Massachusetts Institute of Technology Committee on Assessment of Biohazards and Embryonic Stem Cell Research Oversight

Biological Research Registration Form

Instructions:

This form is available at: <u>https://cabescro.mit.edu/home</u>

Please download and save this form to your computer. When completing this document please retain the format as nearly as possible and answer questions thoroughly. To modify the checkboxes, double-click on them and select "Not checked" or "Checked". Complete the appropriate sections as outlined below. All information in this form is considered confidential.

Please indicate all relevant biosafety levels and research descriptors that describe your research.

Biosafety Level

⊠BL1 ⊠BL2 □BL2+ □BL3

Research escriptors	x	rDNA/sNA	x	Biological Agents BL1	x	Other		Human embryonic stem cells	Induced pluripotent stem cells
Plants	x	Pathogens	х	Human Materials	х	Viral Vectors	x	Nanotechnology	Toxin Use

Required information: Every Principal Investigator must complete Sections 1, 2, 3, 11, 12 and 13. Research Specific Sections. Please complete the following sections if they are applicable to the research described here. Please indicate either that the section has been completed or is not applicable (N/A).								
Section 4	Teaching Laboratory/Biomaker space Information	Completed X/A						
Section 5	Use of Recombinant and Synthetic Nucleic Acid	Completed						
Section 6	Biological Agent Use	Completed						
Section 7	Use of Human Source Materials	Completed						
Section 8	Use of Human Embryonic Stem (hES) Cells or Induced Pluripotent Stem (iPS) Cells	Completed N/A						
Section 9	Occupational Health Assessment, Medical Surveillance and Monitoring	Completed N/A						
Section 10	Use of Toxins	Completed N/A						

When you have completed the form, please email the completed form to your BSP contact or to <u>BSP@mit.edu</u>. Print and sign Section 13, the Certification and Signature page and mail this page to Biosafety Program, N52-496.

Current Registration number: 821	Title of Registration: Synthetic Biology for Clinical Applications - Bacteria				
Principal Investigator Timothy Lu			Departmental Affiliation/DLC: EECS/RLE/BE/SBC		
		l office phone 15-4808	:	PI email address: timlu@mit.edu	
Lab Research Contact: Ky Lowenhaupt			Lab Administrative Contact: Rashmi Karki		
Lab Research Contact email address: kytsing@mit.edu			Lab Administrative Contact email address: rkarki@mit.edu		
Lab Research Contact phone: 617-324-8129			Lab Administr 617 258 03	ative Contact phone: 83	

Section 1. General Information (required):

Section 2. Laboratory Information (required):

a. List ALL Laboratories/Facilities where research is to be conducted and the corresponding biosafety level: include cold/warm rooms, equipment rooms as appropriate. Please indicate room(s) where biosafety cabinets (BSC) are located. Please include the location(s) of the autoclave used for laboratory waste sterilization prior to disposal. (The box is expandable.)

				Check be	ox if applicab	le	
Room Number	Biosafety Level	BSCs in room	Warm/ Cold Room	Equipment Room	Human Materials	hES/iPS cells used	Autoclave location
NE47-017B	BL1	1 BSC					Biowaste boxes
NE47-019	BL1						Biowaste boxes
NE47-209 – shared lab	BL2	1 BSC					Biowaste boxes
NE47-216	BL2 (BL2+ in preparation)	1BSC + 1 to be added			X		Biowaste boxes
NE47-217 – shared tissue culture room	BL2	5 BSCs			X		Biowaste boxes
NE47-235	BL2						Biowaste boxes
NE47-265	BL2						Biowaste boxes
NE47-290C – shared cold room	BL2		Cold Room				Biowaste boxes
NE47-290D – shared autoclave/dish washing room	BL2			X			Biowaste boxes
NE47-335B	BL2						Biowaste boxes
NE47-335C	BL2						Biowaste boxes
36-797	BL2						Biowaste boxes
36-799 – autoclave/dish washing room	BL2			X			Biowaste boxes
36-781	BL2						Biowaste boxes
36-789	BL2						Biowaste boxes

b. Please list or attach a list of all laboratory personnel working on this Registration at MIT, to include faculty, technical staff, graduate students, UROPS, etc. (The box is expandable.)

Labo	ratory Personnel		Research Materials Used (place an X in the appropriate box)			Training Completed (Enter most recent date of training)	
Name	Kerberos	UROP (Y/N)	Uses BL1, BL2 material	Uses BL2+, BL3 material	Uses human material	General Biosafety training (260c)	Bloodborne Pathogens training
Cao, JiCong	jicong	N	Х	NA	Х	03/09/16	03/07/17
Chang, Cheng	Cchang1	Ν	Х	N/A	Х	04/24/15	03/07/17

BRR No. Page 3 of 89

vcwchen Rcitorik	Ν					
Poitorik	IN	Х	N/A		03/09/16	03/07/17
GIUIK	Ν	Х	N/A	Х	03/09/16	03/07/17
fard	N	Х	N/A		03/09/16	03/07/17
fuente	N	Х	N/A		03/09/16	03/07/17
ommyh	N	Х	N/A	Х	03/09/16	03/07/17
nda	N		N/A		08/08/17	
erger	Ν	Х	N/A		07/14/16	03/07/17
iyoung	Ν	Х	N/A		03/09/16	03/07/17
usiak	N	Х	N/A	Х	03/09/16	03/07/17
Sele	N	Х	N/A		03/09/16	03/07/17
ytsing	N	Х	N/A	Х	03/09/16	03/07/17
īmlu	Ν	Х	N/A	Х	03/09/16	03/07/17
/Imimee	Ν	Х	N/A	Х	03/09/16	03/07/17
nueller	Ν	Х	N/A		03/09/16	03/07/17
iorni	Ν	Х	N/A	Х	03/09/16	03/07/17
nissim	Ν	Х	N/A	Х	03/09/16	03/07/17
eechul	Ν	Х	N/A		03/09/16	03/07/17
unqing	Ν	Х	N/A		03/09/16	03/07/17
ctang	N	Х	N/A		03/09/16	03/07/17
tham	N	Х	N/A		03/09/16	03/07/17
ningru	Ν	Х	N/A	Х	03/09/16	03/07/17
yehl	N	Х	N/A		03/09/16	03/07/17
	fuente pmmyh nda erger iyoung usiak ele ytsing imlu Imimee nueller iorni nissim eechul unqing ctang tham	fuenteNfuenteNommyhNodaNidaNergerNiyoungNusiakNieleNytsingNimluNfimineeNnuellerNiorniNnissimNeechulNunqingNctangNthamN	fuenteNXfuenteNXommyhNXidaNXergerNXiyoungNXusiakNXveleNXimluNXimineeNXinnineeNXiorniNXisisimNXingruNXingruNXingruNXingruNXingruNX	fuenteNXN/AfuenteNXN/AommyhNXN/AindaNXN/AergerNXN/AiyoungNXN/AusiakNXN/AveleNXN/AimluNXN/AimluNXN/AimluNXN/AimluNXN/AingrinNXN/AiorniNXN/AiorniNXN/AiorniNXN/AitangNXN/AitangNXN/AingruNXN/A	fuenteNXN/AfuenteNXN/AXommyhNXN/AXidaNXN/AXidaNXN/AXergerNXN/AXiyoungNXN/AXisiakNXN/AXeeleNXN/AXytsingNXN/AXimluNXN/AXimneeNXN/AXiorniNXN/AXiorniNXN/AXunqingNXN/AXthamNXN/AingruNXN/A	fuenteNXN/A03/09/16fuenteNXN/AX03/09/16ommyhNXN/AX08/08/17adaNXN/A08/08/17ergerNXN/A07/14/16iyoungNXN/A03/09/16isiakNXN/A03/09/16ieleNXN/AX03/09/16imluNXN/AX03/09/16imnuellerNXN/AX03/09/16insisinNXN/AX03/09/16insisinNXN/AX03/09/16ingruNXN/AX03/09/16

Section 3. Research Description (required):

a) In lay terms, briefly describe your research as you would to a friend who is not a scientist.

The Synthetic Biology Group is focused on advancing fundamental designs and applications for synthetic biology. Using principles inspired by electrical engineering and computer science, we are developing new techniques for constructing, probing, modulating, and modeling engineered biological circuits. Our current application areas include infectious diseases, amyloidassociated conditions, and nanotechnology.

See below for each specific project description

Section 4. Teaching Laboratory / Biomaker space Information: Check box if not applicable

a. Please complete the bulleted points below for a Teaching Lab.

Teaching Lab:

- Number of students in the class:
- Category of students/participants (e.g. high school, undergraduate, graduate student):
- Student-Instructor Ratio:
- Experience level of course Teaching Assistants:
- Describe how any biological materials will be handled and who will handle the biological materials:
- b. Please complete the bulleted points below for a Biomaker Space.

Biomaker Space:

- Number of user in the space:
- Minimum experience of the participants (undergraduate, graduate student):
- Average Participant/Supervisor Ratio:
- Experience level of Supervisors:
- Estimated Core hours of operation:
- Briefly describe the training process and how proficiency will be verified for users; include any equipment specific training that will be given and by whom:
- Describe how access to the Biomaker space is granted to new users:
- List the equipment available in the Biomaker Space for use in biological experiments:
- Describe how inventory of biological material will be kept and the process for new material to be added to the Biomaker Space:

Project 1 – Engineered Bacteriophage Therapeutics for Antibiotic-Resistant

Infections

a) In lay terms, briefly describe your research as you would to a friend who is not a scientist.

Antimicrobial drug development is increasingly lagging behind the evolution of antibiotic resistance, and as a result, there is a pressing need for new antibacterial therapies that can be readily designed and implemented. To tackle this problem, we are engineering bacteriophage to fill this niche. Bacteriophage therapy for bacterial infections is a concept with an extensive but controversial history. Although there has been a recent resurgence of interest in this option, bacteriophage therapy remains an underutilized option in Western medicine due to biological challenges such as limited host range, bacterial resistance to phages, side effects of bacterial lysis, and challenges to clinical use, including regulation, manufacturing, and delivery. Recent advances in biotechnology, bacterial diagnostics, macromolecule delivery, and synthetic biology may help to overcome these technical hurdles. These research efforts must be coupled with practical and rigorous approaches at academic, commercial, and regulatory levels in order to successfully advance bacteriophage therapy into clinical settings.

We are addressing the biological problems using the tools of synthetic biology, while keeping in mind the practical issues limiting the acceptance of this therapy. We are using known phages and engineering them with new properties, such as increased biofilm degradation capabilities, different host ranges, increased or decreased reproduction rates, etc. We are isolating new phages and evaluating how they might be used in bacterial infection mitigation. In addition, we use phages as host specific DNA injection nanomachines to deliver plasmid borne DNA constructs to selected pathogens and/or members of complex microbiota. These constructs can order to alter the survival rate of the host cells, their biochemistry and metabolism, or get them to produce heterologous proteins such as recombinases.

b) Outline the overall goal(s) of the research in the space below. Give enough information to assure that the purpose of the experiments and the techniques used are clear. Please use reasonably nontechnical terms.

1.2 Bacteriophage engineering approaches to the development of next generation phage-based therapeutics against antibiotic resistant bacteria

We are using known phages and isolating new phages to study how they might be used in bacterial infection mitigation. We pursue two main routes. 1) We develop methods to engineer phages and confer to them non natural properties such as increased biofilm degradatipon capabilities, different host ranges, increased or decreased reproduction rates, etc... 2) we use phages as host specific DNA injection nanomachines to deliver plasmid borne DNA construct to desirable pathoegns and/or members of complex microbiota in order to alter their survivability, their biochemical properties or get them to produce heterologous proteins such as recombinases.

For both projects we rely on a wide range of both model phages and newly isolated phages originally isolated on a wide range of both non pathogenic and pathogenic bacteria. Some of those phages may be genetically engineer to change their host targetting machinery and/or possess genes that alter bacterial viability. None are engineered to encode virulence factors and any newly isolated found to have such genes would either be eliminated from our research or engineered to remove these deleterious genes. The synthetic phages may be assembled either in non pathogenic laboratory *E. coli* with traditional phage genetics techniques or using a method we devised whereby the whole phage genome is constructed as a replicating chromosome inside of the yeast *Saccharomyces cerevisiae*.

1) We will screen recombinant phage against a wide array of bacteria, including antibiotic resistant strains, including *Salmonella* (all serovars except Typhi and Paratyphi), *Klebsiella* (*pneumoniae*, *oxytoca*), *Shigella* (*flexneri*, *dysenteriae*, *boydii*), pathogenic (EHEC, STEC, EPEC, ECOR collection) and non-pathogenic *Escherichia coli*, *Pseudomonas aeruginosa*, *Yersinia* (*pseudotuberculosis* and *enterocolitica*), *Vibrio cholerae*, *Enterobacter cloacae*, *enterococcus*, and *Clostridium difficile*, in search of phages that have acquired new host specificities and/or have better/worse killing characteristics. We focus on these targets because they are responsible for a growing amount of antibiotic resistant, hard to treat, pathology and/or are easy to manipulate models that allow establishement of design principles and proof of concepts studies.

2) We will leverage advances in phage host range engineering obtained from the previous project to create a new approach to phage genome engineering. Most systems that employ phages for the delivery of DNA (transduction) use mutants that have an enhanced rate of transduction over wild-type due to either poor encapsidation of their own DNA or poor replicability of their own DNA. They therefore generate mixed populations containing phage capsids that contain the desired cargo plasmid and others that contain the virulent phage genome. Cells that receive the desired phage genome can therefore be killed by the virulent phage which leads to poor apparent DNA delivery efficiencies. We aim at creating modular syntheting Gene Transfer Agents (sGTA) that cannot produce viable phages (and ideally cannot even package their own DNA) and therefore exclusively function as gene delivery systems. Phages of the lambdoid family are naturally modular with the expression of their regulatory functions and that of their morphogenetic (head and tail) functions essentially disconnected. We will therefore create hybrids between various lambdoid phages that have a common engineered regulatory system that allows us to control when the sGTA is producing phage-like particles and various morphogenetic modules targetting bacterial pathogens of choice. We will ensure that those functions are encoded on separated discontinuous DNA pieces so that no phage-like particle may ever acquire the entire functional system and finaly create a matching array of cargo plasmid in which desired DNA circuits may be cloned for delivery and expression into the targetted pathogens. Initially we will use our sGTAs to package and inject a sequence guided nuclease plasmid designed to target essential virulence factors and/or resistance markers of Salmonella, Shigella, Enterobacter, Enterococcus or Klebsiella. Subsequently, we will expand the system to target natural commensals of the gut microflora in order to alter their gene expression patterns and/or provide them with capacity to produce anti-inflammatory or other beneficial activities endogenously. We will also test the capacity of the system to selectively eliminate particular genotypes from complex natural microbiomes (Salmonella, Yersinia, Pseudomonas, Klebsiella, E. coli, Enterobacter) in various animal models animal models (Mouse colonization, mouse skin infection, wax worm injection (*Galleria mellonella*)) that have either been developped by members of the Lu laboratory or collaborators (Joan Mecsas, Tufts university). In the process, we will need to construct mutants of said pathogens that are devoid or over-express type three secretion systems as controls of the specificity and activity of our sequence guided strategy. Another application of phage mediated DNA delivery is being developed as a partnership with Piro Suiti at Novartis. The phagemid platform will be used for delivery of recombinases in *E.coli*. The work involves building phagemids for the recombinases from phages Bxbl, A118, TP901, Φ C31, and 13 other recombinases obtained from Chris Voigt's group

(http://www.nature.com/nmeth/journal/v11/n12/full/nmeth.3147.html). In parallel experiments, a GFP reporter construct flanked by the recombinase recognition sites for each of these recombinases will be made and expressed in EMG2 strain of *E.coli* or BL21 containing the F+ plasmid. This is similar to experiments described in Section 7 in the paper cited above. The immediate goal is to develop a panel of M13 phages that can deliver each of these recombinases and EMG2 strains carrying their respective reporters. The future applications and pathways to be targeted and model organisms will be decided at a later date.

The bacteria and phages used in these projects have been obtained from various sources including ATCC, the Salmonella Genetic Stock Center, the Yale genetic stock center, the STEC center, isolation from natural samples and collaborators. We may need to acquire additional isolates from either natural sources or any of the abovementioned sources or other similar stock centers. We have a particular interest in carbapenem-resistant enterobacteriaceae (CRE) and have an established collaboration with the laboratory of Julie Segre providing us with relevant antibiotic-resistant bacteria. We are also receiving samples from Rita Rahmeh and are planning on receiving some from Dr. Louis-Charles Fortier (Université de Sherbrooke) and Dr. Jeroen Corver (Leiden University Medical Center). Additionally, we will isolate novel phages to target bacteria that our current isolates are unable to target, including strains of the above-mentioned organisms as well as in a collaboration with the Fox lab to target *Enterococcus* isolates.

1.2 Development of Therapeutic Bacteriophage for Decolonization:

A major concern in infectious disease is the establishment of antibiotic resistance and pathogen reservoirs in healthy individuals that could potentially later cause life threatening opportunistic infections. We wish to explore the use of bacteriophage as a means to specifically eliminate antibiotic resistant or pathogenic strains from a microbiome without affecting commensal populations. We intend first demonstrate this concept using non-pathogenic *E. coli* strains (K-12, BL21, C-1) and *Klebsiella spp.* (sp. 390 and *oxytoca*). Later, we extend this concept to clinical isolates carbapenem-resistant Enterobacteriaceae (CREs), including *E. coli* and *K. pneumoniae* strains. As many of these human isolates do not naturally colonize the mouse gut, we will perturb the microbiota using antibiotic treatment (streptomycin or ampicillin) to allow our strains to colonize.

1.3 Development of Therapeutic Bacteriophage for Sepsis:

Bloodstream infections represent one of the most lethal forms of bacterial infections. Bacteria that gain access to the blood can spread throughout the body, and toxic products can lead to septic shock. E. coli and K. pneumoniae CRE strains are estimated to cause up to 50% mortality in these cases, owing to the severity of the condition together with resistance to antibiotics (CDC 2013). We aim to demonstrate treatment with our engineered bacteriophage therapies as alternative therapeutics to improve survival following bacterial sepsis. Furthermore, some of our engineered phages (Citorik, *Nat. Biotechnol.*, 2014) are expected to result in a decreased release of bacterial endotoxin, which may be triggered by some antibiotics or natural phages (Hagens, *Antimicrob. Agents Chemother.*, 2004).

1. Development of Therapeutic Bacteriophage for Gastrointestinal Salmonella Infection:

Salmonella is a major cause of morbidity worldwide, and a significant cause of mortality in children in developing countries. Oral ingestion of the bacteria leads to intestinal infection, diarrhea, and dehydration. Under this goal, we aim to develop bacteriophages capable of targeting and eliminating Salmonella and to test these therapies in vivo. Salmonella will first be administered orally to mice to establish intestinal colonization, followed by bacteriophage given orally to eliminate the bacteria. Bacterial burden will be monitored by enumerating Salmonella in the stool on selective media to assess the treatment. We aim to show improved elimination through engineering enhanced bacteriophage vehicles.

Section 5. Use of Recombinant or Synthetic Nucleic Acid: Check box if not applicable (Please complete this section if you use or generate recombinant microorganisms, cells, animals, plants, etc.)

Please indicate the Section of the NIH Recombinant DNA Guidelines that applies to this research. If you have questions Biosafety Staff will be glad to assist you. Note that the City of Cambridge requests that we register all recombinant work even if it is exempt under section III-F or Appendix C. For information on which section of the NIH Guidelines your experiments fall under, please see the NIH OSP website: <u>http://osp.od.nih.gov/office-biotechnology-activities/biosafety/nih-guidelines</u>.

Section III-A	Section III-B	Section III-C	Section III-D	Section III-E	Section III-F		
---------------	---------------	---------------	---------------	---------------	---------------	--	--

a. Source of Gene, Insert or Clone:

 Specify DNA/RNA source (organism the sequence is from), promoter used, nature of insert (genes families are acceptable, e.g. fluorescent proteins), if a protein expressed, and percent of any viral genome in construct (for viral vectors see 5.b.2):

Insert	Cloned into	Under promoter control	Insert source	Nature of insert	Protein expressed?	% viral genome
Phage genomes, such as members of siphoviridae, podoviridae, inoviridae, myoviridae	pRS415	native	Phage genomes	Genomic DNA	yes	100% (this is phage genome and will not infect eukaryotes)
Synthetic DNA	pRS415	native	synthetic	For mutating phage genomes	yes	0%

- 2. Are any sequences from select agents and toxins? Yes \square No \square ; If yes, please specify.
- 3. Do any sequences code for toxins not covered in (2) above? Yes No X; If yes, please specify.
- 4. Is the DNA source from a USDA-regulated plant, animal or insect? Yes No S; If the regulated organism is grown or stored at MIT, please include a copy of the USDA permit. (Link to USDA site: <u>http://www.aphis.usda.gov/brs/index.html</u>)

b. Vectors and Host Cells:

 Identify cloning/expression/transfection vectors used, recipient bacterial strains used to propagate the vector, and recipient host cell (bacteria, yeast, murine or human cells, plant, etc.). Provide a restriction map of vector if it is new or not published. If commercially available vector or plasmid, please indicate vendor. Describe the location and type of promoters and other control sequences and percent of any viral genome in construct.

Vector name	Recipient Bacterial strain	Reporter gene?	% viral genes	Type of promoters	Host cell
pRS415	none	Bacterial luciferase, nanoluc, lacZ, GFP, RFP	100% (phage, see note above)	PT7, PT3, PSP6, PRM, PL, PR, PBAD, Ptet, Plux, Plac, PT7lac, PT7tet	S. cerevisiae

 If using viral vectors, fill out the table below. If using multiple types of viral vectors, please add a new table per vector type; multiple variations of the same viral vector type can be in the same table. (If using retroviral or lentiviral vectors additional requirements apply. Please see MIT CAB/ESCRO policy at the following URL: <u>https://cabescro.mit.edu/home</u>

Viral Vector type	
Description (Plasmids used, viral	
vector generation for lentiviral vector)	
Source (vendor / collaborator)	
Packaging cell line(s), if applicable	
Replication competent or incompetent	
Assays for detecting replication	
competent virus, if applicable	
Pseudotype	
Host range	
Safety feature (e.g. self-inactivating)	
Integrate into genome (yes/no)	
Exposure hazard (e.g. insertional	
mutagenesis)	
Promoters to be used with viral vector	
Inserts to be used with viral vector ^{1,2}	

¹For Cas9 expression in viral vectors, please indicate whether the promoter driving it is inducible or constitutively active.

²List all oncogenes that will be overexpressed and all tumor-suppressors that will be knocked down using viral vectors.

3. If using nanoparticles for the delivery of recombinant DNA/RNA, fill out the table below.

Nanoparticle description	
Able to enter cells? (yes/no)	
Exposure hazard	

a. Use of Animals (including invertebrates) or Insects: Check box if not applicable Most research using animals also needs the approval of the MIT Committee on Animal Care (IACUC). Contact them to register your animal research; If you have CAC protocol no(s), list them here: <u>1016-064-19, 1215-114-18</u>.

The questions below are intended to deal with the use of potentially biohazardous agents in animals/insects or the creation of transgenic animals/insects.

- 1. Will rDNA technologies (such as producing transgenics), recombinant microbes/cells be used in animals or insects? Yes 🛛 No 🗌
 - a. If yes, please describe objective of the research. Include recipient species, and list pathogen, rDNA technology, or recombinant microbe or human materials that will be used in animal/plant/ insect, and resulting genotype. What selection marker will be used?

Genetically engineered bacteriophage that show promise as antimicrobials *in vitro* will be tested in infection and disease models in mice. One current model involves skin infection caused by inoculating superficial wounds with bacteria, and treating with promising antimicrobials. A second model involves treating sepsis in mice, and a third involves manipulation of either the normal or pathological intestinal microbiome. No selection markers are engineered into the therapeutic bacteriophage.

Recipient Species	Mouse
List Pathogens, rDNA, recombinant	Recombinant bacteriophage. These are not
microbe, human materials	pathogens
Resulting genotype	N/A
What selection marker will be used?	None or luciferase

- If transgenic, including "knockout", animals/insects will be generated, please provide information on the transgene and vector as well as the expected phenotype of the recombinant animal/insect. NA
- 3. Does this recombinant species pose a risk to the community or the environment if there is an inadvertent release outside the laboratory or animal facility? Yes □ No ⊠ If yes, explain:

d. Large-Scale Research: Check box if not applicable

Do experiments involve growth of 10 liters or more of culture at a time? Yes \Box No \boxtimes

If yes, an SOP is required for this work. Contact the Biosafety Program for assistant and:

- 1. Identify culture room, biological agent, recombinant modifications, and type of equipment used for large-scale culture growth and handling:
- 2. Describe the steps used to handle and contain spills:

e. Use of Plants: Check box if not applicable

Describe experiments that involve recombinant work and plants, whether the plant itself is made recombinant or recombinant cell or microorganisms are used with plants.

Does this recombinant species pose a risk to the community or the environment if there is an inadvertent release outside the laboratory? Yes \square No \square If yes, explain:

Section 6. Biological Agent Use: Check box if not applicable (Please complete this section if you work with viable microorganisms or viruses.)

a. Agent identification. List biological agent(s)/microorganism(s) genus/animals/plants/species/strain and genotypic markers, host range; any antibiotic resistance; recommended Biosafety Level (CDC); the

BRR No. Page 10 of 89

source of the agent (e.g. new isolate from human tissue, blood, animal, tissue culture, another laboratory, ATCC, etc.).

