-bit delay shifter:

- AMISR uses 6-bit delay shifters
- $2^6 = 64$ steps spaced by $\pi/32 = 5.625^\circ$

AMISR Science Highlights

Conceptual Diagram of Steering with AMISR

AMISR Analysis Products

AMISR Science Highlights

Limitations of Phased Array Beam Steering

- FOV limited by grating lobe limit $\sim 30^\circ 40^\circ$
- Antenna gain decreases with steering angle off of boresight
- Antenna works best within $\sim 25^{\circ}$ off of boresight

AMISR Analysis Products

AMISR Science Highlights

The PFISR Up-B Compromise

The Up-B beam is close to the grating lobe limit, and therefore has reduced sensitivity.

Reduced SNR in Up-B (Beam 2)

AMISR Science Highlights

Statistical Considerations with Pulse Steering

$$\frac{\delta \hat{S}}{S} = \frac{1}{\sqrt{K}} \left(1 + \frac{1}{S/N} \right)$$

- Larger number of beams \Rightarrow fewer pulses per beam
- If I can confortably integrate for 1 min using 7 beam positions ⇒ I would need to integrate 6 min to get the same data quality using 42 beams.

Multiple frequency channels can help statistics. Example: RISR-N "ImagingLP" mode for imaging F-region polar cap patches.

- 51 beam positions
- Long pulses on 3-frequency channels
- In each IPP 2 frequencies Tx, 3rd collects noise/cal samples
- Same statistics as a single frequency experiment on 17 beams

R. H. Varney (SRI)

AMISR	Technology	
000		

AMISR Science Highlights

Sizing an AMISR for ISR

Statistical Accuracy of ISR Measurements:

$$rac{\delta \hat{S}}{S} = rac{1}{\sqrt{K}} \left(1 + rac{1}{S/N}
ight) pprox rac{1}{\sqrt{K}} rac{1}{S/N}$$

Soft Target Radar Equation:

For an active phased array

$$\begin{split} &\frac{S}{N} \propto P_{\mathrm{Tx}} \frac{G}{4\pi R^2} \eta V_s \frac{A_{\mathrm{eff}}}{4\pi R^2} \\ &G \sim \frac{4\pi}{\Omega} \quad V_s \sim R^2 \Omega \\ &\frac{S}{N} \propto P_{\mathrm{Tx}} \frac{1}{4\pi R^2} \frac{4\pi}{\Omega} \eta R^2 \Omega \frac{A_{\mathrm{eff}}}{4\pi R^2} \\ &\frac{S}{N} \propto \frac{1}{4\pi R^2} P_{\mathrm{Tx}} A_{\mathrm{eff}} \eta \end{split}$$

$$egin{aligned} P_{\mathrm{Tx}} \propto \mathsf{Panels} \ A_{\mathrm{eff}} \propto \mathsf{Panels} \ rac{S}{N} \propto \left(\mathsf{Panels}
ight)^2 \ K \propto \left(\mathsf{Panels}
ight)^4 \end{aligned}$$

1 min integration with 128 panels \Rightarrow 16 min integration with 64 panels

AMISR Analysis Products

AMISR Science Highlights 00

Unique Location of Resolute Bay

Figures courtesy Eric Donovan

AMISR Analysis Products

AMISR Science Highlights

Imaging Auroral Structure [Semeter et al. (2009)]

AMISR	Technology
000	

AMISR Science Highlights oo

Imaging PMSE

Movie

Nicolls et al. (2007) GRL

AMISR Analysis Products

AMISR Science Highlights

Polar Cap Patch Imaging

R. H. Varney (SRI)

AMISR Analysis Products

AMISR Science Highlights

RISR "Keograms" (from Rob Gillies)

AMISR	Technology
000	

AMISR Science Highlights

Interpretation of Ion Velocities

Ion Momentum Equation:

$$0 = e \left(\mathbf{E} + \mathbf{u}_i \times \mathbf{B} \right) - m_i \nu_{in} \left(\mathbf{u}_i - \mathbf{u}_n \right)$$

Collisional Limit (D-region):
$$\mathbf{u}_i = \mathbf{u}_n$$

Collisionless Limit (F-region): $\mathbf{u}_i = \frac{\mathbf{E} \times \mathbf{B}}{B^2}$
E-region: $\mathbf{u}_i = \begin{pmatrix} \frac{1}{1+\kappa_i^2} & \frac{-\kappa_i}{1+\kappa_i^2} & 0\\ \frac{\kappa_i}{1+\kappa_i^2} & \frac{1}{1+\kappa_i^2} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} \mathbf{u}_n + \frac{e}{m_i \nu_{in}} \mathbf{E} \end{bmatrix}$
 $\kappa_i \equiv \frac{eB}{m_i \nu_{in}}$

AMISR Science Highlights

Fitted Horizontal Velocities

Mesospheric Vector Neutrals Winds

Line of Sight Velocities

$$\begin{pmatrix} V_{r,1} \\ \vdots \\ V_{r,7} \end{pmatrix} = \begin{pmatrix} \cos(\theta_1)\sin(\phi_1) & \cos(\theta_1)\sin(\phi_1) & \sin(\theta_1) \\ \vdots & \vdots & \vdots \\ \cos(\theta_7)\sin(\phi_7) & \cos(\theta_7)\sin(\phi_7) & \sin(\theta_7) \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$
$$\mathbf{V}_r = \mathbf{D}\mathbf{U}$$
$$\mathbf{U} = (\mathbf{D}^{\mathrm{T}}C_{V_r}^{-1}\mathbf{D})^{-1}\mathbf{D}^{\mathrm{T}}C_{V_r}^{-1}\mathbf{V}_r$$