					1	
Strain	Bio safety level (BSL) / Risk group (RG)	Source	Max volume used	Max Concentration used	Disinfectant (s) used	Can this cause disease in any population? (Y/N)
ATCC 19606,	2	ATCC, Eliava	100mls		Bleach	Υ
G7, T-40		Institute				
Muc [CIP	1	ATCC	100mls		Bleach	Ν
107961]						
CDC4285-83	2	SGSC	100mls		Bleach	γ
Planned	2	ATCC, TKL	100mls		Bleach	Υ
VPI 13733	1	ATCC	100mls		Bleach	Ν
VPI C2823-	2	ATCC	100mls		Bleach	Υ
1A						
LSU	2	ATCC	100mls		Bleach	Y
VPI 1003	1	ATCC	100mls		Bleach	Ν
ATCC 13032	1	ATCC, TKL	100mls		Bleach	Ν
	-					
						Y
	2	ATCC	100mls		Bleach	Y
	2	ATCC Mia	100mls		Bleach	Y
	2	Liebermann (Fox	1001113		bicacii	
EHEC, STEC,	2	the STEC center,	100mls		Bleach	Y
EPEC, the ECOR		ATCC				
DH5alpha, EMG2, KL463, XL10, C600, DH10B, BW25113, DH5alpha Pro, MG1655 Pro, RF5289, CJ236, ER2738, ER2267, NEB10beta, E. cloni 10G, XL1-GOLD, XL1-GOLD, XL1-GUD, XL1-RED, W3110, NM2, S17, CR63, CR63I, ME5486, transformax EC100D pir, Transformax EC100D pir, 116, SURE2, MK01, MK02, ET12567,		Thermo, Lucigen, Keith Shearwin, Laub lab, Collins lab, Agilent, expressys, invitrogen, epibio, clontech, Roberto Kolter, real biotech corporation, the Yale E. coli genetic stock center				N
	ATCC 19606, G7, T-40 Muc [CIP 107961] CDC4285-83 Planned VPI 13733 VPI C2823- 1A 2,M.Sebald LSU VPI 1003 ATCC 13032 planned 1000654 (NDM-1) Ef1 – Ef15 EHEC, STEC, EPEC, the ECOR collection MG1655, DH5alpha, EMG2, KL463, XL10, C600, DH108, BW25113, DH5alpha, EMG2, KL463, XL10, C600, DH108, BW25113, DH5alpha, EMG2, KL463, XL10, C600, DH108, BW25113, DH5alpha, ER2, KL463, XL10, C600, DH108, BW25113, DH5alpha, ER2, KL463, XL10, C600, DH108, BW25113, DH5alpha, ER2267, NEB10beta, E. cloni 10G, XL1-GOLD, XL1-RED, W3110, NM2, S17, CR63, CR63I, ME5486, transformax EC100D pir- 116, SURE2, MK01, MK02,	Ievel (BSL) / Risk group (RG) ATCC 19606, G7, T-40 2 Muc [CIP 1 107961] 2 CDC4285-83 2 Planned 2 VPI 13733 1 VPI 2823-3 2 1A 2 2,M.Sebald 2 LSU 7 VPI 1003 1 ATCC 13032 1 JO00654 2 (NDM-1) 2 EHEC, STEC, 2 EPEC, the 2 COR 2 collection 1 MG1655, 1 DH5alpha, 1 EMG2, 1 KL463, XL10, C600, DH10B, BW25113, DH5alpha Fro, RF5289, CJ236, ER2738, ER2267, NEB10beta, S. cloni 10G, XL1-GOLD, XL18LUE, XL1-RED, W3110, NM2, S17, CR3, CR63I, MK01,<	Strainsafety level (BSL) / Risk group (RG)SourceATCC 19606, G7, T-402ATCC, Eliava instituteMuc [CIP1ATCC107961]1ATCCCDC4285-832SGSCPlanned2ATCC, TKLVPI 2823-2ATCC1A2,M.Sebald2ATCCLSUVPI 10031ATCCATCC 130321ATCCIplanned2ATCCISUVPI 10031ATCCATCC 130321ATCCIblanned2ATCC, TKLIblanned2ATCCIblanned2ATCCIblanned2ATCCIblanned2ATCCIblanned2ATCCIblanned2ATCCIblanned2ATCCIblanned2ATCCIblanned2ATCCIblanned2ATCCIblanned2ATCCIblanneIblanneIblanneIblanneIblanneIblanneIblanneIblanneIblanneIblanneIblanneIblanneIblanne<	StrainSafety level (RS)SourceMax volume usedATCC 19606, (7, 7-402ATCC, Eliava Institute100mlsMuc [CIP1ATCC100mls107961]1ATCC100mlsCDC4285-832SGSC100mlsPlanned2ATCC, TKL100mlsVPI 137331ATCC100mlsVPI 2282-2ATCC100mls1A2ATCC100mlsVPI 10031ATCC100mlsISU100mlsVPI 10031ATCC100mls10006542ATCC100mls10006542ATCC100mlsIbanned2ATCC, TKL100mls10006542ATCC100mlsIbanned2ATCC, Mia Liebermann (Fox lab)100mlsEHEC, STEC, ECR2Htes StEC center, ATCC100mlsFHEG2, CBC2, CBC4, the CCR1CGSC, NEB, ATCC, Thermo, Lucigen, keith Shearwin, Lab Jab, Collins lab, Agilent, expressys, invitrogen, epibio, clontech, Roberto Kolter, real bitech corporation, the Yale E. coli genetic stock centerStock centerPro, MS1655 Pro, RFS289, CC100D, pir- Transformax EC100D pir- 116, SURE2, MK01, KK02, ET12567,Image: All and all all all all all all all all all al	Strainseries level (BSL) / Risk group (RG)SourceMax volume usedMax Concentration usedATCC 19606, (C,T.42ATCC, Eliava Institute100mis	Strainsafety level (RS)SourceMax volume usedMax Concentration usedDisinfectant (s) usedATCC 19606, G7,T-402ATCC, Eliava Institute100mlsBleachATCC 19606, G7,T-401ATCC100mlsBleachInstitute1ATCC100mlsBleach10796112ATCC100mlsBleachPlanned2ATCC100mlsBleachVP1028232ATCC100mlsBleachJA-100mlsBleachVP128231ATCC100mlsBleachJA-100mlsBleachJA-100mlsBleachJN Sebald1ATCC100mlsBleachJN1ATCC100mlsBleachJN1ATCC100mlsBleachJN1ATCC100mlsBleachJN2ATCC100mlsBleachJ000542ATCC100mlsBleachI0005541GSC, NEB, ATCC, Therno, Lucigen, Keth Shearwin, Labbermann (Fx Lab)100mlsBleachM516155, PO, R5289, Colnect, Raberto Pro, R5289, Colnect, Raberto Corporation, the Y14 FC, S174, Y14 FC, S174, Y1310, NM2, S17, CR83, CR31, KR31, MK3

	oneshot TOP10, SHuffle-T7, MG1655(DE3)), NEB10beta, MG1655 DATrBC, MG1655Pro with pLtetO- mf-Lon protease integrated, Transformax EPI3000, DH5alpha F ¹ iq, sbtl3, sbtl4, stellar, HIT DH5- alpha, JM109					
Escherichia coli K-12	keio collection	1	http://cgsc.biology. yale.edu/KeioList.p	100mls	Bleach	Ν
			<u>hp</u>			
Escherichia coli (synthetic)	C321.DeltaA, rEc.β.dC.12'.	1	https://www.ncbi. nlm.nih.gov/nuccor	100mls	Bleach	Ν
Escherichia coli (other)	ΔtY ATCC 11775,	2	<u>e/549811571</u> ATCC, P.	100mls	Bleach	Y
Escherichia coli (Shiga-	ATCC 700973, ATCC 23503, ATCC 23511, GUE, 5649, RKI, BAA-201 (TEM-3), Nissle 1917, HS, ECOR collection (ECOR1-70) DECA	2	Nordmann, STEC(http://shigato x.net/new/referenc e- strains/ecor.html) ATCC, SGSC, STEC	100mls	Bleach	Y
toxin producing and pathogenic)	collection, EHEC 933W, EPEC, ATCC 700927, ATCC 43888, ATCC BAA- 2196, ATCC BAA-2193, ATCC BAA- 2193, ATCC BAA-2215, ATCC BAA- 2440, ATCC BAA-2219, ATCC BAA- 2192		(http://shigatox.ne t/new/reference- strains/deca.html)			
Escherichia coli B	BL21, BL21(DE3), Rosetta, Rosetta(DE3) , BL21AI, BB, REL606, BL21(DE3)/p LysS, SHuffle express T7, Express Iq	1	ATCC, NEB, Lucigen, Invitrogen, TKL	100mls	Bleach	N

	0.4.0.4700					
Escherichia coli C	C-1, C-1792,	1	Ian Molineux,	100mls	Bleach	Ν
	C-236 , C- 367 , C-368		ATCC, TKL			
Escherichia coli	rcF471-6,	1	Mouse fecal	100mls	Bleach	Ν
	rcF479, rcF513-9		isolates			
Proteus mirabilis	rcF520-22	2	Mouse fecal isolates	100mls	Bleach	Υ
Eubacterium rectale	VPI 0990	1	ATCC33656	100mls	Bleach	Ν
Ganoderma lucidum	Planned	1	Zhao Sun, ATCC	100mls	Bleach	Ν
Gluconacetobacter xylinus	ATCC53582	1	ATCC	100mls	Bleach	Ν
, Klebsiella oxytoca	CCUG 15788	1	Sherwood Casjens	100mls	Bleach	N
Klebsiella pneumoniae	sp. 390,	2	ATCC, TKL, Julie	100mls	Bleach	Y
	MGH78578, K6 / ATCC 700603 (SHV-18), CDC1000527 (NDM-1), 1100975 (NDM-1), 11007565 (NDM-1), 1100770 (NDM-1), KPNIH1, 10, 24, 27, 29, 30, 31, 32, 33, Kp80		Segre, Ian Molineux, Eliava Institute			
Kluyvera cryocrescens	planned	2	ATCC	100mls	Bleach	Y
Lactobacillus plantarum	WCFS1	1	ATCC	100mls	Bleach	N
lactococcus lactis	planned	1	ATCC	100mls	Bleach	N
Morganella morganii	planned	2	ATCC	100mls	Bleach	Y
Mycobacterium	mc ² 155	2	ATCC	100mls	Bleach	Y
smegmatis (isoniazid resistance)	110 155	2	Aree	1001113	Dicucii	
Parabacteroides	mmF840,	2	Mouse isolate (MIT	100mls	Bleach	Y
distastonis	NCTC11152		animal facility), ATCC			
Prevotella copri	CB7	1	DSM18205	100mls	Bleach	N
Pseudomonas	PAO1, PAK,	2	ATCC, Ribbeck lab,	100mls	Bleach	Y
aeruginosa	PA14, ATCC 10145, CECT111, ATCC25102, rcF477, rcF478, Ps25, Ps32		mouse fecal isolates, Eliava Institute			
Pseudomonas aurantiaca	planned	1	ATCC	100mls	Bleach	N
Pseudomonas chlororaphis	planned	1	ATCC	100mls	Bleach	N
Pseudomonas citronellolis	planned	1	ATCC	100mls	Bleach	Ν
Pseudomonas fluorescens	A506	1	ATCC, TKL	100mls	Bleach	Ν
Pseudomonas putida	KT2440, C1S, ATCC12633	2	ATCC, TKL	100mls	Bleach	Y
Pseudomonas veronii	planned	1	ATCC	100mls	Bleach	N
	ATCC55703	1	ATCC	100mls	Bleach	N
Pseudomonas cellulosa		-		200		
Pseudomonas cellulosa Ruminococcus obeum	strain: VPI B321	1	ATCC29174	100mls	Bleach	N

Pediococcus	DSM 20336	1	R. Rahmeh	100mls	Bleach	Ν
pentosaceus						
Lactobacillus brevis	ATCC 14869	1	R. Rahmeh	100mls	Bleach	Ν
Enterococcus faecium	JCM5804	2	R. Rahmeh	100mls	Bleach	Υ
Salmonella enterica	SARB1	2	Salmonella enterica	100mls	Bleach	Υ
enterica Agona			enterica Genetic Stock Center, ATCC, TKL			
Salmonella enterica	SARB2, ss44,	2	SGSC, ATCC	100mls	Bleach	Υ
enterica Anatum	15/5					
Salmonella enterica Bongori	SP141, SP905	2	SGSC, ATCC	100mls	Bleach	Υ
Salmonella enterica enterica Brandenburg	SARB3	2	SGSC, ATCC	100mls	Bleach	Υ
Salmonella enterica	SARB6,	2	SGSC, ATCC, John	100mls	Bleach	Y
enterica Choleraesuis	SARB7, SC- B67, 14174, A50, G9		Elmerdahl olsen			
Salmonella enterica enterica decatur	SARB8	2	SGSC, ATCC	100mls	Bleach	Υ
Salmonella enterica	SARB9,	2	SGSC, ATCC	100mls	Bleach	Y
enterica Derby	SARB10					
Salmonella enterica	SARB13,	2	SGSC, ATCC, John	100mls	Bleach	Y
enterica Dublin	SARB14, TY3627, SGSC4916, SGSC4157, 3246		Olsen			
Salmonella enterica enterica Duisberg	SARB15	2	SGSC, ATCC	100mls	Bleach	Y
Salmonella enterica	SARB20	2	SGSC, ATCC	100mls	Bleach	Y
enterica Emek	57111020	-	5656,71166	1001113	Dicucii	
Salmonella enterica	SARB18,	2	SGSC, ATCC	100mls	Bleach	Y
enterica enteritidis	SARB19, LK5, ATCC 13076	2	505C, ATCC	1001113	Dieach	
Salmonella enterica enterica Enteritidis	Kuwait (MDR poultry isolate)	2	R. Rahmeh	100mls	Bleach	Y
Salmonella enterica enterica Gallinarum	SARB21, 287/91	2	SGSC, ATCC	100mls	Bleach	Y
Salmonella enterica enterica Hadar	SL485	2	SGSC, ATCC	100mls	Bleach	Y
Salmonella enterica	SARA30,	2	SGSC, ATCC	100mls	Bleach	Y
enterica Heidelberg	SARA36 to SARA40, SARB24, SL486					
Salmonella enterica enterica Indiana	SARB25	2	SGSC, ATCC	100mls	Bleach	Y
Salmonella enterica enterica Kentucky	#98, SP146	2	SGSC, ATCC	100mls	Bleach	Y
Salmonella enterica	SARB26,	2	SGSC, Ian Molinzux,	100mls	Bleach	Y
enterica Miami	SARB29		John Elmerdahl Olsen			
Salmonella enterica enterica Montevideo	SARB31	2	SGSC, ATCC	100mls	Bleach	Υ
Salmonella enterica	SARA63 to	2	SGSC, ATCC	100mls	Bleach	Υ
enterica münchen	SARA67, SARA69, SARA70, SARA72,					
	SARB33					
Salmonella enterica	SARB37	2	SGSC, ATCC	100mls	Bleach	Υ
enterica Newport						

Salmonella enterica	SARB51,	2	SGSC, ATCC	100mls	Bleach	Y
enterica Panama	SARB52			100		
Salmonella enterica	SARB53	2	SGSC, ATCC	100mls	Bleach	Y
enterica Reading						
Salmonella enterica	SARB54	2	SGSC, ATCC	100mls	Bleach	Y
enterica Rubislaw		_			 	
Salmonella enterica	SARA24,	2	SGSC, ATCC	100mls	Bleach	Υ
enterica Saint-Paul	SARB55,					
	SARB56	-				
Salmonella enterica	CVM19633	2	SGSC, ATCC	100mls	Bleach	Υ
enterica						
Schwarzengrund		_			 	
Salmonella enterica	SARB58	2	SGSC, ATCC	100mls	Bleach	Y
enterica Sendai		_			 	
Salmonella enterica	SARB59	2	SGSC, ATCC	100mls	Bleach	Y
enterica Senftenberg						
Salmonella enterica	SARB62	2	SGSC, ATCC	100mls	Bleach	Υ
enterica Thompson					 	
Salmonella enterica	LT2, IJ612,	2	SGSC, ATCC, John	100mls	Bleach	Υ
enterica Typhimurium	MK1046, LT1		Elmerdahl olsen,			
	to LT6, LT7		Lionello Bossi,			
	to LT9, A36,		Sébastien Lemire			
	DT4a, LT11,					
	LT13, LT14,					
	LT16 to LT21,					
	SARA1 to					
	SARA10,					
	SARA12,					
	SARA24,					
	SARB66 to					
	SARB68,					
	4/74,					
	CVM23701,					
	M8c,					
	TT23381, C5,					
	SP296,					
	SP358,					
	SP394,					
	SP513,					
	SP591,					
	SP592,					
	SP594,					
	SP651, SP71,					
	SP784,					
	SP811,					
	SP838,					
	SP839,					
	SP906					
Salmonella enterica	SARB69	2	SGSC, ATCC	100mls	Bleach	Υ
enterica Typhisuis					 l	
Serratia marcescens	planned	2	ATCC	100mls	Bleach	Υ
Serratia plymuthica	V4	1	ATCC, TKL	100mls	Bleach	Ν
Shigella boydii	ATCC 9207	2	SGSC	100mls	Bleach	Υ
Shigella dysenteriae	planned	2	ATCC, Fasano lab	100mls	Bleach	Y
			(MGH)			
Shigella flexneri	ATCC 12022,	2	SGSC, ATCC	100mls	Bleach	Υ
	M16, 2457T					
Shigella sonnei	ATCC 25931,	2	SGSC, ATCC	100mls	Bleach	Y
g	ATCC 9290	_				
Staphylococcus aureus	RN4220	2	L. Marraffini	100mls	Bleach	Y
Stenotrophomonas	planned	2	ATCC	100mls	Bleach	Y
maltophilia	planned	-		1001113	bicacii	
Streptococcus	planned	2	ATCC	100mls	Bleach	Y
agalactiae	planned	-		1001113	bicacii	
Streptococcus mutans	planned	1	ATCC	100mls	Bleach	N
Streptococcus mutuns	plainieu	1	AICC	TOOLIUS	bleach	IN

BRR No. Page 15 of 89

Streptomyces coelicolor	DSMZ 41109,	1	Kolter lab, DMSZ	100mls	Bleach	Ν
Streptomyces coencolor	DSMZ 1042,	-	Noncer lab, DIVISE	1001113	Dicucii	N
	DSMZ 41546					
Vibrio cholerae	VO-258, VO-	1	Polz lab, ATCC	100mls	Bleach	N
	146, N16961,		,			
	E7946, 569B,					
	O395, MO10					
Yersinia	YPIII, IP2666	2	ATCC, Joan Mecsas	100mls	Bleach	Y
pseudotuberculosis						
Yersinia enterocolityca	planned	2	ATCC	100mls	Bleach	Υ
bacteriophages	T3, T4D, T6,	1	ATCC, lan	100mls	Bleach	Ν
	T5, T7,		Molineux, Tetsuro			
	lambda, P22,		Yonesaki, Henry			
	ES18,		Krisch, lysogenic			
	FelixO1, SP6,		bacterial strains,			
	K1E, K1-5,		natural samples			
	K11, N15,					
	K1F, FC405,					
	KC69, RB32,					
	RB33,					
	RB69, Pol,					
	Baker, K3, SboM-AG3,					
	SnpM-CG4-1,					
	Sens-AG11,					
	S16, A1122,					
	yepe2,					
	eco32, N4,					
	P1, P2, RB14,					
	AC3, RB51,					
	RB10, JSE,					
	RB23, BBY1,					
	D62,26, CZ,					
	RB43, OX2,					
	Phi1, LUZ19,					
	GH-1, M13					
saccharomyces	BY4741	1	TKL	100mls	Bleach	Ν
cerevisiae						

For agents that are pathogens, please complete the following table:

Organism	Infectious Dose	Route of exposure	Host range	Clinically relevant Drug resistance	Availability of treatment	Special equipment /PPE used (above standard PPE)	Disease state and symptoms of exposure
Pseudomonas (aeruginosa, putida, fluorescens)	Unknown	Ingestion, Injection/ non-intact skin	Humans	Species resistant to many antibiotics	Species susceptible to extended- spectrum penicillins (such as ticarcillin, azlocillin, and piperacillin), aminoglycosides, cephalosporins, fluoroquinolones, polymixins, and the monobactams	N/A	As opportunistic pathogens, <i>Pseudomon</i> <i>as</i> spp. often invades the host tissue and cause infection and bacteremia in immunocompromised hosts (e.g., HIV/AIDS, cystic fibrosis, bronchiectasis, and severe chronic obstructive pulmonary disease, burns, malignancy, or diabetes mellitus). The common site of infection is the lower respiratory tract, and severity ranges from

l			-	
				colonization without
				immunological
				response to severe
				necrotizing
				bronchopneumonia;
				such severe infection
				in patients with cystic
				fibrosis is almost
				impossible to eradicate
				once established in the
				airways. Pseudomonal
				pneumonia often
				develops from oro-
				pharyngeal
				contamination or
				secondary bacteremia,
				and is also a common
				cause of nosocomial
				ventilator-related
				pneumonia in intensive
				care settings.
				Infections also include
				endocarditis,
				osteomyelitis, urinary
				tract infections,
				gastrointestinal
				infections, meningitis,
				and, commonly,
				septicaemia. P.
				aeruginosa is the most
				common agent
				associated with
				infection and
				inflammation during
				contact lens wear. The
				bacteria colonize on
				lenses and produce
				proteases to kill or
				invade corneal cells, an
				infection that can lead
				to scarring and vision
				loss. The species is also
				the most virulent with
				a mortality rate of
				30%, which can be
				higher depending on
				predisposing
				conditions. P.
				aeruginosa can also
				readily colonize on
				open burn wounds,
				causing infections,
				abscesses, and sepsis,
				with edema and/or
				discoloration of
				unburned skin at
				wound margins and
				green pigment in
				subcutaneous fat. P.
				aeruginosa is also
				associated with
				swimmer's ear (otitis
				externa).
				Other Pseudomonas sp
				ecies are also
		 		opportunistic;

							however, cases of infection are rare.
Clostridium symbiosum, C. spiroforme		Injection/ non-intact skin	Humans		most species are susceptible to penicillin, clindamycin, chloramphenicol, piperacillin, metronidazole, imipenem, and combinations of b- lactams with b- lactamase inhibitors.		Illnesses primarily associated with Clostridium spp. are: Clostridial bacteremia: Symptoms can vary greatly but will typically include fever, chills, and leukocytosis. The fatality rate ranges from 25-50%. Many Clostridium spp. can be associated with anaerobic bacteremia including C. septicum, C. ramosum, C. clostridioforme, or C. tertium
ENTEROCOCCUS FAECALIS	Unknown	Ingestion; mucosal contact; injection/ non-intact skin	Humans	Strains resistant to β -lactams, aminoglycosides and, increasingly, vancomycin have been described ^(2,4) . Strains have also been identified which carry genetic elements conferring resistance to chloramphenicol, tetracyclines, macrolides, lincosamides, quinolones, and streptogramins ⁽²⁾ .	Most strains remain susceptible to penicillin, ampicillin, and vancomycin.		Enterococci can cause urinary tract, wound, and soft tissue infections ^(2,4) . They are also associated with bacteremia which can lead to endocarditis in previously damaged cardiac valves ⁽⁴⁾ . E. faecalis is the most frequent species isolated from human intestine samples (80- 90%), E. faecium accounts for 5-10% of isolates ⁽¹⁾
Kluyvera cryocrescens	Unknown	Injection/ non-intact skin	Humans	Unknown	Antimicrobial agents active against most Kluyvera strains include third- generation cephalosporins, fluoroquinolones, and aminoglycosides	N/A	soft tissue infection; wound infections; site infections Kluyvera rarely causes disease in humans. West et al. 1998 Diagnostic Microbiology and Infectious Disease 32:237-241
Morganella morganii	Unknown	Injection/ non-intact skin	Humans	M. morganii strains are resistant to penicillin, ampicillin/sulbacta m, oxacillin, first- generation and second-generation cephalosporins, macrolides, lincosamides, fosfomycin, colistin, and polymyxin B.[3] The emergence of highly resistant strains of M. morganii have been associated with use of third-generation cephalosporins.	 Treatment of M. morganii infections may include: Ticarcillin, Piperacillin, Ciprofloxacin, Third- generation and Fourth-generation cephalosporins, 		There have been several reports that M. morganii causes sepsis, ecthyma, endophthalmitis, chorioamnionitis, however more commonly urinary tract infections, soft tissue infections, septic arthritis, meningitis and bacteremia often with fatal consequences. Polymicrobial infections are most abundantly caused by this microbe which additionally damages

							the skin, soft tissues, and urogenital tract can be cured through use of the aforementioned antibiotics.
Salmonella enterica (non typhoidal)	For non- typhoidal salmonellosis, the infectious dose is approximatel y 10 ³ bacilli ^{(4,} ²⁾ . For enteric fever, the infectious dose is about 10 ⁵ bacilli by ingestion ^{(4, 6,} ²⁾ . Patients with achlorhydria, depressed cell-mediated immunity, or who are elderly may become infected with at a lower infectious dose ^(4, 2) . The infectious dose may also be dependent on the level of acidity in the patient's stomach	Ingestion; Injection/ non-intact skin	Humans	Some resistance to chloramphenicol has been reported and, in 1989, 32% of strains were multi-drug resistant	Susceptible to chloramphenicol, ciproflaxin, amoxicillin, co- trimoxazole, trimethprim- sulfonamid, cephalosporins and norfloxacin		Salmonella enterica can cause four different clinical manifestations: gastroenteritis, bacteremia, enteric fever, and an asymptomatic carrier state ^(Z)
Stenotrophomonas maltophilia	Unknown	Ingestion; mucosal contact; injection/ non-intact skin	Humans	Species is not usually susceptible to piperacillin, and susceptibility to ceftazidime is variable	Many strains of S. maltophilia are sensitive to co- trimoxazole and ticarcillin,	N/A	S maltophilia has few pathogenic mechanisms and, for this reason, predominantly results in colonization rather than infection. If infection does occur, invasive medical devices are usually the vehicles through which the organism bypasses normal host defenses. Otherwise, the pathophysiology of this nonfermentative aerobic gram-negative bacillus does not differ from other nonfermentative aerobic organisms
Streptococcus agalactiae	Unknown	Mucosal contact; Injection/ non-intact skin	Humans	some strains penicillin tolerant and require treatment with an	Sensitive to penicillin or ampicillin		It presents with nonspecific symptoms, such as fever, vomiting and irritability, and can consequently lead to

				aminoglycoside as			late diagnosis. Hearing
				well.			loss can be a long-term
							sequela of group B Streptococcus species
							(GBS)-meningitis.
							Infection with GBS is
							the cause of some
							instances of stillbirth.
Vibrio cholerae	106-1011	Ingestion;	Humans	An outbreak in	Tetracycline has		Vibrio cholerae can
	organisms	injection/		1979 in Bangladesh	been the drug of		cause syndromes
		non-intact		was caused by	choice, although		ranging from
		skin		multi-drug resistant	resistance to this antibiotic is		asymptomatic to
				strains of El Tor biotype. 36% of	becoming more		cholera gravis. In endemic areas, 75% of
				strains in this	common.		cases are
				outbreak were	Ciproflaxin,		asymptomatic, 20%
				resistant to	doxycycline and co-		are mild to moderate,
				tetracycline,	trimoxazole can also		and 2-5% are severe
				ampicillin,	be used		forms like cholera
				kanamycine,			gravis. Symptoms
				streptomycin, and			include abrupt onset of
				trimethoprim			watery diarrhoea (a
				sulfamethoxazole.			grey and cloudy liquid), occasional vomiting
				Resistance has been			and abdominal cramps.
				shown to nalidixic			Dehydration ensues
				acid, furazolidone,			with symptoms and
				and co-			signs such as thirst, dry
				trimoxazole, V.			mucous membranes,
				cholerae O1 Inaba			decreased skin turgor,
				isolates have been			sunken eyes,
				found to be multi-			hypotension, weak or
				antibiotic resistant, when increasing			absent radial pulse, tachycardia,
				resistance to			tachypnea, hoarse
				ciprofloxacin			voice, oliguria, cramps,
							renal failure, seizures,
							somnolence, coma and
							death. Death due to
							dehydration can occur
							in hours to days in
							untreated children and the disease is
							dangerous for
							pregnant women and
							their foetuses during
							late pregnancy as
							abortion, premature
							labor and fetal death
							may occur. In cases of
							cholera gravis involving severe dehydration, up
							to 60% of patients can
							die; however, less than
							1% of cases treated
							with rehydration
							therapy are fatal. The
							disease typically lasts
							from 4-6 days.
							Worldwide, diarrhoeal
							disease, caused by cholera and many
							other pathogens, is the
							second leading cause
							of death for children
							under the age of 5 and
L		1			1	1	

Acinetobacter baummannii	Unknown	Inhalation ; injection/ non-intact skin	Humans	Uknown	Meropenem, colistin, polymyxin B; amikacin, rifampin, minocycline, tigecycline	at least 120,000 deaths are estimated to be caused by cholera each year. In 2002, the WHO deemed that the case fatality ratio for cholera was about 3.95%.Ranging from pneumonia to serious blood or wound infections, and the symptoms vary depending on the disease. Acinetobacter may also "colonize" or live in a patient without causing infection or symptoms, especially in tracheostomy sites or open wounds.
Klebsiella pneumoniae	Unknown; according to one source may be 10 ⁸ Klebsiella organisms per gram of feces are required to produce damage	Ingestion; mucosal contact; inhalation ; injection/ non-intact skin	Humans	Since more and more strains of Klebsiella spp. appear to be developing and harbouring extended-spectrum beta-lactamases (ESBLs), cephalosporinases, and carbapenemases, resistance of Klebsiella spp. to current antibiotics appears to be increasing these strains are not pan-resistant to all beta-lactam antibiotics, but have differing susceptibility protocols, so that in some cases beta- lactams can still be used to treat them, although in high concentration. Other treatment regimes include beta-lactams in combination with a beta-lacatmase inhibitor, tigecycline, colistin and aztreonam	Klebsiella spp. are known to show resistance to penicillins, especially ampicillin and carbenicillin Other treatment regimes include beta-lactams in combination with a beta-lactamase inhibitor, tigecycline, aztreonam, and colistin. According to results from some studies in Europe and USA, ranges of susceptibility were as follows (L): ceftazidime (92- 95%), ceftriaxone (96-98%), cefotaxime (96%), piperacillin- tazobactam (90- 97%), imipeneum (98-100%), gentamicin (95- 96%), amikacin (98- 99%), triethoprimsulfamet hoxazole (SXT) (88- 90%).	Respiratory Disease: K. pneumoniae – a leading cause of community-acquired and nosocomial pneumonia and lung abscesses. Infection of the upper lobe is more common. Symptoms include: fevers, chills, and leukocytosis with red currant jelly-like sputum ⁽¹⁾ . Rare complications include lung infection involving necrosis and sloughing of the entire lobe. Central nervous system (CNS) infections: K. pneumoniae – cause community-acquired meningitis and brain abscesses. Clinical symptoms include: headaches, fever, altered conciousness, seizures, and septic shock. Hepatic disease: K. pneumoniae – an important causative pathogen for pyogenic liver abscesses with symptoms including fever, right-upper- quadrant pain, nausea, vomiting, diarrhoea or abdominal pain, and leukocytosis. Abscesses occur predominantly in the right lobe and are solitary

Shigella flexneri,	10-200	Ingestion;	Humans	Multidrug-resistant	Susceptible to		Infection may be mild
dysenteriae and	organisms	mucosal		strains are	ampicillin,		and asymptomatic, but
boydii		contact;		emerging, including	trimethoprim,		it is most commonly
		inhalation		those against	sulfamethoxazole,		characterized by acute
				trimethoprim-	naldixic acid,		intestinal infections
		, injections		sulfamethoxazole	ofloxacin,		upon ingestion,
		/non-		(TMP-SMX),	chloramphenicol,		resulting in mild
		intact skin		ampicillin, and	fluoroquinolones,		watery diarrhea to
		IIIIdet Skill		chloramphenicol	and ciprofloxacin		severe inflammatory
				chioramphenicor			-
							bacillary dysentery or
							shigellosis, manifested
							by severe abdominal
							cramps, nausea and
							vomiting, fever,
							tenesmus, anorexia,
							and stool containing
							blood and mucus $(\underline{1}, \underline{2}, \underline{8})$.
							Further complications
							include Reiter's
							syndrome which has
							been associated with S.
							flexneri ^(9, <u>10</u>) , severe
							dehydration, intestinal
							perforation, toxic
							mega colon,
							bacteremia, toxaemia
							(<u>11</u>), septicaemia,
							seizures, toxic
							encephalopathy with
							headache and
							alterations of
							consciousness, septic
							shock and convulsions
							(very rare) $(\underline{4})$, and
							haemolytic uremic
							syndrome, which have
							been linked to Shiga
							toxin (a potent
							cytotoxin produced by
							S. dysenteriae that can
							also cause other
							neurotoxic effects).
							Virulence of Shigella is
							temperature-
							regulated, as
							organisms are able to
							invade HeLa cells at
							37°C, and cannot do so
							in vitro at 30°C (<u>12</u>).
							Infections are usually
							self-limiting, but can
							become life-
							threatening in
							immunocompromised
							patients or if not
							properly treated.
							Severity of infection
							depends on the host,
							dose, and serotype ⁽²⁾ .
							S. dysenteriae is the
							most pathogenic
							species, with a fatality
							rate up to 20%,
							whereas S. sonnei
							usually cause mild
							forms of shigellosis.
L	l	I			1	I	ioning of singenosis.