AMISR Science Highlights

E-region Neutral Wind Estimation

- Estimate vector E-region ion velocities from E-region LOS velocity
- Estimate vector F-region electric fields from F-region LOS velocity
- Map electric fields from F-region to E-region along equipotential field lines
- Solve for **u**_n

$$\mathbf{u}_n = \mathbf{u}_i - rac{e}{m_i
u_{in}} \left(\mathbf{E} + \mathbf{u}_i imes \mathbf{B}
ight)$$

Heinselman and Nicolls (2008) Radio Sci.

F-region 1-D Vector Electric Fields

- In F-region assume $\mathbf{v}_i = \frac{\mathbf{E} \times \mathbf{B}}{B^2}$
- Assume $\mathbf{E} \cdot \mathbf{B} = 0$ (no parallel fields)
- LOS velocity is related to **E** perpendicular to LOS and **B**
- Assume **E** is uniform in magnetic longitude, but varies with magnetic latitude
- Assume E fields map along equipotential field lines
- Different range gates correspond to different magnetic latitudes
- Fit for 2-components of **E** as a function of magnetic latitude

AMISR Science Highlights

Vector Electric Fields [Heinselman and Nicolls (2008)]

27 / 45

AMISR Analysis Products

AMISR Science Highlights

MICA Sounding Rocket Support

Lynch et al. (2015) JGR

AMISR Analysis Products

AMISR Science Highlights

Arc-Scale Joule Heating (Semeter et al. 2010)

AMISR Science Highlights

Regularized Curl-Free 2-D E-Estimation

Assumptions:

- E maps along equipotential field lines
- $\nabla \times \mathbf{E} = \mathbf{0} \Rightarrow \mathbf{E} = -\nabla \Phi$
- E is "smooth" in that it minimizes a curvature measure G

Constrained optimization problem using Lagrange multipliers:

$$\mathcal{L} = \left|\left|\Phi\right|\right|_{G}^{2} + \lambda^{\dagger} \left(\tilde{\mathbf{v}}_{los}^{\prime} - \mathbf{e} - M\Phi\right) + \Omega\left(\left|\left|\mathbf{e}\right|\right|_{C^{-1}}^{2} - N + 1\right)$$

Nicolls et al. (2014) Radio Sci.

AMISR Analysis Products

AMISR Science Highlights

Electrodynamics of Polar Cap Arcs

AMISR Science Highlights

PFISR IPY Mode (Continuous Operations)

- 1% duty cycle
- 4 beams, including up-B
- Alternating code (E-region), Long Pulse (F-region)
- 5 min integration and fitting:
 - $N_e, T_e, T_i, V_{\rm LOS}$
 - Vector electric field
 - E-region neutral wind

AMISR Science Highlights

Long Term Study of E-region Neutral Winds

AMISR Analysis Products

AMISR Science Highlights

Precipitation and PMSE

R. H. Varney (SRI)

AMISR Analysis Products

AMISR Science Highlights

Aurora and GPS Scintillation

AMISR Science Highlights

Electron Heat Flux Above PsA (Liang et al. 2018)

AMISR Analysis Products

AMISR Science Highlights 0

Natural Plasma Instabilities

Naturally enhanced ion acoustic lines Strong Langmuir Turbulence

AMISR Analysis Products

AMISR Science Highlights

Polar Cap Scintillation

AMISR Science Highlights

Extreme Frictional Heating and Torodial Distributions

AMISR Analysis Products

AMISR Science Highlights ○●

e-POP Observations on May 30, 2014

e-POP descends from 1150 to 1050 km altitude over this pass. Shen et al. (2016), JGR.

R. H. Varney (SRI)

AMISR Analysis Products

AMISR Science Highlights

RISR-N Observations on May 30, 2014

R. H. Varney (SRI)

AMISR Analysis Products

AMISR Science Highlights

New Low Duty Cycle Capability at RISR-N

New small generator

Summary of Ne April 11 - July 30

AMISR Science Highlights

New Low Duty Cycle Capability at RISR-N

AMISR Analysis Products

AMISR Science Highlights

New Low Duty Cycle Capability at RISR-N

North Velocity

Apr-11

Apr-14

Apr-17

Apr-20

Apr-23

Apr-26

Apr-29 May-02

ay-05

v-01

av-1.

y-20

May-23 May-26

May-29

kin-01

lun-04

lun-07

Jun-10

lun-13

lun-16

Jun-19

Jun-22

Jun-25

lun-28

Jul-01

jul-04

jul-07

Jul-10

Jul-13

Jul-16

Jul-19

Jul-22

jul-25

Jul-28

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

East Velocity

Time (UT)

Requesting AMISR Experiments

- All science operations funded by NSF. Users do not need to pay for time.
- International collaboration is encouraged by NSF. International researchers are welcome to request experiments.
- All data is distributed publicly as soon as feasible, regardless of who requested the experiment.
- Send requests to the PI with detailed descriptions of the science motivation and requirements.
- Ideally requests should be received 2-4 weeks in advance to help us resolve conflicts between users.
- We can react very rapidly if geospace conditions warrant it (e.g. CMEs and SSWs).