E. coli other than	Ranges from	Ingestion;	Humans;	Some of these	Therapeutic		Beneficial strains of E.
laboratory strains,	10-100 for	mucosal	cattle, all	strains are	treatment		coli typically colonize
EHEC, STEC, EPEC,	EHEC strains	contact;	animals	carbapenem-	E coli meningitis		the infant
the ECOR collection	to 10 ⁶ -10 ⁸ for	inhalation	uninuis	· · · · · · · · · · · · · · · · · · ·	-		gastrointestinal tract
the ECOK collection		IIIIdidtioII		resistant, but not	requires antibiotics,		•
	other strains	;		pan-resistant to	such as third-		within a few hours after
		injection/		antibiotics.	generation		birth. The presence of
		non-intact			cephalosporins (eg,		this bacterial
		skin			ceftriaxone).		population in the
		Juli			E coli pneumonia		intestine suppresses
					requires respiratory		the growth of harmful
					support, adequate		bacteria and is
					oxygenation, and		important for
					antibiotics, such as		synthesizing
					third-generation		appreciable amounts of
					-		
					cephalosporins or		B vitamins. E. coli
					fluoroquinolones.		usually remains
					E coli		harmless when
					cholecystitis/cholan		confined to the
					gitis requires		intestinal lumen.
					•		
					antibiotics such as		However, in debilitated
					third-generation		or immuno-suppressed
					cephalosporins that		humans, or when
					cover E coli and		gastrointestinal
					Klebsiella		barriers are violated,
					organisms. Empiric		even normal, "non-
					coverage should also		pathogenic" strains of
					include anti– E		E. coli can cause
					faecalis coverage.		infection.
					For E coli intra-		It is also known that
					abdominal abscess,		some E. coli strains
					antibiotics also must		have developed the
					include anaerobic		ability to cause disease
					coverage (eg,		of the gastrointestinal,
					ampicillin and		urinary, or central
					•		• •
					sulbactam or		nervous system in even
					cefoxitin). In severe		very healthy people.
					infection,		Strains of E. coli that
					piperacillin and		cause diarrhea include
					tazobactam,		strains that cause
					imipenem and		
					cilastatin, or		(enterotoxigenic E.
					meropenem may be		coli), persistent
					used. Combination		diarrhea
					therapy with		(enteroaggregative E.
					antibiotics that		coli), watery diarrhea
					cover E coli plus an		of infants
					antianaerobe can		(enteropathogenic E.
					also be used (eg,		coli), hemorrhagic
					levofloxacin plus		colitis (bloody
					clindamycin or		diarrhea), and
					metronidazole).		hemolytic uremic
					E coli enteric		syndrome
					infections require		(enterohemorrhagic E.
					fluid replacement		coli)
					with solutions		Shiga toxin-producing
							E. coli (STEC) can cause
					containing		
					appropriate		the following
					electrolytes.		symptoms:
					Antimicrobials		Nausea,
					known to be useful		Severe abdominal
					in cases of traveler's		
							cramps,
					diarrhea include		Watery or very bloody
					doxycycline,		diarrhea,
					trimethoprim/sulfa		Fatigue.
		1	1				
					methoxazole		STEC can also cause
					methoxazole (TMP/SMZ),		STEC can also cause low-grade fever or

		fluoroquinolones,	vomiting. Symptoms
		and rifaximin. They	usually begin from 2 to
		shorten the duration	5 days after eating
		of diarrhea by 24-36	contaminated food or
		h. Antibiotics are not	drinking contaminated
		useful in	liquids. Symptoms may
		enterohemorrhagic	last for 8 days, and
		E coli (EHEC)	most people recover
		infection and may	completely from the
		predispose to	disease.
		development of	
		HUS. Antimotility	
		agents are	
		contraindicated in	
		children and in	
		persons with	
		enteroinvasive E coli	
		(EIEC) infection.	
		Uncomplicated E coli	
		cystitis can be	
		treated with a single	
		dose of antibiotic or	
		3-d course of a	
		fluoroquinolone,	
		TMP/SMZ, or	
		nitrofurantoin.	
		Recurrent E coli	
		cystitis (ie, >2	
		episodes/y) is	
		treated with	
		continuous or	
		postcoital	
		prophylaxis with a	
		fluoroquinolone,	
		TMP/SMZ, or	
		nitrofurantoin.	
		Patients with	
		complex cases (eg,	
		those with diabetes,	
		>65 y, or recent	
		history of UTI) are	
		treated with a 7- to	
		14-d course of	
		antibiotics (eg,	
		levofloxacin, third-	
		generation	
		cephalosporins, or	
		aztreonam).	
		Acute	
		uncomplicated E coli	
		pyelonephritis in	
		young women is	
		treated with	
		fluoroquinolone or	
		TMP/SMZ for 14 d.	
		Patients with	
		vomiting, nausea, or	
		underlying illness	
		(eg, diabetes) should	
		be admitted to the	
		hospital. If fever and	
		flank pain persist for	
		more than 72 h,	
		ultrasonography or	
		CT scanning may be	
		performed.	
1	I		

Treat E coli
perinephric abscess
or prostatitis with at
least 6 wk of
antibiotics.
E coli sepsis requires
at least 2 wk of
antibiotics and
identification of the
source of
bacteremia based
on imaging study
results.
McGannon et al
found that
antibiotics that
u
synthesis, such as
ciprofloxacin (CIP)
and TMP/SMZ,
showed increased
Shiga toxin
production, whereas
antibiotics that
target the cell wall,
transcription, or
translation did not.
Remarkably, high
levels of Shiga toxin
were detected even
when growth of
O157:H7 was
completely
suppressed by CIP.
In contrast,
azithromycin
significantly reduced
Shiga toxin levels
even when O157:H7
viability remained
high.
Extended-spectrum
cephalosporins are
widely administered
to treat serious
infections due to
gram-negative
managing infections
due to ESBL-
producing isolates is
particularly
challenging since
these isolates have
varying levels of
resistance to agents
in the extended-
spectrum
cephalosporin class,
in addition to being
multiply resistant to
other antimicrobials
such as
aminoglycosides,
sulfonamides, and

YERSINIA PSEUDOTUBERCULO SIS	10 ⁸ bacteria or more orally	Ingestion; injection/ non-intact skin	Humans; rabbits, rodents, cattle, pigs, pets, wild mammal and birds	Unknown	A MEDLINE search was performed for all studies published in the English literature using key words "ESBL" and "extended-spectrum &-lactamase." Studies that provided treatment information on patients infected with a putative or known ESBL- producer were evaluated. An isolate tested positive with the double-disk synergy test and/or Etest strips (AB Biodisk) was considered a putative ESBL producer unless molecular analysis was performed to characterize the enzyme type(s). Susceptible to ampicillin, third generation cephalosporins, aminoglycosides, tetracyclines, and chlorampheinicol.	Yersinia pseudotuberculosis is a rare cause of acute enteric disease with symptoms such as acute mesenteric lymphadenitis and gastroenteritis associated with abdominal pain and fever (diarrhea is unusual). One to 3 weeks after the acute phase of the disease, post-infectious complications can occur, such as reactive arthritis and erythema nodosum. The arthritic phase of the disease can last up to 6 months. Other complications include lesions to lymph
						unusual). One to 3 weeks after the acute phase of the disease, post-infectious complications can occur, such as reactive arthritis and erythema nodosum. The arthritic phase of the disease can last up to 6 months. Other complications include

YERSINIA	10 ⁸ bacteria	Ingestion;	Humans;	It is generally	Yersinia	Yersinia enterocolitica
ENTEROCOLITICA	or more orally	injection/	farm	resistant to	enterocolitica is	infection is
		non-intact	animals,	penicillin and its	susceptible to	characterized by
		skin	birds,	derivatives and to	chloramphenicol,	enteritis, enterocolitis
			pets	narrow spectrum cephalosporins	fluoroquinolones, gentamicin,	(particularly in children), fever (39°C),
				cepitalosportitis	tetracycline, and	watery stools,
					trimethoprim-	abdominal pain and
					sulfamethoxazole.	acute mesenteric
					Sundinetitoridizoter	lymphadenitis (which
						may mimic
						appendicitis). In some
						cases acute terminal
						ileitis and enteric fever
						can occur. 1-3 weeks
						after the initial clinical
						symptoms, reactive
						arthritis and erythema
						nodosum may occur
						which can last about 6
						months after infection.
						In rare instances,
						complications can include meningitis,
						endophthalmitis,
						conjunctivitis,
						myocarditis,
						pneumonia, pulmonary
						abscess, hepatitis,
						cholangitis, peritonitis,
						glomerulonephritis,
						urethritis, cellulitis,
						haemolytic anaemia,
						thyroiditis, pharyngitis
						and septicaemia
Clostridium difficile						
clost i di uni di inche	Unknown	Ingestion	Humans,	Some rare strains	Susceptible to	C. difficile is the main
	Unknown	Ingestion	pigs,	are resistant to	metronidazole, oral	cause of nosocomial
	Unknown	Ingestion	-	are resistant to metronidazole;	metronidazole, oral vancomycins;	cause of nosocomial antibiotic- associated
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone-	metronidazole, oral vancomycins; penicllins and	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid loss to life-threatening
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid loss to life-threatening pseudomembranous
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid loss to life-threatening pseudomembranous colitis. In diarrhea
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid loss to life-threatening pseudomembranous colitis. In diarrhea without
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid loss to life-threatening pseudomembranous colitis. In diarrhea without pseudomembranous
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid loss to life-threatening pseudomembranous colitis. In diarrhea without pseudomembranous colitis. IPMC), feces
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid loss to life-threatening pseudomembranous colitis. In diarrhea without pseudomembranous colitis (PMC), feces have a foul odor and
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid loss to life-threatening pseudomembranous colitis. In diarrhea without pseudomembranous colitis (PMC), feces have a foul odor and are not bloody.
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid loss to life-threatening pseudomembranous colitis. In diarrhea without pseudomembranous colitis (PMC), feces have a foul odor and are not bloody. Abdominal pain with
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid loss to life-threatening pseudomembranous colitis. In diarrhea without pseudomembranous colitis (PMC), feces have a foul odor and are not bloody. Abdominal pain with or without pyrexia may
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid loss to life-threatening pseudomembranous colitis. In diarrhea without pseudomembranous colitis (PMC), feces have a foul odor and are not bloody. Abdominal pain with or without pyrexia may also be present along
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid loss to life-threatening pseudomembranous colitis. In diarrhea without pseudomembranous colitis (PMC), feces have a foul odor and are not bloody. Abdominal pain with or without pyrexia may also be present along with diarrhea. PMC is
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid loss to life-threatening pseudomembranous colitis. In diarrhea without pseudomembranous colitis (PMC), feces have a foul odor and are not bloody. Abdominal pain with or without pyrexia may also be present along with diarrhea. PMC is associated with
	Unknown	Ingestion	pigs,	are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain	metronidazole, oral vancomycins; penicllins and cephalosporins in	cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea may range from a few days of intestinal fluid loss to life-threatening pseudomembranous colitis. In diarrhea without pseudomembranous colitis (PMC), feces have a foul odor and are not bloody. Abdominal pain with or without pyrexia may also be present along with diarrhea. PMC is

			1			for more than the second
						formation of pseudomembranes on
						the intestinal mucosal
						surface. Patients with
						PMC also have more
						systemic side effects.
ENTEROBACTER	Unknown	Ingestion;	Humans	Enterobacter spp.	Most Enterobacter	Enterobacter spp.,
AEROGENES and		injection/		are resistant to	spp. are susceptible	particularly E.
cloacae		non-intact		ampicillin; first- and	to cefepime ^(<u>7</u>) ,	aerogenes and E.
		skin		second-generation	aminoglycosides,	cloacae, have been
				cephalosporins ^(<u>7</u>) ;	fluoroquinolones,	associated with
				and cephalothin ⁽	and trimethoprim-	nosocomial outbreaks,
					sulfamethoxazole ^(<u>8</u>) .	and are considered
					Tigecycline has been	opportunistic
					shown effective in	pathogens ^{(<u>1</u>,<u>5</u>).}
					vitro	Enterobacter spp. can
						cause numerous
						infections, including
						cerebral abscess,
						pneumonia,
						meningitis, septicemia, and wound, urinary
						tract (particularly
						catheter-related UTI),
						and abdominal
						cavity/intestinal
						infections ^(6,7) . In
						addition, Enterobacter
						spp. have been noted
						in intravascular device-
						related infections, and
						surgical site infections
						(primarily
						postoperative or
						related to devices such
						as biliary stents) ⁽⁷⁾ .
						Many species can
						cause extra-intestinal
						infections ⁽⁶⁾ , for example, Enterobacter
						sakazakii, has been
						associated with brain
						abscesses in infants
						and with meningitis ^(3,$\underline{7}$) .
						Mortality rates for
						bacterial meningitis
						range from 40-80% ⁽⁵⁾ .
SERRATIA	Unknown	Injection/	Humans	Many Serratia spp.	Serratia spp. are	Serratia spp. are
MARCESCENS and		non-intact		isolates (39-73%)	usually susceptible	opportunistic
PLYMUTHICA		skin		are resistant to	to aminoglycosides,	pathogens and are one
				gentamicin. They	fluoroquinolones,	of the ten most
				are all resistant to	and co-trimazole	common causes of
				penicillins and		bacteremia in North
				cephalosporin		America. They are
						responsible for a variety of infections,
						including bacteremia,
						pneumonia,
						intravenous catheter-
						associated infections,
						osteomyelitis,
						endocarditis, and,
						rarely, endogenous and
						exogenous
						endophthalmitis.
						Symptom of

			endophthalmitis
			appears rapidly after
			infection, and may
			include fever,
			erythema, ocular pain,
			periorbital swelling,
			and hypopyon (pus in
			the eyes). The mortality
			rate from bacteremia
			due to Serratia spp. 6
			months after infection
			is 37%.

a2. List and describe any other biological material not covered in the tables above:

a3. Are any of the biological agents used or stored in your laboratory select agents? Check here to verify (<u>https://www.selectagents.gov/selectagentsandtoxinslist.html</u>). Yes \Box No \boxtimes If yes, which ones?

b. Experimental Procedures:

1. Briefly describe experiment and procedures involving use of biological agents?

Bacterial growth is done following standard protocols as described in Current Protocols in Molecular Biology². Phage transfection, titering, and purification are performed by standard protocols, as described in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975003/

2. Will experiments result in acquisition of new characteristics such as enhanced virulence, infectivity, drug or antibiotic resistance, or change in host range? Yes 🔀 No 🗌 If so, explain:

Engineered bacteriophage will have altered host range to improve antimicrobial activity, or act against new pathogens.

3. Will you introduce viable biological material (microorganisms or cells) into animals?

Yes No If so:

a) Please describe:

Genetically engineered bacteriophage that show promise as antimicrobials *in vitro* will be tested in infection and disease models in mice. One current model involves skin infection caused by inoculating superficial wounds with bacteria, and treating with promising antimicrobials. A second model involves treating sepsis in mice, and a third involves manipulation of either the normal or pathological intestinal microbiome. No selection markers are engineered into the therapeutic bacteriophage.

b) List your MIT Committee on Animal Care (IACUC) protocol no(s), if your animal model also needs MIT Committee on Animal Care (IACUC) approval: <u>1016-064-19, 1215-114-18</u>

Project 2: Bacteria as a tool for Manufacturing and Testing Bioactive Molecules

a) In lay terms, briefly describe your research as you would to a friend who is not a scientist.

As part of their physiology, bacteria manufacture a vast number of enzymes, small molecules, and polymers, which alone and in groups perform complex tasks. In these projects we are modifying bacteria to make them make novel products such as therapeutic proteins, small molecule and protein antibiotics. We are testing antibiotics, both those produced by engineered bacteria and those produced synthetically. In addition, we are developing systems to increase production of chosen products, to allow for efficient manufacture and purification of valuable bioactive molecules.

b) Outline the overall goal(s) of the research in the space below. Give enough information to assure that the purpose of the experiments and the techniques used are clear. Please use reasonably nontechnical terms.

2.1) Synthetic microbial consortia for the production of value added small molecules and therapeutic applications

Our goal is to create a broad, multidisciplinary set of technologies to achieve robustness, stability, and safety in multi-species communities that perform collaborative functions. Currently, the dynamic mechanisms governing multi-species relationships are poorly defined. Moreover, current microbial engineering revolves around individual and highly domesticated bacteria, living in highly constrained environments, devoid of fluctuations and competitors. These organisms that are susceptible to mutations, synthetic gene constructs that impose significant loads on their hosts and are not optimized for stable and robust function, the bacteria share the standard genetic code and are thus non-orthogonal with other genetic elements and wild organisms, and the systems that are incapable of sensing malfunctions and triggering organismal and functional termination with high efficiencies. The resulting lack of robustness, stability, and safety make the use of such engineered organisms in the real world infeasible. We will create, model, and study the properties and design rules that control the behavior of multi-species microbial consortia.

One specific goal is to develop an engineered 5-species microorganism consortium for inflammatory bowel disease (IBD) therapy. More than 1 million people in the US suffer from IBD, and the cause and cure are not known. There is evidence that intestinal microbiota act as autoantigens in IBD; there are also changes in the population as a result of the disease. Our goal is to use a microbial consortium to decrease inflammation in the colon, with the hope that this will both ease symptoms, and allow the intestine to heal.

The five species we are going to engineer are *Bacteroides Fragilis*; *Bacteroides thetaiotaomicron*; *Bacteroides ovatus*; *Bacteroides vulgatus* and *Escherichia coli* Nissle. Each microorganism will express one or two enzymes from this enzyme list: Superoxide dismutase; Catalase; Glutathione peroxidase; Glutathione Reductase; Nitric oxide dioxygenase; Peroxiredoxin; Disulfide Reductase. The enzymes will work together to detoxify reactive oxygen species and reactive nitrogen species implicated as toxins in IBD.

We will also investigate conditions for creating consortia including other bacteria, such as *Enterobacter aerogenes, Pseudomonas aurantiaca, Pseudomonas chlororaphis, Pseudomonas citronellolis, Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas veronii, Serratia marcescens, Bacillus subtilis 168,* and *Lactobacillus plantarum*. These experiment do not involve genetic engineering of the bacteria at this time.

2.4) Use of CRISPRi to engineer the production of amino-acids by Corynebacterium glutamicum

In this project, sgRNAs were designed to be co-expressed with a nuclease-deficient Cas9 (dCas9). In this system, the transcription of genes will be repressed; each of several genes can be repressed independently. The amount of glutamate or lysine secreted by the organism was then determined. CRISPRi can be successfully used to the control of metabolic pathways in *C. glutamicum*. This will allow the increased production of economically relevant bioproducts.

2.5) Therapeutic use of anti-microbial peptides

Antibiotic resistance is a serious global health problem. Increasing numbers of bacterial isolates are resistant to all available antibiotics, and the untreatable infections they cause are predicted to kill 10 million people per year worldwide by 2050. Therefore, there is an urgent need to develop alternative approaches, extending beyond conventional antibiotics, to treat severe bacterial infections. The innate immune systems of all known multicellular organisms, including humans, produce evolutionarily conserved small molecules known as antimicrobial peptides (AMPs). These naturally occurring peptides, which have evolved over billions of years, confer protection against a wide range of pathogenic microorganisms. They therefore constitute excellent templates for the generation of engineered peptides having enhanced activity against highly drug-resistant bacterial infections.

The experimental procedures will involve treating different bacterial species, including drug-resistant pathogens, with a newly designed and synthesized library of antimicrobial peptides. The model organism *Escherichia coli*, which lives in the lower intestine of warm-blooded organisms, will be used as proof-of-concept and results obtained with this organism will be extended to more relevant clinical antibiotic-resistant strains available in the Lu lab (see section 1). We will also cross-check results other model pathogenic organisms such as, *Salmonella, Klebsiella, Shigella*, pathogenic and non-pathogenic *Escherichia coli*, *Pseudomonas, Yersinia*, *Enterobacter, Enterococcus*, and *Clostridium difficile*.

We have recently observed that some synthetic peptides are capable of killing bacterial species from the human microbiota. This is interesting because these strains are known to be completely resistant to killing by naturally occurring AMPs. Therefore, these synthetic peptides could serve as tools to engineer the microbiome by either 1) selectively removing specific species or 2) indiscriminately killing all species in a particular microbial consortium.

Therefore, we will expand our screen by challenging additional members of the human microbiota. All of the strains that will be tested are natural members of a healthy human microbiota. They include *Bacteroides* strains that have been previously used extensively in the lab and can potentially rarely cause anaerobic infections in immunocompromised individuals. *Bacteroides spp.* are therefore listed as BL2. All of the other strains are listed as BL1 and are non-pathogenic. We will use only wild-type strains for the proposed experiments and, therefore, these strains will not be genetically modified.

2.6) Probiotic E. coli for the in situ production of anti-inflammatory compounds

Inflammation in the gut is linked to a growing number of medical conditions including but not limited to IBD, Crohn's disease or cancer. With this project, we are exploring the possibility to create commensal bacteria that may lower inflammation in situ by producing anti-inflammatory compounds such as anti-TNF- α , IL-10 and anti-IL-23. We will introduce the pathways for synthesis and export of such molecules into the common laboratory *E. coli* strain BL21(DE3) for initial testing and then transfer the entire system into the probiotic *E. coli* Nissle 1917 for in animal testing. The pathways will be partly integrated into the genome of our final strain and partly carried on replicative plasmids (Psang10-3F, pTRKH3-ermGFP, pGEN-luxCDABE, pTKW106alp7A) chosen according to our guidelines and sourced from Addgene. Eventually, we hope to create a strain which is plasmid free and antibiotic resistance marker free. After having ascertained proper expression and export of our effectors *in vitro*, and exact bacterial loads determined, the strains will be gavaged to TNBS treated mice. TNBS is a chemical that induces a Crohn's disease-like state in mice. We rely on *E. coli* Nissle 1917 because it was shown to be either neutral or beneficial in several infectious contexts. Genetically modifying it is easy and there is no reason why any of the modification we will incur to it may make it more pathogenic.

2.7) Identification of genetic targets leading to antibiotic resensitizing.

Many bacteria are naturally resistant to a variable array of antibiotics. This is often achieved through expression of powerful molecular pumps that expel antibiotics but can also be the result of alterations of the bacterial membranes or surface appendages, mutation of the antibiotic target or from the formation of biofilms. The goal of this project is to resensitize *Pseudomonas aeruginosa* to standard antibiotics by reducing expression of biofilm genes, and prevent biofilm formation. *Pseudomonas aeruginosa* is a common cause of healthcare-associated infections and, in the United States, more than 13% of these infections are associated with multidrug-resistant phenotypes. These bacteria form protected communities known as biofilms and they can be up to 1000-fold more resistant to antibiotics. Therefore, strategies to identify and validate new targets that resensitize *P. aeruginosa* to antibiotics are needed. The first step is using CRISPR interference to achieve transcriptional repression of selected

target genes (flgK, phzM, psIA, psIB, relA and lasI that are known to be involved in antibiotic resistance and/or biofilm synthesis). Antibiotic resistance of the resulting strains will then be assessed in Minimum Inhibitory Concentration and growth rate with/without antibiotic experiments conducted on biofilms grown in a microfluidic device.

Section 5. Use of Recombinant or Synthetic Nucleic Acid: Check box if not applicable (Please complete this section if you use or generate recombinant microorganisms, cells, animals, plants, etc.)

Please indicate the Section of the NIH Recombinant DNA Guidelines that applies to this research. If you have questions Biosafety Staff will be glad to assist you. Note that the City of Cambridge requests that we register all recombinant work even if it is exempt under section III-F or Appendix C. For information on which section of the NIH Guidelines your experiments fall under, please see the NIH OSP website: http://osp.od.nih.gov/office-biotechnology-activities/biosafety/nihquidelines.

<u> </u>			
Sect	ion III	-A	

Section III-B Section III-C Section III-D Section III-E Section III-F

a. Source of Gene, Insert or Clone:

5. Specify DNA/RNA source (organism the sequence is from), promoter used, nature of insert (genes families are acceptable, e.g. fluorescent proteins), if a protein expressed, and percent of any viral genome in construct (for viral vectors see 5.b.2):

Insert	Cloned into	Under promoter control	Insert source	Nature of insert	Protein expressed?	% viral genome
CRISPR/cas system components	Vectors from the Lutz and Bujard collection ^{1.} , pNBU1, pNBU2, pZA1, pZE1, pZE2, pZE3, pBR322, pAL374 and pZ8-1, pBR322:RSF1010	constitutive	S. pyogenes	CRISPR- Component	Yes	0
Enzymes such as Superoxide dismutase; Catalase; Glutathione peroxidase; Glutathione Reductase; Nitric oxide dioxygenase; Peroxiredoxin; Disulfide Reductase	pNBU1, pNBU2, pZA1, pZE1, pZE2, pZE3, pBR322	constitutive	E coli	Enzymes that break down reactive oxygen and reactive nitrogen	yes	0
Anti- inflammatory compounds such as anti- TNF-α, IL-10 and anti-IL-23	pET28 family	T7 promoter	E coli BL21DE	Anti- inflammatory compounds	yes	0

Anti- inflammatory compounds such as anti- TNF- α , IL-10 and anti-IL-23	Psang10-3F, pTRKH3-ermGFP, pGEN-luxCDABE,	constitutive	E coli Nissle 1917	Anti- inflammatory compounds	yes	0
--	---	--------------	-----------------------	------------------------------------	-----	---

- 6. Are any sequences from select agents and toxins? Yes 🗌 No 🔀; If yes, please specify.
- 7. Do any sequences code for toxins not covered in (2) above? Yes No X; If yes, please specify.
- 8. Is the DNA source from a USDA-regulated plant, animal or insect? Yes No X; If the regulated organism is grown or stored at MIT, please include a copy of the USDA permit. (Link to USDA site: <u>http://www.aphis.usda.gov/brs/index.html</u>)

b. Vectors and Host Cells:

3. Identify cloning/expression/transfection vectors used, recipient bacterial strains used to propagate the vector, and recipient host cell (bacteria, yeast, murine or human cells, plant, etc.). Provide a restriction map of vector if it is new or not published. If commercially available vector or plasmid, please indicate vendor. Describe the location and type of promoters and other control sequences and percent of any viral genome in construct.

Vector name	Recipient Bacterial strain	Reporter gene?	% viral genes	Type of promoters	Host cell
Vectors from the Lutz and Bujard collection ^{1.}	E coli K12, MG1655	fluorescent proteins, as described above	0	Constitutive, inducible such as pOxyR, pSoxS, pLux, pLas, pRhl (described in detail above	E coli K12 or MG1655
pNBU1, pNBU2	Bacteroides thetaiotaomicron, B. fragilis, B. ovatus, B. vulgatus	Y	0	Constitutive and inducible	Bacteroides thetaiotaomicron, B. fragilis, B. ovatus, B. vulgatus
pZA1	E. coli Nissle 1917	Ν	0	Constitutive	E. coli Nissle 1917
pZE1, pZE2, pZE3	E. coli Nissle 1917	N	0	Constitutive	E. coli Nissle 1917
pBR322	E coli K12	Υ	0	Constitutive	E. coli K12
pAL374 and pZ8-1	Corynebacterium glutamicum	N	0	constitutive	Corynebacterium glutamicum
pBR322:RSF1010	E coli K12 and Pseudomonas aeruginosa	N	0	constitutive	Pseudomonas aeruginosa
pET28 a, b, c	E coli BL21 DE	Ν	<10%	T7 promoter	E coli BL21 DE
Psang10-3F, pTRKH3- ermGFP, pGEN-	E coli Nissle 1917	Ν	0	costitutive	E coli Nissle 1917

luxCDABE,			
pTKW106alp7A			

4. If using viral vectors, fill out the table below. If using multiple types of viral vectors, please add a new table per vector type; multiple variations of the same viral vector type can be in the same table. (If using retroviral or lentiviral vectors additional requirements apply. Please see MIT CAB/ESCRO policy at the following URL: https://cabescro.mit.edu/home

Viral Vector type	
Description (Plasmids used, viral	
vector generation for lentiviral vector)	
Packaging cell line(s), if applicable	
Replication competent or incompetent	
Assays for detecting replication	
competent virus, if applicable	
Pseudotype	
Host range	
Safety feature (e.g. self-inactivating)	
Integrate into genome (yes/no)	
Exposure hazard (e.g. insertional	
mutagenesis)	
Promoters to be used with viral vector	
Inserts to be used with viral vector ^{1,2}	

¹For Cas9 expression in viral vectors, please indicate whether the promoter driving it is inducible or constitutively active.

²List all oncogenes that will be overexpressed and all tumor-suppressors that will be knocked down using viral vectors.

4. If using nanoparticles for the delivery of recombinant DNA/RNA, fill out the table below.

Nanoparticle description	
Able to enter cells? (yes/no)	
Exposure hazard	

a. Use of Animals (including invertebrates) or Insects: Check box if not applicable . Most research using animals also needs the approval of the MIT Committee on Animal Care (IACUC). Contact them to register your animal research; If you have CAC protocol no(s), list them here: <u>0915-092-</u> 18; 1215-114-18, 1016-064-19.

_. The questions below are intended to deal with the use of potentially biohazardous agents in animals/insects or the creation of transgenic animals/insects.

- 2. Will rDNA technologies (such as producing transgenics), recombinant microbes/cells be used in animals or insects? Yes 🖂 No
 - a. If yes, please describe objective of the research. Include recipient species, and list pathogen, rDNA technology, or recombinant microbe or human materials that will be used in animal/plant/ insect, and resulting genotype. What selection marker will be used?

We will introduce recombinant organisms, including engineered E. coli, B. thetaiotaomicron, B. fragilis, B. ovatus and B. vulgatus strains, as well as the probiotic yeast S. boulardii into the mouse gastrointestinal tract. The objective is to test genetically engineered strains for their ability to detect gut inflammation and/or secrete anti-inflammatory proteins, for their ability to act as as next-generation of inflammation bowel disease sensors and therapeutics. Organisms will be introduced by oral gavage. Recipient species includes Balb/c mice, SJL mice, and C57BL/6 mice. No engineered bacterial strains are known to have or will acquire virulence. The bacteria may have display resistance to common laboratory antibiotics such as kanamycin, or erythromycin, but not to clinically relevant drugs.

1215-114-18:

Development of Therapeutic Bacteriophage for Decolonization: A major concern in infectious disease is the establishment of antibiotic resistance and pathogen reservoirs in healthy individuals that could potentially later cause life threatening opportunistic infections. We wish to explore the use of bacteriophage as a means to specifically eliminate antibiotic resistant or pathogenic strains from a microbiome without affecting commensal populations. We intend first demonstrate this concept using non-pathogenic *E. coli* strains (K-12, BL21, C-1) and *Klebsiella spp.* (sp. 390 and *oxytoca*). Later, we extend this concept to clinical isolates carbapenem-resistant Enterobacteriaceae (CREs), including *E. coli* and *K. pneumoniae* strains. As many of these human isolates do not naturally colonize the mouse gut, we will perturb the microbiota using antibiotic treatment (streptomycin or ampicillin) to allow our strains to colonize.

1016-064-19

The goal is determine whether different agents such as ionic liquids, nitroxides and antimicrobial peptides exhibit antiinfective properties *in vivo* in two skin infection models, superficial and abscess. There is a need for alternative therapeutics to treat drug- resistant infections. Here, we aim to test the efficacy of novel classes of antimicrobials in mouse models

- 4. If transgenic, including "knockout", animals/insects will be generated, please provide information on the transgene and vector as well as the expected phenotype of the recombinant animal/insect.
- 5. Does this recombinant species pose a risk to the community or the environment if there is an inadvertent release outside the laboratory or animal facility? Yes \Box No \Box If yes, explain:

d. Large-Scale Research: Check box if not applicable

Do experiments involve growth of 10 liters or more of culture at a time? Yes
No

If yes, an SOP is required for this work. Contact the Biosafety Program for assistant and:

- 3. Identify culture room, biological agent, recombinant modifications, and type of equipment used for large-scale culture growth and handling:
- 4. Describe the steps used to handle and contain spills:

e. Use of Plants: Check box if not applicable

Describe experiments that involve recombinant work and plants, whether the plant itself is made recombinant or recombinant cell or microorganisms are used with plants.

Does this recombinant species pose a risk to the community or the environment if there is an inadvertent release outside the laboratory? Yes \square No \square If yes, explain:

Section 6. Biological Agent Use: Check box if not applicable (Please complete this section if you work with viable microorganisms or viruses.)

a. Agent identification. List biological agent(s)/microorganism(s) genus/animals/plants/species/strain and genotypic markers, host range; any antibiotic resistance; recommended Biosafety Level (CDC); the source of the agent (e.g. new isolate from human tissue, blood, animal, tissue culture, another laboratory, ATCC, etc.).

Genus and species	Strain	Bio safety level (BSL) / Risk group (RG)	Source	Max volume used	Max Concentration used	Disinfectant (s) used	Can this cause disease in any population? (Y/N)
Bacillus subtilis	168, NCIB3610	1	Kolter lab, TKL	100mls		Bleach	Ν
Bacteroides fragilis	NCTC 9343	2	ATCC	100mls		Bleach	Y
Bacteroides ovatus	NCTC 11153,	2	ATCC	100mls		Bleach	Y
	ATCC 8483						
Bacteroides thetaiotaomicron	VPI-5482, NCTC 9343, HSP40	2	ATCC	100mls		Bleach	Y
Bacteroides uniformis	ATCC 8492	2	ATCC	100mls		Bleach	Y
Bacteroides vulgatus	ATCC 8482,	2	ATCC, mouse	100mls		Bleach	Y
	mmF837		isolate MIT				
Bacteroides vulgatus	ATCC 8482	2	ATCC	100mls		Bleach	Y
Corynebacterium glutamicum	ATCC 13032	1	ATCC, TKL	100mls		Bleach	Ν
Enterobacter aerogenes	planned	2	ATCC	100mls		Bleach	Y
Enterobacter cloacae	1000654	2	ATCC	100mls		Bleach	Y
Enterococcus faecalis	(NDM-1) Ef1 – Ef15	2	ATCC, Mia	100mls		Bleach	Y
			Liebermann (Fox lab)				
Escherichia coli	EHEC, STEC,	2	the STEC center,	100mls		Bleach	Y
	EPEC, the ECOR collection		АТСС				
Escherichia coli K-12	MG1655, DH5alpha, EMG2, KL463, XL10, C600, DH10B, BW25113, DH5alpha Pro, MG1655 Pro, RFS289, Cl236, ER2738, ER2267, NEB10beta, E. cloni 10G, XL1-GOLD, XL1-GOLD, XL1-GOLD, XL1-RED, W3110, NM2, S17, CR63, CR63I, ME5486, transformax EC100D pir, Transformax EC100D pir, 116, SURE2, MK01, MK02, ET12567, C600, W1, MC4100, oneshot TOP10,		CGSC, NEB, ATCC, Thermo, Lucigen, Keith Shearwin, Laub lab, Collins lab, Agilent, expressys, invitrogen, epibio, clontech, Roberto Kolter, real biotech corporation, the Yale E. coli genetic stock center	100mls		Bleach	N

REWRITE

MG1655(DE3), NEB10beta, MG1655 AntrBC, MG1655Pro with pLtet0- mf-Lon protease integrated, Transformax EP13000, DH5alpha F' iq, sbt13, sbt14, stellar, HIT DH5- alpha,JM109Image: Comparison of the sector of
NEB10beta, MG16555 AntrBC, MG16555ro with pLetO- mf-Lon protease integrated, Transformax EPI3000, DHSalpha F' iq, sbt13, sbt14, stellar, HIT DH5- alpha, JM109Image: Stellar, HIT DH5- Alter Stellar, HIT DH5- Alter Stellar, HIT DH5- Alter Stellar, HIT DH5- A TCC 12'. ATCC ATCC ATCCImage: Stellar, HIT DH5- ATCC 23503, STEC(http://shigato, XTEC(http://sh
NEB10beta, MG16555 AntrBC, MG16555ro with pLetO- mf-Lon protease integrated, Transformax EPI3000, DHSalpha F' iq, sbtl3, sbtl4, stellar, HIT DH5- alpha, JM109Netro: http://cgsc.biology. vale.edu/KeioList.p100mlsBleachNEscherichia coli K-12keio collection1http://cgsc.biology. vale.edu/KeioList.p100mlsBleachNEscherichia coli (synthetic)C321.DeltaA, rFc.β.dC.12'. ATCC ATC1https://www.ncbi. of.set.pds11571100mlsBleachNEscherichia coli (other)ATCC 11775, ATCC ATCC ATCC ATCC2ATCC, P. Nordmann, STEC(http://shigato XTEC(http://shigato XTEC(http://shigato XTEC(http://shigato XTEC 23503,100mlsBleachY
MG1655 AntrBC, MG1655Pro with pLtet0- mf-Lon protease integrated, Transformax EPI3000, DHSalpha F' iq, sbt3, sbt14, stellar, HIT DH5- alpha, JM109Methods Http://cgsc.biology, yale.edu/KeioList.p hp100mlsBleachNEscherichia coli (synthetic)C321.DeltaA, rEc.β.dC.12'.1http://cgsc.biology, yale.edu/KeioList.p hp100mlsBleachNEscherichia coli (other)ATCC 11775, ATCC 23503, ATCC 23503,2ATCC, P. Nordmann, STEC(htp://shigato x.net/new/referenc100mlsBleachY
AntrBC, MG1655Pro with pLtetO- mf-Lon protease integrated, Transformax EP13000, DH5alpha F' iq, sbt13, sbt14, stellar, HIT DH5- alpha, JM109Antrb://cgsc.biology, vale.edu/KeioList.p hpIoOmlsBleachNEscherichia coli K-12keio collection1 http://cgsc.biology, vale.edu/KeioList.p 100mlsBleachNEscherichia coli K-12keio collection1 http://cgsc.biology, vale.edu/KeioList.p 100mlsBleachNEscherichia coli (other)C321.DeltaA, rFc.β.dC.12'. AtY1 http://cgsc.biology, vale.edu/KeioList.p 100mlsBleachNEscherichia coli (other)ATCC 11775, ATCC 2503,2ATCC, P. Nordmann, STEC(http://shigato x.net/new/reference100mlsBleachY
MG1655Pro with pLtetO- mf-Lon protease integrated, Transformax EPI3000, DH5alpha F' iq, sbtl3, sbtl4, stellar, HIT DH5- alpha, JM109Metro:Secherichia coli K-12Meio the secherichia coli1 http://cgsc.biology. vale.edu/KeioList.p hp100mlsBleachNEscherichia coli (synthetic)C321.DeltaA, rEc.β.dC.12'. AtY1 http://cgsc.biology. vale.edu/KeioList.p hp100mlsBleachNEscherichia coli (synthetic)C321.DeltaA, rEc.β.dC.12'. AtY1 http://www.ncbi. nlm.nih.gov/nuccor e/549811571100mlsBleachNEscherichia coli (other)ATCC 11775, ATCC 700973, ATCC 23503,2ATCC, P. Nordmann, STEC(http://shigato x.net/new/referenc100mlsBleachY
with pLtetO- mf-Lon protease integrated, Transformax EPI3000, DH5alpha F' iq, sbt13, sbt14, stellar, HT DH5- alpha, JM109with pLtetO- method by the stellar, HT DH5- alpha, JM109with pLtetO- method by the stellar, HT DH5- alpha, JM109Model and the stellar, http://cgsc.biology. vale.edu/KeioList.p hp100mlsBleachNEscherichia coli (synthetic)C321.DeltaA, rEc.β.dC.12'. AtY1http://cgsc.biology. hp100mlsBleachNEscherichia coli (other)C321.DeltaA, rEc.β.dC.12'. AtY1https://www.ncbi. nlm.nih.gov/nuccor e/549811571100mlsBleachNEscherichia coli (other)ATCC 11775, ATCC 23503,2ATCC, P. Nordmann, STEC(http://shigato X n.et/new/referenc100mlsBleachY
mf-Lon protease integrated, Transformax EPI3000, DHSalpha F' iq, sbtl3, sbtl4, stellar, HIT DH5- alpha JM109mf-Lon protease integrated, Transformax EPI3000, DHSalpha F' iq, sbtl3, sbtl4, stellar, HIT DH5- alpha JM109100mlsBleachNEscherichia coli K-12keio collection1http://cgsc.biology. yale.edu/KeioList.p hp100mlsBleachNEscherichia coli (synthetic)C321.DeltaA, rEc.β.dC.12'. AtY1https://www.ncbi. nlm.nih.gov/nuccor e/S49811571100mlsBleachNEscherichia coli (other)ATCC 11775, 700973, ATCC 23503,2ATCC, P. Nordmann, STEC(http://shigato x.net/new/referenc100mlsBleachY
protease integrated, Transformax EP13000, DH5alpha F' iq, sbt13, sbt14, stellar, HT DH5- alpha,JM109set and the set of
integrated, Transformax EPI3000, DHSalpha F' iq, sbt13, sbt14, stellar, HIT DH5- alpha, JM109integrated, Transformax EPI3000, DHSalpha F' iq, sbt13, sbt14, stellar, HIT DH5- alpha, JM109integrated, integrated, Tescherichia coli K-12integrated, iq, sbt13, sbt14, stellar, HIT DH5- alpha, JM109integrated, integrated, Tescherichia coli K-12integrated, iq, sbt13, sbt14, stellar, HIT DH5- alpha, JM109integrate, integrated, integrated, tescherichia coli (collection1http://cgsc.biology. yale.edu/KeioList.p hp100mlsBleachNEscherichia coli (synthetic)C321.DeltaA, rEc, G.CL.2'. AtY1https://www.ncbi. nlm.nih.gov/nuccor e/549811571100mlsBleachNEscherichia coli (other)ATCC 11775, ATCC ATCC ATCC2ATCC, P. Nordmann, STEC(http://shigato x.net/new/referenc100mlsBleachY
integrated, Transformax EPI3000, DHSalpha F' iq, sbt13, sbt14, stellar, HIT DH5- alpha, JM109integrated, Transformax EPI3000, DHSalpha F' iq, sbt13, sbt14, stellar, HIT DH5- alpha, JM109integrated, integrated, Tescherichia coli K-12integrated, iq, sbt13, sbt14, stellar, HIT DH5- alpha, JM109integrated, integrated, Tescherichia coli K-12integrated, iq, sbt13, sbt14, stellar, HIT DH5- alpha, JM109integrate, integrated, integrated, tescherichia coli (collection1http://cgsc.biology. yale.edu/KeioList.p hp100mlsBleachNEscherichia coli (synthetic)C321.DeltaA, rEc, G.CL.2'. AtY1https://www.ncbi. nlm.nih.gov/nuccor e/549811571100mlsBleachNEscherichia coli (other)ATCC 11775, ATCC ATCC ATCC2ATCC, P. Nordmann, STEC(http://shigato x.net/new/referenc100mlsBleachY
Transformax EPI3000, DH5alpha F' iq, sbtl3, sbtl4, stellar, HIT DH5- alpha, JM109The second
EP13000, DH5alpha F' iq, sbt13, sbt14, stellar, HIT DH5- alpha, JM109LL
DH5alpha F' iq, sbt3, sbt4, stellar, HIT DH5- alpha, JM109LLL<
iq, sbtl3, sbtl4, stellar, HIT DH5- alpha, JM109iq, sbtl3, sbtl4, stellar, HIT DH5- alpha, JM109is specific alpha, s
sbtl4, stellar, HIT DH5- alpha, JM109sbtl4, stellar, HIT DH5- alpha, JM109http://cgsc.biology. yale.edu/KeioList.p hp100mlsBleachNEscherichia coli (synthetic)C321.DeltaA, rEc.B.dC.12'. AtY1http://cgsc.biology. yale.edu/KeioList.p hp100mlsBleachNEscherichia coli (synthetic)C321.DeltaA, rEc.B.dC.12'. AtY1https://www.ncbi. nlm.nih.gov/nuccor e/549811571100mlsBleachNEscherichia coli (other)ATCC 11775, 700973, ATCC 23503,2ATCC, P. Nordmann, STEC(http://shigato x.net/new/referenc100mlsBleachY
HIT DH5- alpha, JM109HIT DH5- alpha, JM109HIT DH5- alpha, JM109HIT DH5- alpha, JM109HIT DH5- alpha, JM109HIT DH5- alpha, JM109HIT DH5- alpha, JM109BleachNEscherichia coli (synthetic)C321.DeltaA, rEc.β.dC.12'. AtY1http://cgsc.biology. yale.edu/KeioList.p hp100mlsBleachNEscherichia coli (synthetic)C321.DeltaA, rEc.β.dC.12'. AtY1https://www.ncbi. nlm.nih.gov/nuccor e/549811571100mlsBleachNEscherichia coli (other)ATCC 11775, 700973, ATCC 23503,2ATCC, P. Nordmann, STEC(http://shigato x.net/new/referenc100mlsBleachY
HIT DH5- alpha, JM109HIT DH5- alpha, JM109HIT DH5- alpha, JM109HIT DH5- alpha, JM109HIT DH5- alpha, JM109HIT DH5- alpha, JM109HIT DH5- alpha, JM109BleachNEscherichia coli (synthetic)C321.DeltaA, rEc.β.dC.12'. AtY1http://cgsc.biology. yale.edu/KeioList.p hp100mlsBleachNEscherichia coli (synthetic)C321.DeltaA, rEc.β.dC.12'. AtY1https://www.ncbi. nlm.nih.gov/nuccor e/549811571100mlsBleachNEscherichia coli (other)ATCC 11775, 700973, ATCC 23503,2ATCC, P. Nordmann, STEC(http://shigato x.net/new/referenc100mlsBleachY
Image: scherichia coli K-12keio collection1 http://cgsc.biology. 100mlsBleachNEscherichia coli (synthetic)C321.DeltaA, rEc.B.dC.12'. AtY1 https://www.ncbi. nlm.nih.gov/nuccor e/549811571100mlsBleachNEscherichia coli (other)ATCC 11775, 700973, ATCC 23503,2ATCC, P. Nordmann, STEC(http://shigato x.net/new/referenc100mlsBleachY
Escherichia coli K-12keio collection1 http://cgsc.biology. 100mlsBleachNEscherichia coli (synthetic)C321.DeltaA, rEc.β.dC.12'. AtY1 https://www.ncbi. 100mlsBleachNEscherichia coli (other)ATCC 11775, 700973, ATCC 23503,2ATCC, P. Nordmann, STEC(http://shigato x.net/new/referenc100mlsBleachY
collectionvale.edu/KeioList.p hploomlsBleachNEscherichia coli (synthetic)C321.DeltaA, rEc.B.dC.12'. AtY1https://www.ncbi. nlm.nih.gov/nuccor e/549811571100mlsBleachNEscherichia coli (other)ATCC 11775, 700973, ATCC 23503,2ATCC, P. Nordmann, STEC(http://shigato x.net/new/referenc100mlsBleachY
Image: big
Escherichia coli (synthetic) C321.DeltaA, rEc.β.dC.12'. ΔtY 1 https://www.ncbi. nlm.nih.gov/nuccor e/549811571 100mls Bleach N Escherichia coli (other) ATCC 11775, ATCC 700973, ATCC 23503, 2 ATCC, P. Nordmann, STEC(http://shigato x.net/new/referenc 100mls Bleach Y
(synthetic) rEc.β.dC.12'. ΔtY nlm.nih.gov/nuccor e/549811571 Escherichia coli (other) ATCC 11775, ATCC 2 ATCC, P. 100mls Bleach Y ATCC 700973, ATCC 23503, STEC(http://shigato x.net/new/referenc stechture/new/referenc Nordmann, stechture/new/referenc Nordmann,
(synthetic) rEc.β.dC.12'. ΔtY nlm.nih.gov/nuccor e/549811571 Escherichia coli (other) ATCC 11775, ATCC 2 ATCC, P. 100mls Bleach Y ATCC 700973, ATCC 23503, STEC(http://shigato x.net/new/referenc stechture/new/referenc Nordmann, stechture/new/referenc Nordmann,
ΔtYe/549811571Escherichia coli (other)ATCC 11775, ATCC2ATCC, P. Nordmann, STEC(http://shigato ATCC 23503,100mlsBleachY
Escherichia coli (other) ATCC 11775, ATCC 2 ATCC, P. 100mls Bleach Y 00973, ATCC 23503, STEC(http://shigato x.net/new/referenc stechtrum
ATCCNordmann,700973,STEC(http://shigatoATCC 23503,x.net/new/referenc
700973,STEC(http://shigatoATCC 23503,x.net/new/referenc
ATCC 23503, x.net/new/referenc
ATCC 23503, x.net/new/referenc
RKI, BAA-201
(TEM-3),
Nissle 1917,
HS, ECOR
collection
(ECOR1-70)
Escherichia coli (Shiga- DECA 2 ATCC, SGSC, STEC 100mls Bleach Y
toxin producing and collection, (http://shigatox.ne
pathogenic) EHEC 933W, t/new/reference-
EPEC, ATCC strains/deca.html)
700927,
ATCC 43888,
АТСС ВАА-
2196, ATCC
BAA-2193,
ATCC BAA-
2193, ATCC
BAA-2215,
АТСС ВАА-
2440, ATCC
BAA-2219,
АТСС ВАА-
2192
Escherichia coli B BL21, 1 ATCC, NEB, 100mls Bleach N
BL21(DE3), Lucigen, Invitrogen,
Rosetta, TKL
Rosetta(DE3)
, BL21AI, BB,
REL606,
BL21(DE3)/p
LysS, SHuffle
express T7,
Express Iq
Escherichia coli C C-1, C-1792, 1 Ian Molineux, 100mls Bleach N
C-236, C- ATCC, TKL
367 , C-368

REWRITE

Escherichia coli	rcF471-6,	1	Mouse fecal	100mls	Bleach	N
	rcF479,	-	isolates	1001110	Dicaoli	
	rcF513-9					
Klebsiella oxytoca	CCUG 15788	1	Sherwood Casjens	100mls	Bleach	Ν
Klebsiella pneumoniae	sp. 390,	2	ATCC, TKL, Julie	100mls	Bleach	Υ
	MGH78578,		Segre, lan			
	K6 / ATCC		Molineux, Eliava			
	700603		Institute			
	(SHV-18),					
	CDC1000527					
	(NDM-1),					
	1100975					
	(NDM-1),					
	1002565					
	(NDM-1),					
	1100770					
	(NDM-1),					
	KPNIH1, 10,					
	24, 27, 29,					
	30, 31, 32,					
	33, Kp80				 	
Pseudomonas	PAO1, PAK,	2	ATCC, Ribbeck lab,	100mls	Bleach	Υ
aeruginosa	PA14, ATCC		mouse fecal			
	10145,		isolates, Eliava			
	CECT111,		Institute			
	ATCC25102,					
	rcF477, rcF478, Ps25,					
	Ps32					
Pseudomonas	planned	1	ATCC	100mls	Bleach	N
aurantiaca	plained	1	AICC	1001113	Dieden	IN .
Pseudomonas	planned	1	ATCC	100mls	Bleach	Ν
chlororaphis	P	_				
Pseudomonas	planned	1	ATCC	100mls	Bleach	Ν
citronellolis						
Pseudomonas	A506	1	ATCC, TKL	100mls	Bleach	Ν
fluorescens						
Pseudomonas putida	KT2440, C1S,	2	ATCC, TKL	100mls	Bleach	Υ
	ATCC12633					
Pseudomonas veronii	planned	1	ATCC	100mls	Bleach	Ν
Pseudomonas cellulosa	ATCC55703	1	ATCC	100mls	Bleach	Ν
Enterococcus faecium	JCM5804	2	R. Rahmeh	100mls	Bleach	Y
Salmonella enterica	SARB1	2	Salmonella enterica	100mls	Bleach	Υ
enterica Agona			enterica Genetic			
			Stock Center, ATCC,			
Columnations	CADDO	2	TKL	100	Disast	V
Salmonella enterica	SARB2, ss44,	2	SGSC, ATCC	100mls	Bleach	Y
enterica Anatum	15/5	2	5050 ATCC	100ml-	Diagah	V
Salmonella enterica	SP141,	2	SGSC, ATCC	100mls	Bleach	Y
Bongori	SP905	2	5050 ATCC	100	Dianah	V
Salmonella enterica	SARB3	2	SGSC, ATCC	100mls	Bleach	Y
enterica Brandenburg Salmonella enterica	SARB6,	2	SGSC, ATCC, John	100mls	Bleach	Y
enterica Choleraesuis	SARBO, SARB7, SC-	2	Elmerdahl olsen	1001115	Bleach	
enterica choler desuis	B67, 14174,		Linerdani Uisen			
	A50, G9					
Salmonella enterica	SARB8	2	SGSC, ATCC	100mls	Bleach	Y
enterica decatur	571125	-		1001113	Sicucii	
Salmonella enterica	SARB9,	2	SGSC, ATCC	100mls	Bleach	Y
camonena enterica	SARB10	-		1001113	Sieden	
enterica Derby	5			100mls	Bleach	Y
enterica Derby Salmonella enterica	SARB13	2	SGSC. ATCC. John			
Salmonella enterica	SARB13, SARB14,	2	SGSC, ATCC, John Olsen	TOOLIIS	Dicaci	
	SARB13, SARB14, TY3627,	2	Olsen	1001115	bleden	

	SGSC4157,						
Salmonella enterica	3246 SARB15	2	SGSC, ATCC	100mls		Bleach	Y
enterica Duisberg							
Salmonella enterica	SARB20	2	SGSC, ATCC	100mls		Bleach	Y
enterica Emek							
Salmonella enterica	SARB18,	2	SGSC, ATCC	100mls		Bleach	Υ
enterica enteritidis	SARB19, LK5,						
	ATCC 13076						
Salmonella enterica	Kuwait (MDR	2	R. Rahmeh	100mls		Bleach	Υ
enterica Enteritidis	poultry isolate)						
Salmonella enterica	SARB21,	2	SGSC, ATCC	100mls		Bleach	Y
enterica Gallinarum	287/91	-	5656,71100	1001113		Dicucii	
Salmonella enterica	SL485	2	SGSC, ATCC	100mls		Bleach	Y
enterica Hadar			,				
Salmonella enterica	SARA30,	2	SGSC, ATCC	100mls		Bleach	Y
enterica Heidelberg	SARA36 to		,				
<u> </u>	SARA40,						
	SARB24,						
	SL486						
Salmonella enterica	SARB25	2	SGSC, ATCC	100mls		Bleach	Υ
enterica Indiana							
Salmonella enterica	#98, SP146	2	SGSC, ATCC	100mls		Bleach	Y
enterica Kentucky							
Salmonella enterica	SARB26,	2	SGSC, Ian Molinzux,	100mls		Bleach	Y
enterica Miami	SARB29		John Elmerdahl Olsen				
Salmonella enterica	SARB31	2	SGSC, ATCC	100mls		Bleach	Y
enterica Montevideo	JANDJI	2	JUJC, ATCC	1001113		Diedell	1
Salmonella enterica	SARA63 to	2	SGSC, ATCC	100mls		Bleach	Y
enterica münchen	SARA67,	-	0000,11100	1001110		Dicacii	
	SARA69,						
	SARA70,						
	SARA72,						
	SARB33						
Salmonella enterica	SARB37	2	SGSC, ATCC	100mls		Bleach	Y
enterica Newport							
Salmonella enterica	SARB51,	2	SGSC, ATCC	100mls		Bleach	Y
enterica Panama	SARB52						
Salmonella enterica	SARB53	2	SGSC, ATCC	100mls		Bleach	Υ
enterica Reading							
Salmonella enterica	SARB54	2	SGSC, ATCC	100mls		Bleach	Y
enterica Rubislaw							
Salmonella enterica	SARA24,	2	SGSC, ATCC	100mls		Bleach	Y
enterica Saint-Paul	SARB55,						
<u> </u>	SARB56		2020 AT00	100 1			N .
Salmonella enterica	CVM19633	2	SGSC, ATCC	100mls		Bleach	Y
enterica Salura annual							
Schwarzengrund Salmonella enterica	CADDEO	2	SCSC ATCC	100m/s		Pleach	Y
	SARB58	2	SGSC, ATCC	100mls		Bleach	1
enterica Sendai Salmonella enterica	SARB59	2	SGSC, ATCC	100mlc		Pleach	Y
enterica Senftenberg	SANDSS	2	JUSC, ATCC	100mls		Bleach	1
Salmonella enterica	SARB62	2	SGSC, ATCC	100mls		Bleach	Y
enterica Thompson	JANDOZ	2	505C, ATCC	1001113		Dicacii	
Salmonella enterica	LT2, IJ612,	2	SGSC, ATCC, John	100mls		Bleach	Y
enterica Typhimurium	MK1046, LT1	2	Elmerdahl olsen,	2001113		Dicucii	
	to LT6, LT7		Lionello Bossi,				
	to LT9, A36,		Sébastien Lemire				
	DT4a, LT11,		- Southern Lennine				
	LT13, LT14,						
		1	1	1	1		
	LT16 to LT21.						
	LT16 to LT21, SARA1 to						

Salmonella enterica	SARA12, SARA24, SARB66 to SARB68, 4/74, CVM23701, M8c, TT23381, C5, SP296, SP358, SP394, SP513, SP591, SP592, SP594, SP651, SP71, SP594, SP651, SP71, SP784, SP811, SP838, SP839, SP839, SP906 SARB69	2	SGSC, ATCC	100mls	Bleach	Y
enterica Typhisuis	07111200	-	0000,7.100	2001110	Diction	
Serratia marcescens	planned	2	ATCC	100mls	Bleach	Υ
Serratia plymuthica	V4	1	ATCC, TKL	100mls	Bleach	Ν
Shigella boydii	ATCC 9207	2	SGSC	100mls	Bleach	Υ
Shigella dysenteriae	planned	2	ATCC, Fasano lab (MGH)	100mls	Bleach	Υ
Shigella flexneri	ATCC 12022, M16, 2457T	2	SGSC, ATCC	100mls	Bleach	Y
Shigella sonnei	ATCC 25931, ATCC 9290	2	SGSC, ATCC	100mls	Bleach	Y
Staphylococcus aureus	RN4220	2	L. Marraffini	100mls	Bleach	γ
Stenotrophomonas maltophilia	planned	2	ATCC	100mls	Bleach	Υ
Streptococcus	planned	2	ATCC	100mls	Bleach	Y
agalactiae	nlannad	1	ATCC	100mls	Diagah	N
Streptococcus mutans	planned	1	ATCC	100mls 100mls	Bleach Bleach	N
Streptomyces coelicolor	DSMZ 41109, DSMZ 1042, DSMZ 41546	1	Kolter lab, DMSZ	TOOMIS	ыеасп	IN
Yersinia pseudotuberculosis	YPIII, IP2666	2	ATCC, Joan Mecsas	100mls	Bleach	Y
Yersinia enterocolityca	planned	2	ATCC	100mls	Bleach	γ

For agents that are pathogens, please complete the following table:

Organism	Infectious Dose	Route of exposure	Host range	Clinically relevant Drug resistance	Availability of treatment	Special equipment /PPE used (above standard PPE)	Disease state and symptoms of exposure
Bacteroides	Unknown	Mucosal	Humans,		Metronidazole,	N/A	Bacteroides spp.
thetaiotaomicron;		contact;	dogs,		imipenem, and		represent an
B. ovatus; B.		injection/	cats, and		amoxicillin seem to		important anaerobic
uniformis;		non-intact	other		be effective against		bacterial genus
Parabacterioides		skin	animals		B. fragitis and B.		associated with human
distastonis;					thetaiotaomicron		infections ⁽³⁾ . In
Bacteroides caccae;					(16). Studies using a		combination with
B. eggerthii;					rat model have		other facultative/strict
					shown that		anaerobes, they are
					pretreatment using		responsible for the
					oral		majority of localized

	1	1	1			1	
Pseudomonas (aeruginosa, putida, fluorescens)	Unknown	Ingestion, Injection/ non-intact skin	Humans	Species resistant to many antibiotics	vancomycin/imipen em resulted in undetectable levels of Bacteroides spp	N/A	abscesses within the cranium, thorax, peritoneum, liver, and female genital tract ^(4,8) . They can cause pulmonary abscesses when naturally- occurring oropharangeal Bacteroides and closely related genera are aspirated into the lung ⁽⁸⁾ . These taxa can lead to many types of diseases, some of which can be fatal, including noma (cancrum oris), human apical periodontitis, endocarditis, pelvic inflammatory disease, suppurative thrombophelebitis, and wound infections ^(4,5,9) . Organisms from oral flora also have a role in dental abscesses and infectivity of human bites. Bacteroides fragilis is the most common opportunistic pathogen of Bacteroides spp. ^(1,4) . Spread to bloodstream (bacteremia) is more common for B. fragilis than any other anaerobe ⁽⁴⁾ . Deep pain and tenderness below the diaphragm are typical of B. fragilis infection. Widespread intra-abdominal abscesses may be associated with fever and abdominal pain.
(aeruginosa, putida,	Unknown	Injection/ non-intact	Humans		to extended- spectrum penicillins (such as ticarcillin, azlocillin, and	N/A	As opportunistic pathogens, <i>Pseudomon</i> <i>as</i> spp. often invades the host tissue and cause infection and
					aminoglycosides, cephalosporins, fluoroquinolones, polymixins, and the monobactams		immunocompromised hosts (e.g., HIV/AIDS, cystic fibrosis, bronchiectasis, and severe chronic obstructive pulmonary disease, burns, malignancy, or diabetes mellitus). The common site of infection is the lower

				ware instant and
				respiratory tract, and
				severity ranges from
				colonization without
				immunological
				response to severe
				necrotizing
				bronchopneumonia;
				such severe infection
				in patients with cystic
				fibrosis is almost
				impossible to eradicate
				once established in the
				airways. Pseudomonal
				pneumonia often
				develops from oro-
				pharyngeal
				contamination or
				secondary bacteremia,
				and is also a common
				cause of nosocomial
				ventilator-related
				pneumonia in intensive
				care settings.
				Infections also include
				endocarditis,
				osteomyelitis, urinary
				tract infections,
				gastrointestinal
				infections, meningitis,
				and, commonly,
				septicaemia. P.
				-
				aeruginosa is the most
				common agent
				associated with
				infection and
				inflammation during
				contact lens wear. The
				bacteria colonize on
				lenses and produce
				proteases to kill or
				invade corneal cells, an
				infection that can lead
				to scarring and vision
				loss. The species is also
				the most virulent with
				a mortality rate of
				30%, which can be
				higher depending on
				predisposing
				conditions. P.
				aeruginosa can also
				readily colonize on
				open burn wounds,
				causing infections,
				_
				abscesses, and sepsis,
				with edema and/or
				discoloration of
				unburned skin at
				wound margins and
				green pigment in
				subcutaneous fat. P.
				aeruginosa is also
				associated with
				swimmer's ear (otitis
				externa).
				Other Pseudomonas sp
р		•	•	 l.

Clostridium symbiosum, C. spiroforme		Injection/ non-intact skin	Humans		most species are susceptible to penicillin, clindamycin, chloramphenicol, piperacillin, metronidazole, imipenem, and combinations of b- lactams with b- lactamase inhibitors.	ecies are also opportunistic; however, cases of infection are rare. Illnesses primarily associated with Clostridium spp. are: Clostridial bacteremia: Symptoms can vary greatly but will typically include fever, chills, and leukocytosis. The fatality rate ranges from 25-50%. Many Clostridium spp. can be associated with anaerobic bacteremia including C. septicum, C. ramosum, C. clostridioforme, or C. tertium
ENTEROCOCCUS FAECALIS	Unknown	Ingestion; mucosal contact; injection/ non-intact skin	Humans	Strains resistant to β -lactams, aminoglycosides and, increasingly, vancomycin have been described ^(2,4) . Strains have also been identified which carry genetic elements conferring resistance to chloramphenicol, tetracyclines, macrolides, lincosamides, quinolones, and streptogramins ⁽²⁾ .	Most strains remain susceptible to penicillin, ampicillin, and vancomycin.	Enterococci can cause urinary tract, wound, and soft tissue infections ^(2,4) . They are also associated with bacteremia which can lead to endocarditis in previously damaged cardiac valves ⁽⁴⁾ . E. faecalis is the most frequent species isolated from human intestine samples (80- 90%), E. faecium accounts for 5-10% of isolates ⁽¹⁾
Salmonella enterica (non typhoidal)	For non- typhoidal salmonellosis, the infectious dose is approximatel y 10 ³ bacilli (⁴ / ₂). For enteric fever, the infectious dose is about 10 ⁵ bacilli by ingestion (⁴ / ₂). Patients with achlorhydria, depressed cell-mediated immunity, or who are elderly may become infected with at a lower infectious dose (⁴ / ₂). The infectious	Ingestion; Injection/ non-intact skin	Humans	Some resistance to chloramphenicol has been reported and, in 1989, 32% of strains were multi-drug resistant	Susceptible to chloramphenicol, ciproflaxin, amoxicillin, co- trimoxazole, trimethprim- sulfonamid, cephalosporins and norfloxacin	Salmonella enterica can cause four different clinical manifestations: gastroenteritis, bacteremia, enteric fever, and an asymptomatic carrier state ^(Z)

	dees we have		1]
	dose may also be dependent on the level of acidity in the patient's stomach						
Stenotrophomonas maltophilia	Unknown	Ingestion; mucosal contact; injection/ non-intact skin	Humans	Species is not usually susceptible to piperacillin, and susceptibility to ceftazidime is variable	Many strains of S. maltophilia are sensitive to co- trimoxazole and ticarcillin,	N/A	S maltophilia has few pathogenic mechanisms and, for this reason, predominantly results in colonization rather than infection. If infection does occur, invasive medical devices are usually the vehicles through which the organism bypasses normal host defenses. Otherwise, the pathophysiology of this nonfermentative aerobic gram-negative bacillus does not differ from other nonfermentative aerobic organisms
Streptococcus agalactiae	Unknown	Mucosal contact; Injection/ non-intact skin	Humans	some strains penicillin tolerant and require treatment with an aminoglycoside as well.	Sensitive to penicillin or ampicillin		It presents with nonspecific symptoms, such as fever, vomiting and irritability, and can consequently lead to late diagnosis. Hearing loss can be a long-term sequela of group B Streptococcus species (GBS)-meningitis. Infection with GBS is the cause of some instances of stillbirth.
Klebsiella pneumoniae	Unknown; according to one source may be 10 ⁸ Klebsiella organisms per gram of feces are required to produce damage	Ingestion; mucosal contact; inhalation ; injection/ non-intact skin	Humans	Since more and more strains of Klebsiella spp. appear to be developing and harbouring extended-spectrum beta-lactamases (ESBLs), cephalosporinases, and carbapenemases, resistance of Klebsiella spp. to current antibiotics appears to be increasing these strains are not pan-resistant to all beta-lactam antibiotics, but have differing susceptibility protocols, so that in some cases beta-	Klebsiella spp. are known to show resistance to penicillins, especially ampicillin and carbenicillin Other treatment regimes include beta-lactams in combination with a beta-lactamase inhibitor, tigecycline, aztreonam, and colistin. According to results from some studies in Europe and USA, ranges of susceptibility were as follows ⁽¹⁾ : ceftazidime (92- 95%), ceftriaxone (96-98%),		Respiratory Disease: K. pneumoniae – a leading cause of community-acquired and nosocomial pneumonia and lung abscesses. Infection of the upper lobe is more common. Symptoms include: fevers, chills, and leukocytosis with red currant jelly-like sputum ⁽¹⁾ . Rare complications include lung infection involving necrosis and sloughing of the entire lobe. Central nervous system (CNS) infections: K. pneumoniae – cause community-acquired meningitis and brain abscesses. Clinical symptoms include: headaches, fever, altered conciousness,

BRR No. Page 44 of 89

Shigella flexneri,	10-200	Ingestion;	Humans	lactams can still be used to treat them, although in high concentration. Other treatment regimes include beta-lactams in combination with a beta-lacatmase inhibitor, tigecycline, colistin and aztreonam	cefotaxime (96%), piperacillin- tazobactam (90- 97%), imipeneum (98-100%), gentamicin (95- 96%), amikacin (98- 99%), triethoprimsulfamet hoxazole (SXT) (88- 90%).	seizures, and septic shock. Hepatic disease: K. pneumoniae – an important causative pathogen for pyogenic liver abscesses with symptoms including fever, right-upper- quadrant pain, nausea, vomiting, diarrhoea or abdominal pain, and leukocytosis. Abscesses occur predominantly in the right lobe and are solitary Infection may be mild
dysenteriae and boydii	organisms	mucosal contact; inhalation ; injections /non- intact skin		strains are emerging, including those against trimethoprim- sulfamethoxazole (TMP-SMX), ampicillin, and chloramphenicol	ampicillin, trimethoprim, sulfamethoxazole, naldixic acid, ofloxacin, chloramphenicol, fluoroquinolones, and ciprofloxacin	and asymptomatic, but it is most commonly characterized by acute intestinal infections upon ingestion, resulting in mild watery diarrhea to severe inflammatory bacillary dysentery or shigellosis, manifested by severe abdominal cramps, nausea and vomiting, fever, tenesmus, anorexia, and stool containing blood and mucus (1, 2, 8). Further complications include Reiter's syndrome which has been associated with S. flexneri (9, 10), severe dehydration, intestinal perforation, toxic mega colon, bacteremia, toxaemia (11), septicaemia, seizures, toxic encephalopathy with headache and alterations of consciousness, septic shock and convulsions (very rare) (4), and haemolytic uremic syndrome, which have been linked to Shiga toxin (a potent cytotoxin produced by S. dysenteriae that can also cause other neurotoxic effects). Virulence of Shigella is temperature- regulated, as organisms are able to invade HeLa cells at 37°C, and cannot do so in vitro at 30°C (12).

						Infections are usually self-limiting, but can become life- threatening in immunocompromised patients or if not properly treated. Severity of infection depends on the host, dose, and serotype ⁽²⁾ . S. dysenteriae is the most pathogenic species, with a fatality rate up to 20%, whereas S. sonnei usually cause mild forms of shigellosis.
E. coli other than laboratory strains, EHEC, STEC, EPEC, the ECOR collection	Ranges from 10-100 for EHEC strains to 10 ⁶ -10 ⁸ for other strains	Ingestion; mucosal contact; inhalation ; injection/ non-intact skin	Humans; cattle, all animals	Some of these strains are carbapenem- resistant, but not pan-resistant to antibiotics.	Therapeutic treatment E coli meningitis requires antibiotics, such as third- generation cephalosporins (eg, ceftriaxone). E coli pneumonia requires respiratory support, adequate oxygenation, and antibiotics, such as third-generation cephalosporins or fluoroquinolones. E coli cholecystitis/cholan gitis requires antibiotics such as third-generation cephalosporins that cover E coli and Klebsiella organisms. Empiric coverage should also include anti– E faecalis coverage. For E coli intra- abdominal abscess, antibiotics also must include anaerobic coverage (eg, ampicillin and sulbactam or cefoxitin). In severe infection, piperacillin and tazobactam, imipenem and cilastatin, or meropenem may be used. Combination therapy with antibiotics that cover E coli plus an antianaerobe can also be used (eg, levofloxacin plus	Beneficial strains of E. coli typically colonize the infant gastrointestinal tract within a few hours after birth. The presence of this bacterial population in the intestine suppresses the growth of harmful bacteria and is important for synthesizing appreciable amounts of B vitamins. E. coli usually remains harmless when confined to the intestinal lumen. However, in debilitated or immuno-suppressed humans, or when gastrointestinal barriers are violated, even normal, "non- pathogenic" strains of E. coli can cause infection. It is also known that some E. coli strains have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even very healthy people. Strains of E. coli that cause diarrhea include strains that cause traveler's diarrhea (enterotoxigenic E. coli), persistent diarrhea (enteroaggregative E. coli), hemorrhagic colitis (bloody

	clindamycin or	diarrhea), and
	metronidazole).	hemolytic uremic
	E coli enteric	syndrome
	infections require	(enterohemorrhagic E.
	fluid replacement	coli)
	with solutions	Shiga toxin-producing
	containing	E. coli (STEC) can cause
	appropriate	the following
	electrolytes.	symptoms:
	Antimicrobials	Nausea
	known to be useful	Severe abdominal
	in cases of traveler's	cramps
	diarrhea include	Watery or very bloody
	doxycycline,	diarrhea
	trimethoprim/sulfa	Fatigue
	methoxazole	STEC can also cause
	(TMP/SMZ),	low-grade fever or
	fluoroquinolones,	vomiting. Symptoms
	and rifaximin. They	usually begin from 2 to
	shorten the duration	5 days after eating
	of diarrhea by 24-36	contaminated food or
	h. Antibiotics are not	drinking contaminated
		_
	useful in	liquids. Symptoms may
	enterohemorrhagic	last for 8 days, and
	E coli (EHEC)	most people recover
	infection and may	completely from the
	predispose to	disease.
	development of	
	HUS. Antimotility	
	agents are	
	contraindicated in	
	children and in	
	persons with	
	enteroinvasive E coli	
	(EIEC) infection.	
	Uncomplicated E coli	
	cystitis can be	
	treated with a single	
	dose of antibiotic or	
	3-d course of a	
	fluoroquinolone,	
	TMP/SMZ, or	
	nitrofurantoin.	
	Recurrent E coli	
	cystitis (ie, >2	
	episodes/y) is	
	treated with	
	continuous or	
	postcoital	
	prophylaxis with a	
	fluoroquinolone,	
	TMP/SMZ, or	
	nitrofurantoin.	
	Patients with	
	complex cases (eg,	
	those with diabetes,	
	>65 y, or recent	
	history of UTI) are	
	treated with a 7- to	
	14-d course of	
	antibiotics (eg,	
	levofloxacin, third-	
	generation	
	cephalosporins, or	
	aztreonam).	
· · · · · · · · · · · · · · · · · · ·		

	Acute
	uncomplicated E coli
	pyelonephritis in
	young women is
	treated with
	fluoroquinolone or
	TMP/SMZ for 14 d.
	Patients with
	vomiting, nausea, or
	underlying illness
	(eg, diabetes) should
	be admitted to the
	hospital. If fever and
	flank pain persist for
	more than 72 h,
	ultrasonography or
	CT scanning may be
	performed.
	Treat E coli
	perinephric abscess
	or prostatitis with at
	least 6 wk of
	antibiotics.
	E coli sepsis requires
	at least 2 wk of
	antibiotics and
	identification of the
	source of
	bacteremia based
	on imaging study
	results.
	McGannon et al
	found that
	antibiotics that
	target DNA
	synthesis, such as
	ciprofloxacin (CIP)
	and TMP/SMZ,
	showed increased
	Shiga toxin
	production, whereas
	antibiotics that
	target the cell wall,
	transcription, or
	translation did not.
	Remarkably, high
	levels of Shiga toxin
	were detected even
	when growth of
	O157:H7 was
	completely
	suppressed by CIP.
	In contrast,
	azithromycin
	significantly reduced
	Shiga toxin levels
	even when O157:H7
	viability remained
	high.
	Extended-spectrum
	cephalosporins are
	widely administered
	to treat serious
	infections due to
	gram-negative
	bacilli. However,
L L	

YERSINIA PSEUDOTUBERCULO SIS	10 ⁸ bacteria or more orally	Ingestion; injection/ non-intact skin	Humans; rabbits, rodents, cattle, pigs, pets, wild mammal and birds	Unknown	particularly challenging since these isolates have varying levels of resistance to agents in the extended- spectrum cephalosporin class, in addition to being multiply resistant to other antimicrobials such as aminoglycosides, sulfonamides, and fluoroquinolones A MEDLINE search was performed for all studies published in the English literature using key words "ESBL" and "extended-spectrum &-lactamase." Studies that provided treatment information on patients infected with a putative or known ESBL- producer were evaluated. An isolate tested positive with the double-disk synergy test and/or Etest strips (AB Biodisk) was considered a putative ESBL producer unless molecular analysis was performed to characterize the enzyme type(s).	Yersinia pseudotuberculosis is a rare cause of acute enteric disease with symptoms such as acute mesenteric lymphadenitis and gastroenteritis associated with abdominal pain and fever (diarrhea is unusual). One to 3
						weeks after the acute phase of the disease, post-infectious complications can occur, such as reactive arthritis and erythema nodosum. The arthritic

			1			r	all and a failer the
YERSINIA ENTEROCOLITICA	10 ⁸ bacteria or more orally	Ingestion; injection/ non-intact skin	Humans; farm animals, birds, pets	It is generally resistant to penicillin and its derivatives and to narrow spectrum cephalosporins	Yersinia enterocolitica is susceptible to chloramphenicol, fluoroquinolones, gentamicin, tetracycline, and trimethoprim- sulfamethoxazole.		phase of the disease can last up to 6 months. Other complications include lesions to lymph nodes, spleen and liver, as well as septicaemia in immunocompromised patients. The disease is most common in children and young adults and immunocompromised individuals are at greater risk of severe disease or death. Yersinia enterocolitica infection is characterized by enteritis, enterocolitis (particularly in children), fever (39°C), watery stools, abdominal pain and acute mesenteric lymphadenitis (which may minic appendicitis). In some cases acute terminal ileitis and enteric fever can occur. 1-3 weeks after the initial clinical symptoms, reactive arthritis and erythema nodosum may occur which can last about 6 months after infection. In rare instances, complications can include meningitis, endophthalmitis, conjunctivitis, myocarditis, peritonitis, glomerulonephritis, urethritis, cellulitis, haemolytic anaemia, thyroiditis, pharyngitis
Clostridium difficile	Unknown	Ingestion	Humans,	Some rare strains	Susceptible to		and septicaemia C. difficile is the main
	UTIKNOWN	Ingestion	Humans, pigs, calves	Some rare strains are resistant to metronidazole; Fluroquinolone- resistant hypervirulent strain 027 isolates in US	Susceptible to metronidazole, oral vancomycins; penicllins and cephalosporins in vitro		C. difficile is the main cause of nosocomial antibiotic- associated diarrhea. Antibiotics or any other procedures that disrupt the normal intestinal microbiota can lead to the overgrowth and production of toxin by C. difficile, which leads to clinical manifestations of infection. The diarrhea

						may range from a few days of intestinal fluid loss to life-threatening pseudomembranous colitis. In diarrhea without pseudomembranous colitis (PMC), feces have a foul odor and are not bloody. Abdominal pain with or without pyrexia may also be present along with diarrhea. PMC is associated with intense inflammation of the colon and formation of pseudomembranes on the intestinal mucosal surface. Patients with PMC also have more systemic side effects.
ENTEROBACTER AEROGENES and cloacae	Unknown	Ingestion; injection/ non-intact skin	Humans	Enterobacter spp. are resistant to ampicillin; first- and second- generation cephalosporins ⁽²⁾ ; and cephalothin ⁽	Most Enterobacter spp. are susceptible to cefepime ⁽²⁾ , aminoglycosides, fluoroquinolones, and trimethoprim- sulfamethoxazole ^(B) . Tigecycline has been shown effective in vitro	Enterobacter spp., particularly E. aerogenes and E. cloacae, have been associated with nosocomial outbreaks, and are considered opportunistic pathogens ^(1,5) . Enterobacter spp. can cause numerous infections, including cerebral abscess, pneumonia, meningitis, septicemia, and wound, urinary tract (particularly catheter-related UTI), and abdominal cavity/intestinal infections ^(6,2) . In addition, Enterobacter spp. have been noted in intravascular device- related infections, and surgical site infections (primarily postoperative or related to devices such as biliary stents) ⁽²⁾ . Many species can cause extra-intestinal infections ⁽⁶⁾ for example, Enterobacter sakazakii, has been associated with brain abscesses in infants and with meningitis ^(3,2) . Mortality rates for bacterial meningitis

SERRATIA	Unknown	Injustion /	Liumana	Many Corretio corr	Corretia con ora	Corrotio onn
	Unknown	Injection/	Humans	Many Serratia spp.	Serratia spp. are	Serratia spp. are
MARCESCENS and		non-intact		isolates (39-73%)	usually susceptible	opportunistic
PLYMUTHICA		skin		are resistant to	to aminoglycosides,	pathogens and are one
				gentamicin. They	fluoroquinolones,	of the ten most
				are all resistant to	and co-trimazole	common causes of
				penicillins and		bacteremia in North
				cephalosporin		America. They are
						responsible for a
						variety of infections,
						including bacteremia,
						pneumonia,
						intravenous catheter-
						associated infections,
						osteomyelitis,
						endocarditis, and,
						rarely, endogenous and
						exogenous
						endophthalmitis.
						Symptom of
						endophthalmitis
						appears rapidly after
						infection, and may
						include fever,
						erythema, ocular pain,
						periorbital swelling,
						and hypopyon (pus in
						the eyes). The mortality
						rate from bacteremia
						due to Serratia spp. 6
						months after infection
						is 37%.

a2. List and describe any other biological material not covered in the tables above:

a3. Are any of the biological agents used or stored in your laboratory select agents? Check here to verify (<u>https://www.selectagents.gov/selectagentsandtoxinslist.html</u>). Yes \Box No \boxtimes If yes, which ones?

b. Experimental Procedures:

1. Briefly describe experiment and procedures involving use of biological agents?

All bacteria will be grown on standard media, using conventional protocols as described in Current Protocols in Molecular Biology². As described above, selected species will be transformed using electroporation. E coli lab strains may be transformed using chemical competence.

2. Will experiments result in acquisition of new characteristics such as enhanced virulence, infectivity, drug or antibiotic resistance, or change in host range? Yes X No I If so, explain:

As described above, bacteria will be modified to produce novel compounds or to produce higher amounts of normal metabolites. Specified bacteria will receive antibiotic resistance for selection, but no pathogen will be modified to become resistant to a clinically relevant antibiotic.

3. Will you introduce viable biological material (microorganisms or cells) into animals?

Yes 🛛 No 🗌 If so:

a) Please describe:

0915-092-18:

We will introduce recombinant organisms, including engineered E. coli, B. thetaiotaomicron, B. fragilis, B. ovatus and B. vulgatus strains, as well as the probiotic yeast S. boulardii into the mouse gastrointestinal tract. The objective is to test genetically engineered strains for their ability to detect gut inflammation and/or secrete anti-inflammatory proteins, for their ability to act as as next-generation of inflammation bowel disease sensors and therapeutics. Organisms will be introduced by oral gavage. Recipient species includes Balb/c mice, SJL mice, and C57BL/6 mice. No engineered bacterial strains are known to have or will acquire virulence. The bacteria may have display resistance to common laboratory antibiotics such as kanamycin, or erythromycin, but not to clinically relevant drugs.

1215-114-18:

Development of Therapeutic Bacteriophage for Decolonization: A major concern in infectious disease is the establishment of antibiotic resistance and pathogen reservoirs in healthy individuals that could potentially later cause life threatening opportunistic infections. We wish to explore the use of bacteriophage as a means to specifically eliminate antibiotic resistant or pathogenic strains from a microbiome without affecting commensal populations. We intend first demonstrate this concept using non-pathogenic *E. coli* strains (K-12, BL21, C-1) and *Klebsiella spp.* (sp. 390 and *oxytoca*). Later, we extend this concept to clinical isolates carbapenem-resistant Enterobacteriaceae (CREs), including *E. coli* and *K. pneumoniae* strains. As many of these human isolates do not naturally colonize the mouse gut, we will perturb the microbiota using antibiotic treatment (streptomycin or ampicillin) to allow our strains to colonize.

1016-064-19

The goal is determine whether different agents such as ionic liquids, nitroxides and antimicrobial peptides exhibit antiinfective properties *in vivo* in two skin infection models, superficial and abscess. There is a need for alternative therapeutics to treat drug- resistant infections. Here, we aim to test the efficacy of novel classes of antimicrobials in mouse models

b) List your MIT Committee on Animal Care (IACUC) protocol no(s), if your animal model also needs MIT Committee on Animal Care (IACUC) approval: _____ 0915-092-18; 1215-114-18, 1016-064-19.

Section 3. Research Description (required): Project 3 – Insertion of Synthetic

Circuits into E. coli

a) In lay terms, briefly describe your research as you would to a friend who is not a scientist.

Synthetic Biology is premised on the idea that an organism can be thought of as a living computer. Inputs are received and relayed through logic circuits to produce desired outputs. Here we describe a number of projects designed to develop tools for engineering the model organism E coli, or for using those tools to perform computational processes.

b) Outline the overall goal(s) of the research in the space below. Give enough information to assure that the purpose of the experiments and the techniques used are clear. Please use reasonably nontechnical terms.

3.1) Identification of safe insertion sites for synthetic circuits in the genome of *E. coli* and optimization of gene expression in *E. coli* using MAGE (Multiplex Automated Genomic Engineering) technology.

The recombination functions of phage lambda, known as lambda red show the unusual capacity to catalyze the recombination between short linear DNA segments allowing the introduction of relatively long double stranded linear DNA constructs (>5kb) or short single stranded DNA (>200bp) fragments with high efficiency and precision as long as they display short regions of homology to the target locus (25-50bp) at each end. This technique, known as recombineering, has revolutionized genomic engineering in *E. coli* and many other related bacteria but very little is known about the factors that affect precision or efficiency of the recombination event leading to DNA insertion.

With this project, we are studying 1) whether there is an efficiency bias from targeted locus to targeted locus 2) identifying safe insertion sites where the transgene being inserted is either more active or less perturbed by the surrounding genetic context.

1) We are generating a library of small construct composed of a resistance marker (kanamycin) flanked by 50bp homology regions directing them to ~150 different genetic loci spread throughout the genome. After transformation of this bank into recombineering proficient *E. coli k-12*, we are recovering the population and analyzing the frequency of insertion at each independent locus by high throughput sequencing and compare this to the expected insertion frequency calculated from the abundance of each different construct in the input DNA. If a bias is discovered at some positions, we will attempt to correlate it with characteristics of the DNA surrounding these particular insertion sites.

2) A small construct composed of a resistance marker (kanamycin, spectinomycin or chloramphenicol) and a reporter gene with an inducible promoter is targeted to various loci throughout the genome of *E. coli* k-12 by recombineering. The resulting strains are then compared to evaluate the level of expression of the reporter (GFP) with and without inducer in order to identify regions where insertion of a transgene is least affected by surrounding genes while allowing high-level expression.

3.2) High efficiency targeted genome evolution

We are developing a system for high-efficiency genome editing in bacteria via in vivo expression of ssDNA by reverse transcription from a template plasmid followed by recombineering (SCRIBE). This is similar to the previously published recombineering techniques (e.g. MAGE) that are widely used for genome engineering in bacteria, but instead of delivering oligos from outside, we produce the ssDNA inside the cells using a bacterial class of reverse transcriptases called retrons. This allows us to specifically introduce desired small (i.e. a few bps) modifications into selected genomic loci. As a proof of concept, we are performing experiments in *E. coli* K-12 (DH5alpha and MG1655). We are expressing the retron cassette and beta recombinase and introducing modifications into endogenous loci of *E. coli* K-12 (*galK* and *lacZ*) as well as an integrated *aph* marker, which confers resistance to kanamycin. We use CRISPRi technology to knockdown *E. coli* endogenous exonucleases to increase intracellular stability of the expressed ssDNA and increase the recombination efficiency. We also use CRISPR nuclease to counter-select against the WT allele and thus increase the efficiency of editing. We use this gene editing platform to demonstrate continuous evolution of a trait of interest (ability to metabolize lactose) by continuously introducing new mutations into *lac* locus of *E. coli* MG1655 and selecting for the cells that can grow faster in minimal media + lactose by serial passage of cells in minimal media + lactose.

The experimental procedures will include introduction of recombinant DNA encoded on plasmid vectors, via different delivery methods including transformation, conjugation and transduction (phagemid delivery) into *E. coli* genome as well as modification of *E. coli* genome, necessitating the use of antibiotic markers. The antibiotic markers will confer resistance to chloramphenicol, kanamycin, spectinomycin, streptomycin, or ampicillin. The model organism *E. coli* MG1655 will be used as proof of concept. This strain is a commonly used BL1 laboratory organism, and poses no threat to human health. We also plan to demonstrate the generalizability of the genome editing approach by investigating the genome editing approach In Pseudomonas putida KT2440. We will express the beta recombinase and retron cassette in this organism and use the *upp* gene as a selectable marker to measure the efficiency of our system in this organism.

3.3) DNA as a storage medium: cryptographic approaches to data protection.

Synthetic DNA has great propensity for efficiently and stably storing non-biological information. With DNA writing and reading technologies rapidly advancing, new applications for synthetic DNA are emerging in data storage and communication. Traditionally, DNA communication has focused on the encoding and transfer of complete sets of information. Here, we explore the use of DNA for the communication of short messages that are fragmented across multiple distinct DNA molecules. We identified three pivotal points in a communication-data encoding, data transfer & data extraction-and developed novel tools to enable communication via molecules of DNA. To address data encoding, we designed DNA-based individualized keyboards (iKeys) to convert plaintext into DNA, while reducing the occurrence of DNA homopolymers to improve synthesis and sequencing processes. To address data transfer, we implemented a secret-sharing system-Multiplexed Sequence Encoding (MuSE)-that conceals messages between multiple distinct DNA molecules, requiring a combination key to reveal messages.

To address data extraction, we achieved the first instance of chromatogram patterning through multiplexed sequencing, thereby enabling a new method for data extraction. We envision these approaches will enable more widespread communication of information via DNA.

3.4) Crosstalk correction in gene circuits in *E. coli*:

This work aims to develop an easy and generalizable way of correcting crosstalk that occurs in multi input/output synthetic gene networks within *E. coli*. As proof of concept, we will express several transcription factors as sensors in *E. coli*, namely OxyR (sensing H₂O₂), SoxR (sensing superoxide or paraquat), LuxR (sensing C6-HSL), LasR (sensing C12-HSL) and RhIR (sensing C4-HSL). The reporter construct consists of a promoter for the transcription factor (pOxyR, pSoxS, pLux, pLas, pRhI) and mCherry or sfGFP as a reporter gene. Plasmids carry an origin of replication for *E. coli* (pSC101, p15a or ColE1) and a resistance cassette (Kanamycin, Carbenicillin/Ampicillin, Spectinomycin, Chloramphenicol). This work is only done *in vitro* and strains will not be tested in mice.

Section 5. Use of Recombinant or Synthetic Nucleic Acid: Check box if not applicable (Please complete this section if you use or generate recombinant microorganisms, cells, animals, plants, etc.)

Please indicate the Section of the NIH Recombinant DNA Guidelines that applies to this research. If you have questions Biosafety Staff will be glad to assist you. Note that the City of Cambridge requests that we register all recombinant work even if it is exempt under section III-F or Appendix C. For information on which section of the NIH Guidelines your experiments fall under, please see the NIH OSP website: <u>http://osp.od.nih.gov/office-biotechnology-activities/biosafety/nih-guidelines</u>.

Section III-A	Section III-B	Section III-C	Section III-D	Section III-E	Section III-F	

a. Source of Gene, Insert or Clone:

1. Specify DNA/RNA source (organism the sequence is from), promoter used, nature of insert (genes families are acceptable, e.g. fluorescent proteins), if a protein expressed, and percent of any viral genome in construct (for viral vectors see 5.b.2):

Insert	Cloned into	Under promoter control	Insert source	Nature of insert	Protein expressed?	% viral genome
Synthetic DNA	Vectors from the Lutz and Bujard collection ^{1.}	Ν	Rational design	Short homology to E coli genome	Ν	0
Synthetic DNA	Vectors from the Lutz and Bujard collection ^{1.}	Ν	Rational design	Secret code	Ν	0
Resistance genes such as kanR	Vectors from the Lutz and Bujard collection ^{1.}	constitutive	Plasmid library	Antibiotic resistance	Y	0
Reporter such as GFP	Vectors from the Lutz and	inducible	Plasmid library	Fluorescent protein	Y	0

	Bujard collection ^{1.}					
Sensors including OxyR (sensing H ₂ O ₂), SoxR (sensing superoxide or paraquat), LuxR (sensing C6- HSL), LasR (sensing C12- HSL) and RhIR (sensing C4-HSL)	Vectors from the Lutz and Bujard collection ^{1.}	constitive	E coli	Transcription factors	Y	0
Reporters such as mCherry	Vectors from the Lutz and Bujard collection ^{1.}	pOxyR, pSoxS, pLux, pLas, pRhI	Plasmid library	Fluorescent proteins	Y	0

- 2. Are any sequences from select agents and toxins? Yes \square No \boxtimes ; If yes, please specify.
- 3. Do any sequences code for toxins not covered in (2) above? Yes No X; If yes, please specify.
- 4. Is the DNA source from a USDA-regulated plant, animal or insect? Yes No C; If the regulated organism is grown or stored at MIT, please include a copy of the USDA permit. (Link to USDA site: http://www.aphis.usda.gov/brs/index.html)

b. Vectors and Host Cells:

 Identify cloning/expression/transfection vectors used, recipient bacterial strains used to propagate the vector, and recipient host cell (bacteria, yeast, murine or human cells, plant, etc.). Provide a restriction map of vector if it is new or not published. If commercially available vector or plasmid, please indicate vendor. Describe the location and type of promoters and other control sequences and percent of any viral genome in construct.

Vector name	Bacterial		% viral genes	Type of promoters	Host cell
	strain				
Vectors from the Lutz and Bujard collection ^{1.}	E coli K12, MG1655	Sometimes fluorescent protein, as described above	0	Constitutive, inducible such as pOxyR, pSoxS, pLux, pLas, pRhl (described in detail above	E coli K12 or MG1655

2. If using viral vectors, fill out the table below. If using multiple types of viral vectors, please add a new table per vector type; multiple variations of the same viral vector type can be in the same table.

(If using retroviral or lentiviral vectors additional requirements apply. Please see MIT CAB/ESCRO policy at the following URL: <u>https://cabescro.mit.edu/home</u>

Viral Vector type	
Description (Plasmids used, viral	
vector generation for lentiviral vector)	
Source (vendor / collaborator)	
Packaging cell line(s), if applicable	
Replication competent or incompetent	
Assays for detecting replication	
competent virus, if applicable	
Pseudotype	
Host range	
Safety feature (e.g. self-inactivating)	
Integrate into genome (yes/no)	
Exposure hazard (e.g. insertional	
mutagenesis)	
Promoters to be used with viral vector	
Inserts to be used with viral vector ^{1,2}	

¹For Cas9 expression in viral vectors, please indicate whether the promoter driving it is inducible or constitutively active.

²List all oncogenes that will be overexpressed and all tumor-suppressors that will be knocked down using viral vectors.

3. If using nanoparticles for the delivery of recombinant DNA/RNA, fill out the table below.

Nanoparticle description	
Able to enter cells? (yes/no)	
Exposure hazard	

- a. Use of Animals (including invertebrates) or Insects: Check box if not applicable Most research using animals also needs the approval of the MIT Committee on Animal Care (IACUC). Contact them to register your animal research; If you have CAC protocol no(s), list them here:______. The questions below are intended to deal with the use of potentially biohazardous agents in animals/insects or the creation of transgenic animals/insects.
 - 1. Will rDNA technologies (such as producing transgenics), recombinant microbes/cells be used in animals or insects? Yes No
 - a. If yes, please describe objective of the research. Include recipient species, and list pathogen, rDNA technology, or recombinant microbe or human materials that will be used in animal/plant/ insect, and resulting genotype. What selection marker will be used?
 - 2. If transgenic, including "knockout", animals/insects will be generated, please provide information on the transgene and vector as well as the expected phenotype of the recombinant animal/insect.
 - 3. Does this recombinant species pose a risk to the community or the environment if there is an inadvertent release outside the laboratory or animal facility? Yes 🗌 No 🗌 If yes, explain:

d. Large-Scale Research: Check box if not applicable

Do experiments involve growth of 10 liters or more of culture at a time? Yes
No

If yes, an SOP is required for this work. Contact the Biosafety Program for assistant and:

- 5. Identify culture room, biological agent, recombinant modifications, and type of equipment used for large-scale culture growth and handling:
- 6. Describe the steps used to handle and contain spills:

e. Use of Plants: Check box if not applicable

Describe experiments that involve recombinant work and plants, whether the plant itself is made recombinant or recombinant cell or microorganisms are used with plants.

Does this recombinant species pose a risk to the community or the environment if there is an inadvertent release outside the laboratory? Yes \square No \square If yes, explain:

Section 6. Biological Agent Use: Check box if not applicable (Please complete this section if you work with viable microorganisms or viruses.)

a. Agent identification. List biological agent(s)/microorganism(s) genus/animals/plants/species/strain and genotypic markers, host range; any antibiotic resistance; recommended Biosafety Level (CDC); the source of the agent (e.g. new isolate from human tissue, blood, animal, tissue culture, another laboratory, ATCC, etc.).

Genus and species	Strain	Bio safety level (BSL) / Risk group (RG)	Source	Max volume used	Max Concentration used	Disinfectant (s) used	Can this cause disease in any population? (Y/N)
Escherichia coli K-12	MG1655, DH5alpha, EMG2, KL463, XL10, C600, DH10B, BW25113, DH5alpha Pro, MG1655 Pro, RF5289, CJ236, ER2738, ER2267, NEB10beta, E. cloni 10G, XL1-GOLD, XL1BLUE, XL1-RED, W3110, NM2, S17, CR63, CR63I, ME5486, transformax EC100D pir, Transformax EC100D pir- 116, SURE2, MK01, MK02, ET12567,	1	CGSC, NEB, ATCC, Thermo, Lucigen, Keith Shearwin, Laub lab, Collins lab, Agilent, expressys, invitrogen, epibio, clontech, Roberto Kolter, real biotech corporation, the Yale E. coli genetic stock center	100mls		Bleach	Ν

REWRITE

1 1	C600, W1,	1			
	MC4100,				
	oneshot				
.	TOP10,				
	SHuffle-T7,				
	MG1655(DE3				
),				
	NEB10beta,				
	MG1655				
	ΔntrBC,				
	MG1655Pro				
	with pLtetO-				
	mf-Lon				
	protease				
	integrated,				
	Transformax				
	EPI3000,				
	DH5alpha F				
	iq, sbtl3,				
	sbtl4, stellar,				
	HIT DH5-				
	alpha, JM109				

For agents that are pathogens, please complete the following table:

Organism	Infectious Dose	Route of exposure	Host range	Clinically relevant Drug resistance	Availability of treatment	Special equipment /PPE used (above standard PPE)	Disease state and symptoms of exposure
						,	

a2. List and describe any other biological material not covered in the tables above:

a3. Are any of the biological agents used or stored in your laboratory select agents? Check here to verify (<u>https://www.selectagents.gov/selectagentsandtoxinslist.html</u>). Yes \Box No \boxtimes If yes, which ones?

b. Experimental Procedures:

4. Briefly describe experiment and procedures involving use of biological agents?

Bacteria are grown and transformed using standard protocols, as described in Current Protocols in Molecular Biology^{2.}

5. Will experiments result in acquisition of new characteristics such as enhanced virulence, infectivity, drug or antibiotic resistance, or change in host range? Yes \bigotimes No \bigcap If so, explain:

Antibiotic resistance

6. Will you introduce viable biological material (microorganisms or cells) into animals?

Yes No 🛛 If so:

a) Please describe:

b) List your MIT Committee on Animal Care (IACUC) protocol no(s), if your animal model also needs MIT Committee on Animal Care (IACUC) approval: _____

Section 3. Research Description (required): Project 4 Synthetic Biology of

Mycoplasma genitalium

a) In lay terms, briefly describe your research as you would to a friend who is not a scientist.

Mycoplasma is a very simple bacterium with a small genome. As such it has the potential to be a useful model organism. However, there is a lack of basic tools to use to engineer Mycoplasma. We are endeavouring to develop these tools.

b) Outline the overall goal(s) of the research in the space below. Give enough information to assure that the purpose of the experiments and the techniques used are clear. Please use reasonably nontechnical terms.

The goal of this work is to improve our ability to rationally engineer biological systems which requires more comprehensive models for prediction of phenotypes based on genomics, proteomics and metabolomics datasets. The whole-cell model of *mycoplasma genitalium* is the most complete model of an organism to date. We aim to investigate the use of this model to see how such models can allow us to better engineer organisms.

The work envisions working with the human pathogen *Mycoplasma Genitalium* (primarily strain G37, ATCC designation 33530, but also additional wild-type strains if necessary), which is a BL2 organism.

Mycoplasma are both important pathogens and useful model organisms. Derivatives of MiniTn4001PsPuro will be used in experiments investigating the expression of host genes to better understand mycoplasmal biology and the universal elements of life, and to develop novel therapies for mycoplasmal infections

MiniTn4001PsPuro is a shuttle vector for E coli and *Mycoplasma* spp. Puromycin resistance is a selectable marker for successful transformation of the host. Initial experiments will use MiniTn4001PsPuro to optimize conditions for genetic engineering of *M. genitalium*; these experiments are needed because *M. genitalium* is heretofore poorly characterized as a host for genetic engineering.

We aim at establishing the basic steps for studying the activity and expression level of genes in mycoplasma using genetic manipulation. There is no plasmid system for mycoplasma and genetic manipulation usually involves integrative systems such as the one described by Algire et al., (2009) and therefore will include the plasmid MiniTn4001PsPuro and its derivatives.

Derivatives of MiniTn4001PsPuro will be used in experiments investigating the expression of host genes to better understand mycoplasmal biology and the universal elements of life, and to develop novel therapies for mycoplasmal infections

Although this will be our major platform, we may require other vectors later in the project such as MiniTn4001PsTetM and its derivatives. Genetically modified *Mycoplasma Genitalium* may have antibiotic resistance to puromycin. Other antibiotic markers are not expected to be useful but may be resorted to. They would include Tetracycline, chloramphenicol, Kanamycin and Zeocin. Neither unmodified nor modified organisms will be grown in large quantities.

We will be looking at the expression level of all or any of the genes in the organism. There are no particular ones we will be looking at.

The transposon system we are using is Tn4001. It was originally identified in this paper (<u>http://www.ncbi.nlm.nih.gov/pubmed/6323927</u>). It has been used before by other people to modify *M. genitalium* genomes (e.g this paper <u>http://www.ncbi.nlm.nih.gov/pubmed/19687239</u>, which is also where we got the vectors we are using).

Transposition is (to the extent we care about for this amendment) random so we are not targeting ay specific genes. The genes we will be introducing into the organism will include resistance markers (the ones we currently specify in the amendment), transcription factors from E.coli and perhaps other organisms (e.g. *lacl, tetR, araC*), and reporter genes (any fluorescent protein, *lacZ* etc).

It is still unclear as to how these integrations will affect the organism however it is expected that virulence and infectivity are more likely to be reduced compared to the wild type.

Section 5. Use of Recombinant or Synthetic Nucleic Acid: Check box if not applicable (Please complete this section if you use or generate recombinant microorganisms, cells, animals, plants, etc.)

Please indicate the Section of the NIH Recombinant DNA Guidelines that applies to this research. If you have questions Biosafety Staff will be glad to assist you. Note that the City of Cambridge requests that we register all recombinant work even if it is exempt under section III-F or Appendix C. For information on which section of the NIH Guidelines your experiments fall under, please see the NIH OSP website: <u>http://osp.od.nih.gov/office-biotechnology-activities/biosafety/nih-guidelines</u>.

Section III-A	Section III-B	Section III-C	Section III-D	Section III-E	Section III-F		
---------------	---------------	---------------	---------------	---------------	---------------	--	--

a. Source of Gene, Insert or Clone:

 Specify DNA/RNA source (organism the sequence is from), promoter used, nature of insert (genes families are acceptable, e.g. fluorescent proteins), if a protein expressed, and percent of any viral genome in construct (for viral vectors see 5.b.2):

Insert	Cloned into	Under promoter control	Insert source	Nature of insert	Protein expressed?	% viral genome
Antibiotic resistance genes such as TetR	MiniTn4001PsPuro	Spiralin promoter	Standard plasmid collection	Antibiotic resistance	yes	0
Transcription factors such as lacl	MiniTn4001PsPuro	Spiralin promoter	E coli	Transcription factor	yes	0
Reporter genes such as GFP, or lacZ	MiniTn4001PsPuro	Spiralin promoter, inducible promoters such as lac promoter	Jellyfish, synthetic, E coli	Reporter	yes	0

- 6. Are any sequences from select agents and toxins? Yes \square No \square ; If yes, please specify.
- 7. Do any sequences code for toxins not covered in (2) above? Yes No X; If yes, please specify.
- 8. Is the DNA source from a USDA-regulated plant, animal or insect? Yes No C; If the regulated organism is grown or stored at MIT, please include a copy of the USDA permit. (Link to USDA site: <u>http://www.aphis.usda.gov/brs/index.html</u>)

b. Vectors and Host Cells:

4. Identify cloning/expression/transfection vectors used, recipient bacterial strains used to propagate the vector, and recipient host cell (bacteria, yeast, murine or human cells, plant, etc.). Provide a restriction map of vector if it is new or not published. If commercially available vector or plasmid,

please indicate vendor. Describe the location and type of promoters and other control sequences and percent of any viral genome in construct.

Vector name	Recipient Bacterial strain	Reporter gene?	% viral genes	Type of promoters	Host cell
MiniTn4001PsPuro and its derivatives	E coli K12	Antibiotic resistance	0	Constitutive, inducible	Mycoplasma genitalium

5. If using viral vectors, fill out the table below. If using multiple types of viral vectors, please add a new table per vector type; multiple variations of the same viral vector type can be in the same table. (If using retroviral or lentiviral vectors additional requirements apply. Please see MIT CAB/ESCRO policy at the following URL: <u>https://cabescro.mit.edu/home</u>

Viral Vector type	
Description (Plasmids used, viral	
vector generation for lentiviral vector)	
Source (vendor / collaborator)	
Packaging cell line(s), if applicable	
Replication competent or incompetent	
Assays for detecting replication	
competent virus, if applicable	
Pseudotype	
Host range	
Safety feature (e.g. self-inactivating)	
Integrate into genome (yes/no)	
Exposure hazard (e.g. insertional	
mutagenesis)	
Promoters to be used with viral vector	
Inserts to be used with viral vector ^{1,2}	

¹For Cas9 expression in viral vectors, please indicate whether the promoter driving it is inducible or constitutively active.

²List all oncogenes that will be overexpressed and all tumor-suppressors that will be knocked down using viral vectors.

6. If using nanoparticles for the delivery of recombinant DNA/RNA, fill out the table below.

Nanoparticle description	
Able to enter cells? (yes/no)	
Exposure hazard	

- a. Use of Animals (including invertebrates) or Insects: Check box if not applicable Most research using animals also needs the approval of the MIT Committee on Animal Care (IACUC). Contact them to register your animal research; If you have CAC protocol no(s), list them here:______. The questions below are intended to deal with the use of potentially biohazardous agents in animals/insects or the creation of transgenic animals/insects.
 - 4. Will rDNA technologies (such as producing transgenics), recombinant microbes/cells be used in animals or insects? Yes No

- a. If yes, please describe objective of the research. Include recipient species, and list pathogen, rDNA technology, or recombinant microbe or human materials that will be used in animal/plant/ insect, and resulting genotype. What selection marker will be used?
- 5. If transgenic, including "knockout", animals/insects will be generated, please provide information on the transgene and vector as well as the expected phenotype of the recombinant animal/insect.
- 6. Does this recombinant species pose a risk to the community or the environment if there is an inadvertent release outside the laboratory or animal facility? Yes 🗌 No 🗌 If yes, explain:

d. Large-Scale Research: Check box if not applicable

Do experiments involve growth of 10 liters or more of culture at a time? Yes 🗌 No 🗌

If yes, an SOP is required for this work. Contact the Biosafety Program for assistant and:

- 7. Identify culture room, biological agent, recombinant modifications, and type of equipment used for large-scale culture growth and handling:
- 8. Describe the steps used to handle and contain spills:

e. Use of Plants: Check box if not applicable

Describe experiments that involve recombinant work and plants, whether the plant itself is made recombinant or recombinant cell or microorganisms are used with plants.

Does this recombinant species pose a risk to the community or the environment if there is an inadvertent release outside the laboratory? Yes \square No \square If yes, explain:

Section 6. Biological Agent Use: Check box if not applicable (Please complete this section if you work with viable microorganisms or viruses.)

a. Agent identification. List biological agent(s)/microorganism(s) genus/animals/plants/species/strain and genotypic markers, host range; any antibiotic resistance; recommended Biosafety Level (CDC); the source of the agent (e.g. new isolate from human tissue, blood, animal, tissue culture, another laboratory, ATCC, etc.).

Genus and species	Strain	Bio safety level (BSL) / Risk group (RG)	Source	Max volume used	Max Concentration used	Disinfectant (s) used	Can this cause disease in any population? (Y/N)
Escherichia coli K-12	MG1655,	1	CGSC, NEB, ATCC,	100mls		Bleach	Ν
	DH5alpha,		Thermo, Lucigen,				
	EMG2,		Keith Shearwin,				
	KL463, XL10,		Laub lab, Collins				
	C600,		lab, Agilent,				
	DH10B,		expressys,				
	BW25113,		invitrogen, epibio,				
	DH5alpha		clontech, Roberto				
	Pro, MG1655		Kolter, real biotech				
	Pro, RFS289,		corporation, the				
	CJ236,		Yale E. coli genetic				
	ER2738,		stock center				
	ER2267,						
	NEB10beta,						

For agents that are pathogens, please complete the following table:									
Organism	Infectious Dose	Route of exposure	Host range	Clinically relevant Drug resistance	Availability of treatment	Special equipment /PPE used (above standard PPE)	Disease state and symptoms of exposure		
Mycoplasma genitalium	Unknown	Mucosal contact; injection/ non-intact skin	Humans	Species resistant to beta-lactam; tetracyclines	Macrolides, moxifloxacin	N/A	non-gonococcal urethritis (NGU) i.e. inflammation of the urethra. Symptoms include blood in the urine or semen, burning pain while urinating, discharge from penis, fever, frequent or urgent urination, itching, tenderness or swelling in penis or groin area, abdominal pain, chills, pelvic pain and vaginal discharge		

1				1	I		
	E. cloni 10G,						
	XL1-GOLD,						
	XL1BLUE,						
	XL1-RED,						
	W3110,						
	NM2, S17,						
	CR63, CR63I,						
	ME5486,						
	transformax						
	EC100D pir,						
	Transformax						
	EC100D pir-						
	116, SURE2,						
	MK01,						
	МК02,						
	ET12567,						
	C600, W1,						
	MC4100,						
	oneshot						
	TOP10,						
	SHuffle-T7,						
	MG1655(DE3						
),						
	NEB10beta,						
	MG1655						
	ΔntrBC,						
	MG1655Pro						
	with pLtetO-						
	mf-Lon						
	protease						
	integrated,						
	Transformax						
	EPI3000,						
	DH5alpha F'						
	iq, sbtl3,						
	sbtl4, stellar,						
	HIT DH5-						
	alpha, JM109						
Mycoplasma genitalium	ATCC33530	2	ATCC	100mls		Bleach	Y

a2. List and describe any other biological material not covered in the tables above:

a3. Are any of the biological agents used or stored in your laboratory select agents? Check here to verify (<u>https://www.selectagents.gov/selectagentsandtoxinslist.html</u>). Yes \Box No \boxtimes If yes, which ones?

b. Experimental Procedures:

7. Briefly describe experiment and procedures involving use of biological agents?

Growth and transformation of E coli are performed using standard protocols, as described in Current Protocols in Molecular Biology^{2.}. Growth and modification of M. genitalium follow the protocols described in Algire et al., (2009) *Antimicrobial Agents and Chemotherapy* 53:4429-4432

8. Will experiments result in acquisition of new characteristics such as enhanced virulence, infectivity, drug or antibiotic resistance, or change in host range? Yes 🔀 No 🗌 If so, explain:

Transformation will result in puromycin (or if necessary other antibiotic) resistance. No experiments will never add resistance to clinically relevant antibiotics.

9. Will you introduce viable biological material (microorganisms or cells) into animals?

Yes \square No \boxtimes If so:

a) Please describe:

b) List your MIT Committee on Animal Care (IACUC) protocol no(s), if your animal model also needs MIT Committee on Animal Care (IACUC) approval:

Section 3. Research Description (required): Project 5

Synthetic Biology of Probiotic and Commensal Bacteria

a) In lay terms, briefly describe your research as you would to a friend who is not a scientist.

The number of microbial cells in the human body outnumbers the number of human cells by 10:1. Collectively, these microbes compose the human microbiome. The microbiome's impact on human physiology and disease pathology has become apparent due to advances in high-throughout DNA sequencing technology and germ-free model organisms, such as gnotobiotic mice. Along with this understanding of its function, we are developing tools to intelligently manipulate the microbiome to treat disease.

b) Outline the overall goal(s) of the research in the space below. Give enough information to assure that the purpose of the experiments and the techniques used are clear. Please use reasonably nontechnical terms.

5.1) Engineered *E. coli* and *Lactococcus lactis* for the detection of blood in the gastrointestinal tract The goal of this project is to engineer a strain of *E. coli* that is able to sense gastrointestinal bleeding. Genetic engineering involved testing various genetic parts from distant organisms (*Lactococcus lactis* and enterohemorrhagic *E. coli*) to get a genetic circuit that responds to heme, a component of blood. Testing of responsiveness to blood will be performed both *in vitro* as well as in mouse models of colitis and gastric ulcer. Ultimately, this strain will be paired with CMOS microelectronics for testing both in the lab and in a pig model of bleeding (with collaborators who would be running the pig model).

5.2) Engineering outer membrane vesicles in Bacteroides spp.

The goal of this project is to engineer outer membrane vesicles (OMVs) secreted by various species of *Bacteroides*. OMVs are lipid vesicles that contain many bacterial products and have been shown to interact with the host immune system. Our goal is to devise strategies to package non-native proteins into *Bacteroides* OMVs to manipulate the host immune system. These proteins include reporter genes (NanoLuc), model antigens (asparaginase II, ovalbumin) and immunomodulatory proteins (IL-10, IL-22, TGFbeta1). The effects of engineered OMVs will be tested *in vitro* with a variety of mammalian cells lines including MC/9, Caco2 and HT-2. Additionally, OMVs will be tested with primary cell lines derived from wild-type C57BL/6J and transgenic OT-II mice. Finally, engineered strains of *Bacteroides* that secrete modified OMVs will be tested in mouse models of colitis and delayed-type hypersensitivity.

5.3) Caffeine producing E. coli

As a proof of concept that expression of bioactive molecules produced in the gut by commensal bacteria can alter behaviors of the carrying organism, we intend to create an *E. coli* strain that produces caffeine. The biosynthetic pathways leading to the synthesis of caffeine will be cloned from *caffea Arabica* (7-methylxanthosine synthase, 7-methylxanthine N-methyltransferase, and 3,7 methylxanthine transferase) and placed under the control of strong inducible promoters such as Plac or Ptet in a plasmid of Lutz and Bujard collection (Lutz and Bujard, 1997). The correct expression of cloned genes will be tracked through HPLC following the appearance of products corresponding to each intermediate state in the caffeine production cascade. We will test production in a variety of media. In order to assess the biological activity of the caffeine produced by our engineered *E. coli* strain, we will colonize streptomycin treated mice with the engineered caffeine producer or a non producing strain and expose groups of mice to the pathway inducer and record their activity as caffeine is known to stimulate hyperactivity by measuring what distance they cover over a given amount of time. Their movements will be tracked by camera.

5.4) A synthetic biology toolkit for the gut commensal Bacteroides spp.

In the first (current) generation of microbiome therapy, gut microbes are transferred from healthy donors to sick patients via Fecal Microbiome Transplant (FMT) to establish healthy ecosystems of bacteria. This approach works well to cure diseases resulting from pathogenic organisms, such as *Clostridium difficile*, and it is also being investigated to treat metabolic disease and inflammatory bowel disease (IBD). The second generation of microbiome therapy will use manufactured collections of bacteria in pill form, rather than stool, as a therapeutic. This offers the opportunity to include genetically engineered bacteria as members of the manufactured microbial community. Alternatively, individual strains of genetically engineered bacteria may be fed independently as probiotics and spread their genetic material via conjugation in order to "edit" the microbiome and deliver beneficial genes.

The proposed project aims to investigate whether genetically engineered species from the genus *Bacteroides* are capable of stably colonizing and delivering therapies to the mammalian gut. As a model organism for this genus, we will engineer *Bacteroides thetaiotaomicron VPI-5482 (B. theta)*. *B. theta* will first be genetically manipulated to constitutively express GFP at different levels. This will be accomplished by establishing a collection of *Escherichia coli S17-1 \lambda pir* clones harboring plasmids with different random sequences in the ribosome binding site preceding the GFP coding region. This collection of *E. coli* strains will be established via standard molecular biology techniques. *Escherichia coli S17-1 \lambda pir* is a non-pathogenic, attenuated laboratory strain of *E. coli*. The *E. coli* will then be mated with *B. theta* to conjugate their plasmid, which will be integrated into the *B. theta* genome. Subsequently, we will identify *B. theta* clones expressing GFP at different levels via flow cytometry. These B. theta clones will then be used for colonization experiments in gnotobiotic mice. All animal experiments are considered ABL1 since the agents involved are not harmful to humans.

Initial colonization experiments will determine how well engineered *B. theta* colonizes the gut when challenged with wild type *B. theta*, other members of the *Bacteroides* genus, or entire collections of microbiome bacteria derived from specific pathogen-free (SPF) mouse stool. Gnotobiotic mice will be colonized with engineered *B. theta* via oral gavage. 6-7 days later, these mice will be gavaged with a challenge strain or a collection of strains. Mice will be monitored and their feces will be collected for up to a month. To determine colonization efficiency, total DNA will be extracted from feces and subject to qPCR. Flow cytometry will be conducted on engineered *B. theta* isolated from feces to confirm continuous expression of GFP.

If these initial studies are successful, *B. theta* will then be engineered to deliver therapeutic molecules to the mammalian gut. B. theta will express biosynthetic genes to generate the small molecule salicylate. Salicylate is an active metabolite of aspirin and is well appreciated for its anti-inflammatory and analgesic properties (*Acetylsalicylic Acid*, Karsten Schrör, Wiley-VCH, 2012). The genes for salicylate biosynthesis will be identified based on homology to either PchAB from *Pseudomanas aeruginosa* or Irp9 from *Yersinia enterocolitica*. In these organisms, salicylate production is used for iron acquisition and, thus, PchAB and Irp9 are not associated with virulence. The DNA for these genes will be dual codon optimized for *E. coli* and *B. theta* and manufactured via DNA synthesis. No physical contact with *P. aeruginosa* or *Y. enterocolitica* will be necessary. The genes will be cloned into laboratory strains of *E. coli* via standard molecular biology techniques and screened for their efficiency at producing and secreting salicylate *in vitro* via LCMS. The most efficient genes will then be conjugated into *B. theta* as described above. Subsequent to validation of function in *B. theta in vitro*, these *B. theta* clones will be gavaged into mice and screened for *in vivo* production of salicylate as measured via LCMS performed on stool.

Mobile Genetic Elements in Bacteroides

One strategy to stably establish populations of engineered, therapeutic bacteria in the mammalian gut involves the mobilization of payloads from probiotic to endogenous members of the gut flora. Horizontal gene transfer refers to a widespread phenomenon in bacteria whereby genes can be exchanged with distant relatives. This process amplifies evolutionary innovation by allowing the rapid dissemination of beneficial traits throughout a bacterial population. In addition to uptake of environmental DNA, several different classes of mobile genetic elements are involved in horizontal gene transfer, including conjugative plasmid, conjugative transposons and bacteriophage. Although this process is often studied in the context of antibiotic resistance, metabolic genes and other cargo that confer beneficial traits are often traded between bacteria. Likewise, engineered synthetic gene circuits could be loaded onto mobile genetic elements to potentially permit their introduction into natural populations.

The proposed project seeks to investigate conjugative transposons in *Bacteroides* sp. to assess their spread in populations in the murine gut. *Bacteroides thetaiotaomicron* VPI-5842 and the conjugative transposons CtnDOT, CtnERL and Ctn12256 will be used as a model system. CtnDOT and Ctn12256 encode resistance to both tetracycline and erythromycin, whereas CtnERL only encodes resistance to erythromycin¹. These transposons have been shown to mediate their self-transfer from one strain of *Bacteroides* to another. Initial *in vitro* experiments will investigate the transfer efficiencies and host ranges of these conjugative transposons. The studies will also include other members of the *Bacteroides* genus, including *B. fragilis, B. ovatus, B. uniformis*, B. *vulgatus* and *B. caccae*. Resistance markers encoded on the transposons themselves will be used to monitor transfer of the mobile genetic elements. Standard reporter genes (such as GFP or RFP) will be cloned into the transposons to validate the transfer of modified transposons from donors to recipients.

Once movement of these transposons is validated *in vitro*, we will monitor the transfer of these elements *in vivo*, in collaboration with the Fox lab. Gnotobiotic mice will be colonized with individual or a collection of the *Bacteroides* strains listed above and subsequently dosed with *B. thetaiotaomicron* harboring a transposon. Successful transfer will be monitored by collecting feces and performing culture, qPCR and/or flow cytometry assays. If successful, these transfer events will be further monitored in the gut of SPF mice. These initial studies will allow for the establishment of some of the rules that govern gene transfer *in vivo* and will allow for future studies which aim to stably introduce therapeutic gene circuits in the endogenous flora of mammals.

Strains

All strains of *Bacteroides* that will be employed in these studies are non-pathogenic, commensal strains initially isolated from the stool of healthy humans. *Bacteroides* is the most abundant member of the human intestinal flora and has been shown to confer multiple health benefits, including stimulating the immune system², alleviating symptoms of colitis² and behavioral disorders³.

Bacteroides strains:

- Bacteroides thetaiotaomicron VPI-5482
- Bacteroides fragilis NCTC 9343
- Bacteroides vulgatus ATCC 8482
- Bacteroides ovatus ATCC 8483
- Bacteroides caccae ATCC 43185
- Bacteroides uniformis ATCC 8492

B. fragilis is an opportunistic pathogen that can cause disease in humans who experience intestinal trauma. However, there are no known invasive factors that allow *B. fragilis* to cause disease without a breach in intestinal integrity.

Section 5. Use of Recombinant or Synthetic Nucleic Acid: Check box if not applicable (Please complete this section if you use or generate recombinant microorganisms, cells, animals, plants, etc.)

Please indicate the Section of the NIH Recombinant DNA Guidelines that applies to this research. If you have questions Biosafety Staff will be glad to assist you. Note that the City of Cambridge requests that we register all recombinant work even if it is exempt under section III-F or Appendix C. For information on which section of the NIH Guidelines your experiments fall under, please see the NIH OSP website: <u>http://osp.od.nih.gov/office-biotechnology-activities/biosafety/nih-guidelines</u>.

Section III-A	Section III-B	Section III-C	Section III-D	Section III-E	Section III-F			
a. Source of Gene, Insert or Clone:								

1. Specify DNA/RNA source (or probe), nature of insert, is a protein expressed, and percent of any viral genome in construct (for viral vectors see 5.b.2):

Insert	Cloned	Under promoter	Insert source	Nature of insert	Protein	% viral
incont	into	control	incorrocuroo		expressed?	genome
		P(Rha), P(L23R),				
		P(BT0268), P(BT3324), P(1),				
	pNBU1,	P(cfxA), P(cfiA), P(cepA), P(BfE6),		Luminescent		
NanoLuc	pNBU2	P(BT1311)	Geneblock	reporter gene	Yes	0
NanoEuc	pNDOZ	P(Rha), P(L23R),	CETTEDIOCK	Teponer gene	103	U
		P(BT0268),				
		P(BT3324), P(1),				
		P(cfxA), P(cfiA),				
	pNBU1,	P(cepA), P(BfE6),		Anti-inflammatory		
mIL-10	pNBU2	P(BT1311)	Mouse	protein	Yes	0
		P(Rha), P(L23R),				
		P(BT0268),				
		P(BT3324), P(1),				
	pNBU1,	P(cfxA), P(cfiA), P(cepA), P(BfE6),		Anti-inflammatory		
mIL-22	pNBU2	Р(ВТ1311)	Mouse	protein	Yes	0
	pribez	P(Rha), P(L23R),	Wouse	protein	103	U
		P(BT0268),				
	pNBU1,	P(BT3324), P(1),		0 / T	X	0
	pNBU2	P(cfxA), P(cfiA),	Bacteroides	Secretion Tag	Yes	0
OMV-Association		P(cepA), P(BfE6),				
Tag		P(BT1311)				
		P(Rha), P(L23R),				
		P(BT0268),				
	pNBU1, pNBU2	P(BT3324), P(1),			Yes	0
	ривог	P(cfxA), P(cfiA), P(cepA), P(BfE6),		CRISPR-		
Cas9		P(BT1311)	S. pyogenes	Component		
0400		P(Rha), P(L23R),	C. pyogonoc	Component		
		P(BT0268),				
	pNBU1,	P(BT3324), P(1),			Yes	0
	pNBU2	P(cfxA), P(cfiA),			165	0
		P(cepA), P(BfE6),	-	CRISPR-		
dCas9		P(BT1311)	S. pyogenes	Component		
		P(Rha), P(L23R),				
	pNBU1,	P(BT0268), P(BT3324), P(1),				
	pNBU2	P(cfxA), P(cfiA),			No	0
	pribez	P(cepA), P(BfE6),		CRISPR-		
Guide RNA		P(BT1311)	Geneblock	Component		
		P(Rha), P(L23R),				
		P(BT0268),				
	pNBU1,	P(BT3324), P(1),			Yes	0
Autima (O	pNBU2	P(cfxA), P(cfiA),				Ĭ
Antigens (Ova,		P(cepA), P(BfE6),	Chickon/Mauss	Antigon		
MOG)		P(BT1311)	Chicken/Mouse	Antigen		
		P(Rha), P(L23R), P(BT0268),				
	pNBU1,	P(BT0200), P(BT3324), P(1),				
	pNBU2	P(cfxA), P(cfiA),			Yes	0
Alkaline	P11202	P(cepA), P(BfE6),	Bacteria, Cow,	Alkaline		
Phosphatase		P(BT1311)	Human	Phosphatase		
	nNDL14	P(Rha), P(L23R),				
	pNBU1, pNBU2	P(BT0268),		Protein	Yes	0
dsbAB	μινουΖ	P(BT3324), P(1),	E. coli	Chaperones		
				BRR No		

BRR No. Page 68 of 89

		P(cfxA), P(cfiA), P(cepA), P(BfE6), P(BT1311)				
	pNBU1, pNBU2	P(Rha), P(L23R), P(BT0268), P(BT3324), P(1), P(cfxA), P(cfiA),			Yes	0
LL37	pNBOZ	P(cepA), P(BfE6), P(BT1311) P(Rha), P(L23R),	Human	Antimicrobial peptides		
	pNBU1, pNBU2	P(BT0268), P(BT3324), P(1), P(cfxA), P(cfiA),			Yes	0
REG3g		P(cepA), P(BfE6), P(BT1311)	Human	Antimicrobial peptides		
hrtR	p15a, ColE1	hrtR	L. lactis	Transcriptional repressor	Yes	0
IuxCDABE	ColE1	PL(hrtO), P(lux), P(phsA)	Addgene vector	Luminescent reporter operon	Yes	0
ChuA	p15a, ColE1	P(J23107)	E. coli	Heme importer	Yes	0
LuxR	ColE1	P(K176009)	Addgene vector	Transcription factor	Yes	0
ThsRS	p15a, ColE1	P(ThsRS)	Addgene vector	Two-component system	Yes	0
Enzymes from caffeine pathway	Lutz and Bujard collection ^{1.}	pLac, pTET	caffea Arabica	Enzymes	Yes	0

- 1. Are any sequences from select agents and toxins? Yes 🗌 No 🔀; If yes, please specify.
- 2. Do any sequences code for toxins not covered in (2) above? Yes No X; If yes, please specify.
- 3. Is the DNA source from a USDA-regulated plant, animal or insect? Yes No C; If the regulated organism is grown or stored at MIT, please include a copy of the USDA permit. (Link to USDA site: <u>http://www.aphis.usda.gov/brs/index.html</u>)

b. Vectors and Host Cells:

 Identify cloning/expression/transfection vectors used, recipient bacterial strains used to propagate the vector, and recipient host cell (bacteria, yeast, murine or human cells, plant, etc.). Provide a restriction map of vector if it is new or not published. If commercially available vector or plasmid, please indicate vendor. Describe the location and type of promoters and other control sequences and percent of any viral genome in construct.

Vector name	Recipient Bacterial strain	Reporter gene?	% viral genes	promoters	Host cell
	Bacteroides	2			Bacteroides
	thetaiotaomicron,				thetaiotaomicron,
pNBU1,	B. fragilis, B.			Constitutive	B. fragilis, B.
pNBU2	ovatus, B. vulgatus	Υ	0	and inducible	ovatus, B. vulgatus

pZA1	E. coli Nissle 1917	Ν	0	Constitutive	E. coli Nissle 1917
pZE1, pZE2,					
pZE3	E. coli Nissle 1917	Ν	0	Constitutive	E. coli Nissle 1917
pBR322	E coli K12	Υ	0	Constitutive	E. coli K12

 If using viral vectors, fill out the table below. If using multiple types of viral vectors, please add a new table per vector type; multiple variations of the same viral vector type can be in the same table. (If using retroviral or lentiviral vectors additional requirements apply. Please see MIT CAB/ESCRO policy at the following URL: <u>https://cabescro.mit.edu/home</u>

Viral Vector type	
Description (Plasmids used, viral	
vector generation for lentiviral vector)	
Source (vendor / collaborator)	
Packaging cell line(s), if applicable	
Replication competent or incompetent	
Assays for detecting replication	
competent virus, if applicable	
Pseudotype	
Host range	
Safety feature (e.g. self-inactivating)	
Integrate into genome (yes/no)	
Exposure hazard (e.g. insertional	
mutagenesis)	
Promoters to be used with viral vector	
Inserts to be used with viral vector ^{1,2}	

¹For Cas9 expression in viral vectors, please indicate whether the promoter driving it is inducible or constitutively active.

²List all oncogenes that will be overexpressed and all tumor-suppressors that will be knocked down using viral vectors.

7. If using nanoparticles for the delivery of recombinant DNA/RNA, fill out the table below.

Nanoparticle description	
Able to enter cells? (yes/no)	
Exposure hazard	

c. Use of Animals (including invertebrates) or Insects: Check box if not applicable

Most research using animals also needs the approval of the MIT Committee on Animal Care (IACUC). Contact them to register your animal research; If you have CAC protocol no(s), list them here: <u>1215-113-18, 0915-092-18</u>. The questions below are intended to deal with the use of potentially biohazardous agents in animals/insects or the creation of transgenic animals/insects.

1. Will rDNA technologies (such as producing transgenics), recombinant microbes/cells be used in animals or insects? Yes 🛛 No 🗌

a. If yes, please describe objective of the research. Include recipient species, and list pathogen, rDNA technology, or recombinant microbe or human materials that will be used in animal/plant/ insect, and resulting genotype. What selection marker will be used?

1215-113-18

Our idea is to engineer orally administered probiotic yeast S. boulardii that produce fusion proteins, composed of luciferase fused to Fc fragments, near the gut epithelium to be taken up systemically via the FcRn pathway. Our proposed platform would enable the oral administration of freeze-dried engineered probiotics for systemic protein delivery – this transformative system would yield an extensible heat-stable, and low cost formulation ideal for low-resource settings. We will express the GLuc-Fc fusion protein using a pTDH3 or pTEF2 constitutive promoter on a pRS30x standard cloning vector. Secretion will be achieved by fusing of the protein to a secretion leader. pRS30x plasmids are integrative (no yeast replication origin) and differ by their selective marker (HIS, LEU, TRP or URA). Selection markers used are the auxotrophic markers (URA, HIS, LEU, TRP). Neither of these proteins by themselves confers any level of pathogenicity.

0915-092-18:

We will introduce recombinant organisms, including engineered E. coli, B. thetaiotaomicron, B. fragilis, B. ovatus and B. vulgatus strains, as well as the probiotic yeast S. boulardii into the mouse gastrointestinal tract. The objective is to test genetically engineered strains for their ability to detect gut inflammation and/or secrete anti-inflammatory proteins, for their ability to act as as next-generation of inflammation bowel disease sensors and therapeutics. Organisms will be introduced by oral gavage. Recipient species includes Balb/c mice, SJL mice, and C57BL/6 mice. No engineered bacterial strains are known to have or will acquire virulence. The bacteria may have display resistance to common laboratory antibiotics such as kanamycin, or erythromycin, but not to clinically relevant drugs

- 2. If transgenic, including "knockout", animals/insects will be generated, please provide information on the transgene and vector as well as the expected phenotype of the recombinant animal/insect.
- 3. Does this recombinant species pose a risk to the community or the environment if there is an inadvertent release outside the laboratory or animal facility? Yes □ No ⊠ If yes, explain:

d. Large-Scale Research: Check box if not applicable

Do experiments involve growth of 10 liters or more of culture at a time? Yes 🗌 No 🗌

If yes, an SOP is required for this work. Contact the Biosafety Program for assistant and:

- 1. Identify culture room, biological agent, recombinant modifications, and type of equipment used for large-scale culture growth and handling:
- 2. Describe the steps used to handle and contain spills:

e. Use of Plants: Check box if not applicable

Describe experiments that involve recombinant work and plants, whether the plant itself is made recombinant or recombinant cell or microorganisms are used with plants.

Does this recombinant species pose a risk to the community or the environment if there is an inadvertent release outside the laboratory? Yes \square No \square If yes, explain:

Section 6. Biological Agent Use: Check box if not applicable (Please complete this section if you work with viable microorganisms or viruses.)

a. Agent identification. List biological agent(s)/microorganism(s) genus/animals/plants/species/strain and genotypic markers, host range; any antibiotic resistance; recommended Biosafety Level (CDC); the source of the agent (e.g. new isolate from human tissue, blood, animal, tissue culture, another laboratory, ATCC, etc.).

ATCC, etc.).							
Genus and species	Strain	Bio safety level (BSL) / Risk group (RG)	Source	Max volume used	Max Concentration used	Disinfectant (s) used	Can this cause disease in any population? (Y/N)
Bacteroides eggerthii	VPI T5-42B-1 (ATCC27754)	2	ATCC	100mls		Bleach	Y
Bacteroides acidifaciens	mmF857	2	Mouse isolate MIT	100mls		Bleach	Y
Bacteroides ASF519	mmF835	2	Mouse isolate MIT	100mls		Bleach	Y
Bacteroides caccae	ATCC 43185	2	ATCC	100mls		Bleach	Y
Bacteroides fragilis	NCTC 9343	2	ATCC	100mls		Bleach	Y
Bacteroides ovatus	NCTC 11153,	2	ATCC	100mls		Bleach	γ
	ATCC 8483						
Bacteroides thetaiotaomicron	VPI-5482, NCTC 9343, HSP40	2	ATCC	100mls		Bleach	Y
Bacteroides uniformis	ATCC 8492	2	ATCC	100mls		Bleach	γ
Bacteroides vulgatus	ATCC 8482,	2	ATCC, mouse	100mls		Bleach	Y
Bacteroides vulgatus	mmF837 ATCC 8482	2	isolate MIT ATCC	100mls		Bleach	Y
Enterobacter aerogenes	planned	2	ATCC	100mls		Bleach	Y
Enterobacter cloacae	1000654	2	ATCC	100mls		Bleach	Y
Enterococcus faecalis	(NDM-1) Ef1 – Ef15	2	ATCC, Mia Liebermann (Fox lab)	100mls		Bleach	Y
Escherichia coli K-12	MG1655, DH5alpha, EMG2, KL463, XL10, C600, DH10B, BW25113, DH5alpha Pro, MG1655 Pro, RF5289, CJ236, ER2738, ER2267, NEB10beta, E. cloni 10G, XL1-GOLD, XL1-GOLD, XL1-RED, W3110, NM2, S17, CR63, CR63I, ME5486, transformax EC100D pir, Transformax EC100D pir- 116, SURE2, MK01, MK02, ET12567, C600, W1, MC4100, oneshot	1	CGSC, NEB, ATCC, Thermo, Lucigen, Keith Shearwin, Laub lab, Collins lab, Agilent, expressys, invitrogen, epibio, clontech, Roberto Kolter, real biotech corporation, the Yale E. coli genetic stock center	100mls		Bleach	N

	TOP10, SHuffle-T7, MG1655(DE3), NEB10beta, MG1655 AntrBC, MG1655Pro with pLtetO- mf-Lon protease integrated, Transformax EP13000, DH5alpha F ¹ iq, sbt13, sbt14, stellar,					
	HIT DH5-					
	alpha, JM109					
Escherichia coli (other)	ATCC 11775, ATCC 700973, ATCC 23503, ATCC 23511, GUE, 5649, RKI, BAA-201 (TEM-3), Nissle 1917, HS, ECOR collection (ECOR1-70) BL21, BL21(DE3), Rosetta, Rosetta(DE3)	2	ATCC, P. Nordmann, STEC(http://shigato x.net/new/referenc e- strains/ecor.html) ATCC, NEB, Lucigen, Invitrogen, TKL	100mls 100mls	Bleach Bleach	Y
Escherichia coli C	, BL21AI, BB, REL606, BL21(DE3)/p LysS, SHuffle express T7, Express Iq C-1, C-1792,	1	lan Molineux,	100mls	Bleach	N
	C-236, C-		ATCC, TKL			
Escherichia coli	367, C-368 rcF471-6, rcF479, rcF513-9	1	Mouse fecal isolates	100mls	Bleach	N
Proteus mirabilis	rcF520-22	2	Mouse fecal isolates	100mls	Bleach	Y
Lactobacillus plantarum	WCFS1	1	ATCC	100mls	Bleach	N
lactococcus lactis	planned	1	ATCC	100mls	Bleach	N
Parabacteroides distastonis	mmF840, NCTC11152	2	Mouse isolate (MIT animal facility), ATCC	100mls	Bleach	Y
saccharomyces cerevisiae	BY4741	1	TKL	100mls	Bleach	N

For agents that are pathogens, please complete the following table:

						Special equipment	
Organism	Infectious Dose	Route of exposure	Host range	Clinically relevant Drug resistance	Availability of treatment	/PPE used (above	Disease state and symptoms of exposure
						standard PPE)	

REWRITE

Bacteroides thetaiotaomicron; B. ovatus; B. uniformis;UnknownMucosal contact; injection/ cats, and non-intactHumans, dogs, injection/ other animalsMetronidazole, imipenem, and amoxicilin seem to be effective against B. fragitis and B. thetaiotaomicron (15). Studies using a rat model have shown that pretreatment using oral vancomycin/imipen em resulted in undetectable levels of Bacteroides spp	N/A	Bacteroides spp. represent an important anaerobic bacterial genus associated with human infections ⁽³⁾ . In combination with other facultative/strict anaerobes, they are responsible for the majority of localized abscesses within the cranium, thorax, peritoneum, liver, and
B. ovatus; B. injection/ non-intact Parabacterioides distastonis; Bacteroides caccae; B. eggerthii; cats, and other animals b. fragitis and B. thetaiotaomicron (16). Studies using a rat model have shown that pretreatment using oral vancomycin/imipen em resulted in undetectable levels		important anaerobic bacterial genus associated with human infections ⁽³⁾ . In combination with other facultative/strict anaerobes, they are responsible for the majority of localized abscesses within the cranium, thorax,
uniformis; Parabacterioides distastonis; Bacteroides caccae; B. eggerthii;non-intact skinother animalsbe effective against B. fragitis and B. thetaiotaomicron (16). Studies using a rat model have shown that pretreatment using oral vancomycin/imipen em resulted in undetectable levels		bacterial genus associated with human infections ⁽³⁾ . In combination with other facultative/strict anaerobes, they are responsible for the majority of localized abscesses within the cranium, thorax,
Parabacterioides distastonis; Bacteroides caccae; B. eggerthii;skinanimalsB. fragitis and B. thetaiotaomicron (16). Studies using a rat model have shown that pretreatment using oral vancomycin/imipen em resulted in undetectable levels		associated with human infections ⁽³⁾ . In combination with other facultative/strict anaerobes, they are responsible for the majority of localized abscesses within the cranium, thorax,
distastonis; Bacteroides caccae; B. eggerthii; H. eggerthi		associated with human infections ⁽³⁾ . In combination with other facultative/strict anaerobes, they are responsible for the majority of localized abscesses within the cranium, thorax,
distastonis; Bacteroides caccae; B. eggerthii; H. eggerthi; H. eggerthii; H. eggerthii; H. eggerthii; H. eggerthii		infections ⁽³⁾ . In combination with other facultative/strict anaerobes, they are responsible for the majority of localized abscesses within the cranium, thorax,
Bacteroides caccae; B. eggerthii; B. eggerth		combination with other facultative/strict anaerobes, they are responsible for the majority of localized abscesses within the cranium, thorax,
B. eggerthii; B. eggerthii; B. eggerthii; B. eggerthii; B. eggerthii; B. eggerthii; Frat model have shown that pretreatment using oral vancomycin/imipen em resulted in undetectable levels		other facultative/strict anaerobes, they are responsible for the majority of localized abscesses within the cranium, thorax,
shown that pretreatment using oral vancomycin/imipen em resulted in undetectable levels		anaerobes, they are responsible for the majority of localized abscesses within the cranium, thorax,
pretreatment using oral vancomycin/imipen em resulted in undetectable levels		responsible for the majority of localized abscesses within the cranium, thorax,
oral vancomycin/imipen em resulted in undetectable levels		majority of localized abscesses within the cranium, thorax,
vancomycin/imipen em resulted in undetectable levels		abscesses within the cranium, thorax,
em resulted in undetectable levels		cranium, thorax,
undetectable levels		
		peritoneum liver and
		Dentoneum, iver, and
		female genital tract ^(4,8) .
		They can cause
		-
		pulmonary abscesses
		when naturally-
		occurring
		oropharangeal
		Bacteroides and
		closely related genera
		are aspirated into the
		lung ^(<u>8</u>) . These taxa can
		lead to many types of
		diseases, some of
		-
		which can be fatal,
		including noma
		(cancrum oris), human
		apical periodontitis,
		endocarditis, pelvic
		inflammatory disease,
		suppurative
		thrombophelebitis,
		and wound
		infections ^(4,6,9) .
		Organisms from oral
		flora also have a role in
		dental abscesses and
		infectivity of human
		bites.
		Bacteroides fragilis is
		the most common
		opportunistic
		pathogen of
		Bacteroides spp. ^(<u>1,4</u>) .
		Spread to bloodstream
		(bacteremia) is more
		common for B. fragilis
		than any other
		anaerobe ^(<u>4</u>) . Deep pain
		and tenderness below
		the diaphragm are
		typical of B. fragilis
		infection. Widespread
		intra-abdominal
		abscesses may be
		associated with fever
		and abdominal pain.
ENTEROCOCCUS Unknown Ingestion; Humans Strains resistant to Most strains remain		Enterococci can cause
FAECALIS mucosal β-lactams, susceptible to		urinary tract, wound,
		and soft tissue
contact; aminoglycosides penicillin, ampicillin,		
injection/ and, increasingly, and vancomycin.		infections ^(2,4) . They are
non-intact vancomycin have		also associated with
skin been described ^(2.4) .		bacteremia which can

	-	-	1			
				Strains have also		lead to endocarditis in
				been identified		previously damaged
				which carry genetic		cardiac valves ⁽⁴⁾ . E.
				elements conferring		faecalis is the most
				resistance to		frequent species
				chloramphenicol,		isolated from human
				tetracyclines,		intestine samples (80-
				macrolides,		90%), E. faecium
				lincosamides,		accounts for 5-10% of
				quinolones, and		isolates ⁽¹
				streptogramins ⁽²⁾ .		
ENTEROBACTER	Unknown	Ingestion;	Humans	Enterobacter spp.	Most Enterobacter	Enterobacter spp.,
AEROGENES and	OTINITO WIT	injection/	Hamans	are resistant to	spp. are susceptible	particularly E.
		non-intact			to cefepime ^{(Z),}	-
cloacae				ampicillin; first- and		aerogenes and E.
		skin		second-generation	aminoglycosides,	cloacae, have been
				cephalosporins ^(Z) ;	fluoroquinolones,	associated with
				and cephalothin ⁽	and trimethoprim-	nosocomial outbreaks,
					sulfamethoxazole ⁽⁸⁾ .	and are considered
					Tigecycline has been	opportunistic
					shown effective in	pathogens ^{(<u>1</u>,<u>5</u>).}
					vitro	Enterobacter spp. can
						cause numerous
						infections, including
						_
						cerebral abscess,
						pneumonia,
						meningitis, septicemia,
						and wound, urinary
						tract (particularly
						catheter-related UTI),
						and abdominal
						cavity/intestinal
						infections ^(6,7) . In
						addition, Enterobacter
						spp. have been noted
						in intravascular device-
						related infections, and
						surgical site infections
						(primarily
						postoperative or
						related to devices such
						as biliary stents) ^(<u>7</u>) .
						Many species can
						cause extra-intestinal
						infections ⁽⁶⁾ , for
						example, Enterobacter
						sakazakii, has been
						associated with brain
						abscesses in infants
						and with meningitis ^(3,Z) .
						Mortality rates for
						bacterial meningitis
						range from 40-80% ⁽⁵⁾ .

a2. List and describe any other biological material not covered in the tables above:

a3. Are any of the biological agents used or stored in your laboratory select agents? Check here to verify (<u>https://www.selectagents.gov/selectagentsandtoxinslist.html</u>). Yes \Box No \boxtimes If yes, which ones?

b. Experimental Procedures:

1. Briefly describe experiment and procedures involving use of biological agents?

Bacterial growth and transformation will be done using standard protocols, such as those described in Current Protocols in Molecular Biology².

2. Will experiments result in acquisition of new characteristics such as enhanced virulence, infectivity, drug or antibiotic resistance, or change in host range? Yes X No I If so, explain:

Bacteria will gain antibiotic resistance as well as the ability to synthesize various compounds as described.

3. Will you introduce viable biological material (microorganisms or cells) into animals?

Yes No If so:

a) Please describe:

1215-113-18

Our idea is to engineer orally administered probiotic yeast S. boulardii that produce fusion proteins, composed of luciferase fused to Fc fragments, near the gut epithelium to be taken up systemically via the FcRn pathway. Our proposed platform would enable the oral administration of freeze-dried engineered probiotics for systemic protein delivery – this transformative system would yield an extensible heat-stable, and low cost formulation ideal for low-resource settings. We will express the GLuc-Fc fusion protein using a pTDH3 or pTEF2 constitutive promoter on a pRS30x standard cloning vector. Secretion will be achieved by fusing of the protein to a secretion leader. pRS30x plasmids are integrative (no yeast replication origin) and differ by their selective marker (HIS, LEU, TRP or URA). Selection markers used are the auxotrophic markers (URA, HIS, LEU, TRP). Neither of these proteins by themselves confers any level of pathogenicity.

0915-092-18:

We will introduce recombinant organisms, including engineered E. coli, B. thetaiotaomicron, B. fragilis, B. ovatus and B. vulgatus strains, as well as the probiotic yeast S. boulardii into the mouse gastrointestinal tract. The objective is to test genetically engineered strains for their ability to detect gut inflammation and/or secrete anti-inflammatory proteins, for their ability to act as as next-generation of inflammation bowel disease sensors and therapeutics. Organisms will be introduced by oral gavage. Recipient species includes Balb/c mice, SJL mice, and C57BL/6 mice. No engineered bacterial strains are known to have or will acquire virulence. The bacteria may have display resistance to common laboratory antibiotics such as kanamycin, or erythromycin, but not to clinically relevant drugs

b) List your MIT Committee on Animal Care (IACUC) protocol no(s), if your animal model also needs MIT Committee on Animal Care (IACUC) approval: _____0915-092-18; 1215-113-18;

Section 3. Research Description (required): Project 6: Genetically encoded state

machines design operation in E. coli.

a) In lay terms, briefly describe your research as you would to a friend who is not a scientist.

Bacteria sense chemicals in their environment, and respond by modulating their gene expression. This ability can be engineered to make living sensors for a variety of uses in the environment and medicine. In these experiments we are creating a basic platform into which sensing and responding circuits can be plugged. This will allow synthetic biologists to bypass creating each system from scratch.

b) Outline the overall goal(s) of the research in the space below. Give enough information to assure that the purpose of the experiments and the techniques used are clear. Please use reasonably nontechnical terms. The goal is to engineer logic in Escherichia Coli (E. coli). We are trying to engineer the way that E. coli responds to chemical signals. For example, if chemical A and chemical B are in the environment, then we want E. coli to produce protein C. This is one example type of logical statement that we are trying to engineer. We aren't building sensors for input chemicals, nor are we testing new output proteins, we are just developing the "biological hardware" that lets us map input chemicals to output proteins. The "biological hardware" is DNA recombination systems. These systems are composed of recombinases, which target two specific (~50 nucleotide long) DNA sites and cause recombination between them. We leverage these controlled recombinase-based recombination events to map input chemicals to outputs. The recombinase systems, which are typically from bacteriophage, are introduced into E. coli via recombinant DNA on plasmids. The plasmids have standard antibiotic selection markers (i.e. chloramphenicol, kanamycin, streptomycin, spectinomycin, carbenicillin, ampicillin, tetracycline, and gentamicin resistance genes). The chemical inputs that we use to test our systems are canonical inducers used in synthetic biology: anhydrotetracycline (ATc), diacetylphloroglucinol (DAPG), acetyl homoserine lactone (AHL), Isopropyl β-D-1-thiogalactopyranoside (IPTG), and sugars like arabinose (Ara). The inducers are sensed via inducible promoter systems, introduced into E. coli via recombinant DNA on plasmids with the same antibiotic resistance markers as mentioned above. Lastly, the protein outputs that we used to test our engineered systems are fluorescent proteins (e.g. GFP, RFP, and BFP). These are also introduced into E. coli via recombinant DNA on plasmids with the same antibiotic resistance markers as mentioned above.

Section 5. Use of Recombinant or Synthetic Nucleic Acid: Check box if not applicable (Please complete this section if you use or generate recombinant microorganisms, cells, animals, plants, etc.)

Please indicate the Section of the NIH Recombinant DNA Guidelines that applies to this research. If you have questions Biosafety Staff will be glad to assist you. Note that the City of Cambridge requests that we register all recombinant work even if it is exempt under section III-F or Appendix C. For information on which section of the NIH Guidelines your experiments fall under, please see the NIH OSP website: <u>http://osp.od.nih.gov/office-biotechnology-activities/biosafety/nih-guidelines</u>.

Section III-A	Section III-B	Section III-C	Section III-D	Section III-E	Section III-F	
---------------	---------------	---------------	---------------	---------------	---------------	--

a. Source of Gene, Insert or Clone:

 Specify DNA/RNA source (organism the sequence is from), promoter used, nature of insert (genes families are acceptable, e.g. fluorescent proteins), if a protein expressed, and percent of any viral genome in construct (for viral vectors see 5.b.2):

Insert	Cloned into	Under promoter control	Insert source	Nature of insert	Protein expressed?	% viral genome
Antibiotic resistance genes, such as kanR	Vectors from the Lutz and Bujard collection ^{1.}	Native, constitutive	bacteria	Antibiotic resistance genes	Y	0
Fluorescent proteins such as GFP	Vectors from the Lutz and Bujard collection ^{1.}	Constitutive, such as prod, PBT3763	Jellyfish, synthetic	Fluorescent proteins	Y	0
Recombin- ases such as bxb	Vectors from the Lutz and Bujard collection ^{1.}	Inducible promoters including PBAD, PluxS, Ptet, pRHA	Bacteria, bacteriophage , synthetic	recombinase s	Y	<10%

5. Are any sequences from select agents and toxins? Yes No 🖄; If yes, please specify.

- 6. Do any sequences code for toxins not covered in (2) above? Yes No X; If yes, please specify.
- 7. Is the DNA source from a USDA-regulated plant, animal or insect? Yes No X; If the regulated organism is grown or stored at MIT, please include a copy of the USDA permit. (Link to USDA site: <u>http://www.aphis.usda.gov/brs/index.html</u>)

b. Vectors and Host Cells:

3. Identify cloning/expression/transfection vectors used, recipient bacterial strains used to propagate the vector, and recipient host cell (bacteria, yeast, murine or human cells, plant, etc.). Provide a restriction map of vector if it is new or not published. If commercially available vector or plasmid, please indicate vendor. Describe the location and type of promoters and other control sequences and percent of any viral genome in construct.

Vector name	Recipient Bacterial strain	Reporter gene?	% viral genes	Type of promoters	Host cell
Vectors from the Lutz and Bujard collection ^{1.}	E coli K12	Fluorescen t proteins	0	Constitutive for antibiotic and resistance and fluorescent reporters, inducible for recombinases	E coli K12

4. If using viral vectors, fill out the table below. If using multiple types of viral vectors, please add a new table per vector type; multiple variations of the same viral vector type can be in the same table. (If using retroviral or lentiviral vectors additional requirements apply. Please see MIT CAB/ESCRO policy at the following URL: <u>https://cabescro.mit.edu/home</u>

Viral Vector type	
Description (Plasmids used, viral	
vector generation for lentiviral vector)	
Source (vendor / collaborator)	
Packaging cell line(s), if applicable	
Replication competent or incompetent	
Assays for detecting replication	
competent virus, if applicable	
Pseudotype	
Host range	
Safety feature (e.g. self-inactivating)	
Integrate into genome (yes/no)	
Exposure hazard (e.g. insertional	
mutagenesis)	
Promoters to be used with viral vector	
Inserts to be used with viral vector ^{1,2}	

¹For Cas9 expression in viral vectors, please indicate whether the promoter driving it is inducible or constitutively active.

²List all oncogenes that will be overexpressed and all tumor-suppressors that will be knocked down using viral vectors.

8. If using nanoparticles for the delivery of recombinant DNA/RNA, fill out the table below.

Nanoparticle description	
Able to enter cells? (yes/no)	
Exposure hazard	

- c. Use of Animals (including invertebrates) or Insects: Check box if not applicable Most research using animals also needs the approval of the MIT Committee on Animal Care (IACUC). Contact them to register your animal research; If you have CAC protocol no(s), list them here:______. The questions below are intended to deal with the use of potentially biohazardous agents in animals/insects or the creation of transgenic animals/insects.
 - 1. Will rDNA technologies (such as producing transgenics), recombinant microbes/cells be used in animals or insects? Yes No
 - b. If yes, please describe objective of the research. Include recipient species, and list pathogen, rDNA technology, or recombinant microbe or human materials that will be used in animal/plant/ insect, and resulting genotype. What selection marker will be used?
 - 2. If transgenic, including "knockout", animals/insects will be generated, please provide information on the transgene and vector as well as the expected phenotype of the recombinant animal/insect.
 - 3. Does this recombinant species pose a risk to the community or the environment if there is an inadvertent release outside the laboratory or animal facility? Yes 🗌 No 🗌 If yes, explain:

d. Large-Scale Research: Check box if not applicable

Do experiments involve growth of 10 liters or more of culture at a time? Yes
No

If yes, an SOP is required for this work. Contact the Biosafety Program for assistant and:

- 1. Identify culture room, biological agent, recombinant modifications, and type of equipment used for large-scale culture growth and handling:
- 2. Describe the steps used to handle and contain spills:

e. Use of Plants: Check box if not applicable

Describe experiments that involve recombinant work and plants, whether the plant itself is made recombinant or recombinant cell or microorganisms are used with plants.

Does this recombinant species pose a risk to the community or the environment if there is an inadvertent release outside the laboratory? Yes \square No \square If yes, explain:

Section 6. Biological Agent Use: Check box if not applicable (Please complete this section if you work with viable microorganisms or viruses.)

a1. Agent identification. List biological agent(s)/microorganism(s) genus/animals/plants/species/strain and genotypic markers, host range; any antibiotic resistance; recommended Biosafety Level (CDC); the source of the agent (e.g. new isolate from human tissue, blood, animal, tissue culture, another laboratory, ATCC, etc.).

AICC, etc.).							
		Bio					
		safety					Can this
		level		Max	Max	Disinfectant	cause disease
Genus and species	Strain	(BSL)	Source	volume	Concentration	(s) used	in any
		/ Risk		used	used	(3) 4364	population?
		group					(Y/N)
		(RG)					
Escherichia coli K-12	MG1655,	1	CGSC, NEB, ATCC,	100mls		Bleach	N
	DH5alpha,		Thermo, Lucigen,				
	EMG2,		Keith Shearwin,				
	KL463, XL10,		Laub lab, Collins				
	C600,		lab, Agilent,				
	DH10B,		expressys,				
	BW25113,		invitrogen, epibio,				
	DH5alpha		clontech, Roberto				
	Pro, MG1655		Kolter, real biotech				
	Pro, RFS289,		corporation, the				
	CJ236,		Yale E. coli genetic				
	ER2738,		stock center				
	ER2267,						
	NEB10beta,						
	E. cloni 10G,						
	XL1-GOLD,						
	XL1BLUE,						
	XL1-RED,						
	W3110,						
	NM2, S17,						
	CR63, CR63I,						
	ME5486,						
	transformax						
	EC100D pir,						
	Transformax						
	EC100D pir-						
	116, SURE2,						
	МК01,						
	МК02,						
	ET12567,						
	C600, W1,						
	MC4100,						
	oneshot						
	TOP10,						
	SHuffle-T7,						
	MG1655(DE3						
),						
	NEB10beta,						
	MG1655						
	ΔntrBC,						
	MG1655Pro						
	with pLtetO-						
	mf-Lon						
	protease						
	integrated,						
	Transformax						
	EPI3000,						
	DH5alpha F'						
	iq, sbtl3,						
	sbtl4, stellar,						
	suli4, stelldl,						

HIT DH5-			
alpha, JM109			
· · ·			

For agents that are pathogens, please complete the following table:

Organism	Infectious Dose	Route of exposure	Host range	Clinically relevant Drug resistance	Availability of treatment	Special equipment /PPE used (above standard PPE)	Disease state and symptoms of exposure

a2. List and describe any other biological material not covered in the tables above:

a3. Are any of the biological agents used or stored in your laboratory select agents? Check here to verify (<u>https://www.selectagents.gov/selectagentsandtoxinslist.html</u>). Yes \Box No \boxtimes If yes, which ones?

b. Experimental Procedures:

1. Briefly describe experiment and procedures involving use of biological agents?

Bacterial growth and transformation will be done as described in Current Protocol in Molecular Biology (Online ISBN: 9780471142720).

2. Will experiments result in acquisition of new characteristics such as enhanced virulence, infectivity, drug or antibiotic resistance, or change in host range? Yes X No I If so, explain:

Antibiotic resistance, fluorescence

3. Will you introduce viable biological material (microorganisms or cells) into animals?

Yes 🗌 No 🔀 If so:

a) Please describe:

b) List your MIT Committee on Animal Care (IACUC) protocol no(s), if your animal model also needs MIT Committee on Animal Care (IACUC) approval: _____

Section 7. Use of Human Source Material: Check box if not applicable

- a. Do you have an Exposure Control Plan (ECP) on file with the MIT EHS office? Yes 🛛 No 🗌
- **b.** If no, then how has the material been treated prior to use in the lab (such as formalin fixing or heat treatment)? Please describe how material will be rendered noninfectious prior to use.
- c. Human material used (check all that apply):

x	Established human cell lines	Human blood, serum, plasma, blood products, or components
	Primary human cell lines	Human bodily fluids

Section 8. Human Embryonic Stem Cells or Induced Pluripotent Stem Cells (hES

or iPS Cells respectively): Check box if not applicable

Investigators should be aware of the NIH Guidelines on Human Stem Cell Research if they plan to work with either cell type (<u>http://stemcells.nih.gov/policy/2009-guidelines.htm</u>).

1. Do you plan to derive human embryonic stem (hES) cells?

Yes No If yes, please describe the technology e.g. single cell nuclear transplantation, derivation from a donated embryo, etc. Please contact the Biosafety Office at 2-3477 as we will need further information. Please note that NIH will not fund derivation of hES cell lines.

2. Are the human embryonic stem cells (hES) with which you plan to work on the NIH Registry of federally approved lines? Yes No If yes, please list cell line(s) and

indicate where you wi	Il get the hES cell line.	
hES cell line name	NIH registry #	Source (vendor / collaborator / Institution)

- 3. If you plan to use an already existing human stem cell line that is not on the NIH Registry please provide the following information as an attachment to this Biological Research Registration:
 - a. Please list hES Cell Lines and source: another laboratory or investigator
 - b. Documentation required as part of registration (from the source investigator and institution)
 - i. Please submit a Letter of Assurance from the investigator supplying the cells. This letter should document that the hES cell lines were generated with Institutional Review Board (IRB) oversight and approval. Please be sure that the source investigator includes the name of the approving IRB and the IRB OHRP assurance number.
 - ii. Please submit the approval letter from the Institutional ESCRO Committee.
 - c. MIT investigators must document that a source of non-federal funding for research involving these particular hES cell lines is in place.
 - d. A plan must be developed to ensure separation of supporting materials and equipment for work with all non-federally approved hES cell lines.
 - e. Contact the <u>Office of Sponsored Programs</u> for information on funding issues surrounding research involving non-federally approved hES cell lines.
- 4. Funding Information: Please list all grants and contracts, including pending grants or contracts, that describe the use of any hES cell based research. Please include funding source e.g., NIH, HHMI, JDRF, etc., and start and end dates. If departmental or MIT funds are used please indicate that as well (enter "internal MIT funds" into grant/contract space). (The box is expandable.)

Funding Agency	Grant/ Contract Number	Internal Cost Object	Date Grant Submitted	Date Grant begins	Date Grant ends

Does the information in this biological research registration form include all of the laboratory research section(s) described in the grants or contacts listed above?

No (Explain)

Yes

NA (internal MIT funds to support this research only)

- 5. Do you plan to inject or transplant hES cells in any animal, animal embryo or at any stage or prenatal development where the hES cells may contribute to the animal germline? Yes No Please outline the animal research in the space below.
- 6. Do you have human embryonic stem cells stored that are no longer used in your laboratory?

Yes		No		If yes,	please	explain.
-----	--	----	--	---------	--------	----------

7. Will you receive iPS cells from a vendor or collaborator in an induced form? Yes No I If yes, please state the method of induction.

If viral transduction is used, please state whether any residual virus is expected to be present in the induced cells.

- 8. Do you plan on isolating and developing human induced pluripotent stem (iPS) cells or cell lines? Yes No I If yes, please describe the source of the somatic cells to be used and complete Section 7 of this form. In addition you will need to develop an Exposure Control Plan. Is the donor traceable? Yes No
- 9. What methods will be used to generate the induced pluripotent stem cells? If you use viral vectors to generate the iPS cells please complete the detailed guestions in Section 5 of this form.
- 10. Do you plan to inject or transplant iPS cells in any animal, animal embryo or at any stage or prenatal development where the iPS cells may contribute to the animal germline? Yes No Please outline the animal research in the space below.

Section 9. OCCUPATIONAL HEALTH ASSESSMENT, MEDICAL SURVEILLANCE & MONITORING: Check box if not applicable

Some research may involve the need for a health assessment or vaccination prior to the initiation of the project. If there is a health risk associated with this research, please check the appropriate box below and contact Occupational Medicine. You can contact Occupational Medicine at 617-253-8552 to arrange an appointment. Occupational Medicine assessment is available to all MIT employees/investigators regardless of the biosafety level of the research

- Description Pre-project serum samples. These samples of blood serum are collected prior to beginning work with some types of infectious materials to serve as a reference should an infection occur during the course of work with an agent.
- Pre-project vaccinations other than the Hepatitis B vaccine. A vaccination may be warranted based on the nature of the work being done and the availability of an appropriate vaccine. Check the box if you need a vaccine other than Hepatitis B. Type of Vaccine:
- Medical Surveillance monitoring. This may include a baseline assessment, periodic evaluations during the experiment time period, and a final evaluation at the end of the experiment. Note: This type of surveillance is not usually indicated for research below Biosafety Level 3.

BRR No. Page 83 of 89

Section 10. Use and/or Storage of Toxins: Check box if not applicable

This section reflects requirements at the federal and Institute level regarding risk assessment, training, procurement, use, storage and disposal of biological originated toxins used in research.

a. Please describe the specific use of toxin(s) in your research. Provide enough information to understand how the toxin will be handled in terms of safety and security.

b. Please complete the following table for each Select Toxin used.

Select Toxin name	Saratura	Proposed max. qty.	Research Use (concentratio		on in dilutions)
Select Toxin hame	Serotype	at all times (mg)	In-vivo In-vitro	Other (please write in)	
Abrin					
Botulinum neurotoxins					
Conotoxin					
Diacetoxyscirpenol (DAS)					
Ricin					
Saxitoxin					
Staphylococcal enterotoxins					
T-2 toxin					
Tetrodotoxin (TTX)					

- 1. For current approved holders of select toxins, are you storing select toxins in your laboratory space, but not actively using them? Yes \Box No \Box If yes, you are still required to keep these materials accounted for and registered in this BRR.
- Please complete a Standard Operation Procedure (SOP) template and read the MIT EHS Select Agent Toxin Control and Containment Program: Purchasing, Inventory, Shipping and Receiving Procedures SOP. Both can be found here (<u>https://ehs.mit.edu/site/content/select-agent-toxins</u>). Please complete, print and share this SOP with the users to provide steps to the safe handling of these products.

c. Please complete the following table for each biological toxin or component (e.g. toxoid, subunit) of a biological toxin. This table covers toxins that are not regulated but that may represent a risk to personnel and/or the laboratory environment.

Toxins name	Subunit/ Toxoid name	Functional toxin?	Source (vendor)	LD₅₀ (mg/kg)	Toxicity mechanism (e.g. B subunit mediates receptor binding and cell entry, A subunit carries toxic activity) <u>and</u> symptoms of exposure
Diphtheria *					
Cholera					
Shiga					
Aflatoxin					
Chlorotoxin					

* Routine vaccination for diphtheria [with Td or Tdap vaccine] protects against diphtheria toxin and is advised for all adults every 10 years. Personnel working with diphtheria toxin are well advised to keep up to date on this health maintenance recommendation.

<u>Note</u>: No SOP is required for biological toxins that are not select toxins. A written procedure is recommended for the lab to maintain locally reflecting consistent levels of safety practices and methods to properly handle, store and dispose of these products.

d. What protocol will be used to inactivate the toxins? List the toxins* under the select method(s):

20% bleach (1.0 % NaOCI) 30 minutes:	50% bleach (2.5% NaOCI) 30 minutes:
50% bleach (2.5% NaOCI) + 0.25 N NaOH 30 minutes:	10% bleach (0.5 % NaOCI) 30 minutes:
Autoclave:	Other (please describe):

^(*) please see <u>https://ehs.mit.edu/site/content/disposal</u> for specific information about inactivation methods.

Section 11. Dual-Use Assessment (required): \Box Yes \boxtimes No. Please complete all subsections below.

"Dual Use Research of Concern (DURC) is life sciences research that, based on current understanding, can be reasonably anticipated to provide knowledge, information, products, or technologies that could be directly misapplied to pose a significant threat with broad potential consequences to public health and safety, agricultural crops and other plants, animals, the environment, materiel, or national security. The United States Government's oversight of DURC is aimed at preserving the benefits of life sciences research while minimizing the risk of misuse of the knowledge, information, products, or technologies provided by such research." (NIH Office of Science Policy)

a. Do you work with or have any of the following 15 agents or toxins in storage? Yes 🗌 No 🖂

Marburg virus
Reconstructed 1918 Influenza virus
Rinderpest virus
Toxin-producing strains of Clostridium
botulinum
Variola major virus
Variola minor virus
Yersinia pestis

- b. If you answered yes for any of the boxes in (a) above, are the strains used attenuated? Yes □ No ☑ If so, explain: no strains used
- c. If you answered yes for any of the boxes in (a) above, are your experiment(s) expected to:
 - 1. Enhance the harmful consequences of the agent or toxin, such as result in acquisition of new characteristics such enhanced virulence, infectivity, stability, transmissibility, or the ability to be disseminated? Yes \square No \square If so, explain:
 - 2. Disrupt immunity or the effectiveness of an immunization against the agent or toxin without clinical and/or agricultural justification? Yes
 - 3. Confer to the agent or toxin resistance to clinically and/or agriculturally useful prophylactic or therapeutic interventions against that agent or toxin or facilitates their ability to evade detection methodologies? Yes \square No \square If so, explain:
 - Increase the stability, transmissibility, or the ability to disseminate the agent or toxin? Yes □ No □ If so, explain.
 - 5. Alter the host range or tropism of the agent or toxin? Yes \Box No \Box If so, explain:
 - 6. Enhance the susceptibility of a host population to the agent or toxin? Yes 🗌 No 🗌 If so, explain:
 - Generate or reconstitute an eradicated or extinct agent or toxin listed in (a), above?
 Yes □ No □ If so, explain.

- d. If you answered no to all of the boxes in (a) above, are your experiment(s) expected to result in the development of materials or technologies with "dual use" potential listed in (c)?
 Yes □ No ⊠ If so explain:
- e. If your research does not use any of the materials listed in (a) above and you answered "No" to (d) above, then check the "No" box at the top of Section 11.

Section 12. Safe Practices and Procedures (required): Please complete this section for all viable biological research agents or materials including human-derived materials.

1. Please identify and discuss the health and safety risks associated with the proposed research use of this biological agent or recombinant materials. (Please refer to Sections above if relevant):

For pathogens, please see section 6.

For viral vectors, please see section 5.

BL1 bacterial strains (e.g. *E. coli* K-12) used in the lab are non-infectious to humans. They are all safely used following BL1 practices and procedures.

Human cell lines are covered in the Exposure Control Plan (please see document for more detail) and follow BL2 practices and procedures

2. What procedures create the greatest risk of exposure or infection e.g. aerosolization of materials, and how will this risk be minimized during the course of the research:

No research involves processes highly likely to aerosolize materials, eg. Waring Blender. Work with potentially infections materials will be performed in a biological safety cabinet or in a sealed anaerobic chamber;

3. Outline protective equipment required to minimize exposure of laboratory personnel during all procedures requiring handling or manipulation of biological agent e.g. use of gloves, lab coats, safety glasses, etc.

Х	Lab Coat	Х	Gloves
	Safety glasses		Safety Goggles
	Face shield (please specify		Other (Please describe PPE and
	procedure):		procedure):

4. Outline decontamination procedures and disinfectant(s) to be used for work surfaces, instruments, equipment, liquid containing biological materials and glassware:

	Liquid waste decontamination						
Х	10% final concentration of household bleach (0.5% NaOCI), 20 minute contact time						
	Wescodyne (1%), 20 minute contact time						
	Autoclave						
	Other (Please describe rationale):						
	Work surfaces and equipment decontamination						
Х	10% final concentration of household bleach (0.5% NaOCI)						

X 70% ethanol (<u>Note</u> : ethanol is not an appropriate disinfectant for work involving h materials)					
V	х	EPA approved product such as Sklar, Lysol spray, PREempt, etc. (Please list product(s)):			
	^	Pre-Empt			
		Other (Please describe):			

5. Outline disposal/decontamination procedures for contaminated sharps, contaminated solid waste, tissues, pipette tips, etc.

Х	Solid waste	Placed in EHS provided biowaste boxes for disposal
	Solid Waste	Autoclave (please describe rationale):
х	Animal or human tissue	Placed in EHS provided biowaste boxes dedicated for incineration
х	Sharps	Placed in puncture resistant biosharps container and dispose of full containers in EHS provided biowaste box
	Other (Please specify):	Describe process:

6. Will mixed waste be generated (radioactive/biological or chemical/biological)? YES NO Key If yes, please indicate how you will inactivate the biological component of the mixed waste in the box below. (For information on waste management, please see: http://ehs.mit.edu/site/waste. If you have questions, contact EHS at 2-3477).

Section 13. Certification and Signatures

The information contained in this application is accurate and complete. I am familiar with and agree to abide by all guidelines and regulations pertaining to this research. These guidelines and regulations include the current NIH Guidelines for Research Involving Recombinant DNA Molecules; CDC and NIH guidance documents such as "Biosafety in Microbiological and Biomedical Laboratories"; the DHHS and USDA Select Agents and Toxin regulations; OSHA Bloodborne Pathogen Standard; the provisions of the City of Cambridge Ordinance on Recombinant DNA Research; the Massachusetts State Sanitary Code Chapter VIII, 105 CMR 480, "Minimum Requirements for the Management of Medical or Biological Waste; Massachusetts Iaw, M.G.L. c.111L, "Biotechnology" for human embryonic stem cell research; as well as any MIT Policies and Procedures and other local, state and federal regulations that may be applicable.

Specifically I agree to abide by the following requirements:

- a. I will not initiate any biological research subject to the regulations and guidelines mentioned above until that research has been registered, reviewed and approved by the Committee on Assessment of Biohazards and Embryonic Stem Cell Research Oversight (CAB/ESCRO). The purview of the MIT CAB/ESCRO includes biological research involving recombinant DNA; biological agents and pathogens; human cells, tissues, materials and embryonic stem cells; select agents and toxins, and the use of any of the above in animal research.
- I will assure that personnel have received appropriate information about the biological hazards of the research outlined in this registration by making available copies of approved protocols, Biosafety Manuals, and Biological Research Registrations that describe the potential biohazards and precautions to be taken to prevent exposures or release to the laboratory or the environment.
- c. I am familiar with and will ensure use of appropriate biosafety level laboratory practices and procedures in the conduct of this research.
- d. I certify that laboratory personnel have appropriate technical expertise.
- e. I will ensure that laboratory personnel know the procedures for dealing with incidents and spills of biological materials, and know the appropriate waste management procedures.
- f. I will comply with all shipping requirements for biohazardous materials.
- g. I will ensure that all laboratory personnel working with biological materials are listed on this registration.
- h. I will assure that all laboratory personnel have completed all necessary training and that their training records are up to date.
- i. I certify that all laboratory spaces associated with the research described in this registration are listed.
- j. If this research involves recombinant or synthetic nucleic acid technologies, I am familiar with and understand my responsibilities as a Principal Investigator as outlined in Section IV-B-7 of the "NIH Guidelines for Research Involving Recombinant DNA Molecules" (a copy of this section is available from the MIT Biosafety Program)
- k. I will assure adequate supervision of personnel, and will correct work errors and conditions that could result in breaches of the guidelines and regulations pertaining to this research as listed above.
- I. I will inform the MIT Biosafety Program of any serious spills, potential exposures or breaches of the guidelines and regulations listed above.

Principal Investigator

Date

MIT Biosafety Officer

Date

Footnotes:

- Vectors from the Lutz and Bujard collection (<u>https://www.ncbi.nlm.nih.gov/pubmed/9092630</u>).
 Current Protocols on Molecular Biology (Online ISBN: 9780471142720).