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Abstract—It has been shown that perception is 

affected by grouping perceptual stimuli into 

categories. Adding labels to the categories 

appears to facilitate human category learning, as 

shown in “Language Is Not Just for Talking: 

Redundant Labels Facilitate Learning of Novel 

Categories” (Lupyan, Rakison, and McClelland, 

2007). In this work, a computational model was 

developed which attempted to replicate the 

previously demonstrated effects of labels on 

category learning. The model learned two 

categories from stimuli with two relevant 

dimensions by looking at one example at a time, 

choosing a category, and then receiving 

feedback. To understand how labels can 

facilitate category learning, the model was then 

adapted to incorporate label-based feedback. 

Both unlabeled and labeled conditions were 

tested to see whether they demonstrated the 

same learning differences (that is, better 

classification accuracy for label-based learning) 

observed by Lupyan et al. 
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I. INTRODUCTION 

An interesting phenomenon is that people are 
faster at distinguishing colors across categories than 
colors within categories. Why is this the case? 
Research has shown that grouping perceptual stimuli 
into categories affects their perception. This effect 
appears whether or not categories are labeled; 

however, further research has demonstrated that 
labels facilitate category learning. Labels act as 
indicators of shared features, thus encouraging 
identically labeled objects to be grouped into shared 
categories. Thus, words can transform category 
learning into a supervised task. The goal of this 
project was to develop a computational model to 
represent the effects of labels on category learning, 
by using a Bayesian framework to quantify how 
labels constrain inference and change how prior 
category distributions are learned. 

 

II. BACKGROUND 

Lupyan et al. (2007) conducted experiments to 
assess whether the presence of labels facilitated 
category learning. The first of these experiments 
observed performance of subjects learning to 
categorize aliens into two groups, those to be 
approached and those to be avoided. The stimuli set 
was comprised of sixteen images of aliens from the 
YUFO stimulus set, divided into two categories of 
eight stimuli each. The two categories differed in 
two relevant dimensions, roundness versus flatness 
of base, and smoothness versus ridgedness of head. 

The training phase was conducted in nine blocks 
of sixteen trials each. In each trial, one alien from 
the stimulus set was presented, and subjects chose 
whether to approach or avoid the alien. After a short 
delay, auditory feedback on the correctness of the 
response was provided. For the label condition, an 
additional printed label, denoting the aliens as either 
“leebish” or “gracious,” was provided for additional 
feedback before the conclusion of each trial. The 
results of the experiment are shown below.  
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Fig. 1. Mean classification accuracy in the 
training and test phases of Experiment 1 from 
Lupyan et al. (2007). 

 

In summary, both conditions saw improvements 
in performance over time. Significantly, the label 
group was demonstrably more accurate, and also 
learned the categories much more quickly. 

In this work, a computational model is presented, 
that attempts to replicate the learning differences 
found above.   

III. MODEL IMPLEMENTATION 

To model the category learning, a hierarchical 
generative model was used. The model uses 
observed examples to infer category parameters, that 
is, what a prototypical example for each category 
would look like. Using this inferred distribution, the 
model could predict a category given a feature 
vector. The model would then perform a Bayesian 
update by conditioning on the received feedback. 
This procedure was conducted iteratively to create 
the training phase results. 

A. Stimuli Set 

Analogous to the subset of the YUFO stimuli set 
utilized by Lupyan et al., a set of sixteen bi-
dimensional feature vectors was generated. The two 
dimensions of the feature vectors were intended to 
correspond to the roundness versus flatness of base, 
and smoothness versus ridgedness of head, of the 
YUFO stimuli. For each feature, values were 
randomly sampled from Gaussian distributions with 
the same standard deviation but a different mean for 
each category. Each feature vector was associated 
with the category from whose distributions it was 
drawn, either “approach” or “avoid”, eight to each 
category. In the label condition, each feature vector 

was additionally associated with one of two 
nonsensical labels, “leebish” or “grecious,” 
corresponding to the category it belonged to. 

B. No Label Model 

 Data was modelled using a mixture model, 
learning the parameters for each category while 
receiving feedback on the assignment of stimuli to 
categories in each trial. To start, the model was 
constructed assuming that each stimulus was drawn 
from one of K = 2 categories, with uniform prior 
category probabilities. zi indicates which category 
object i belongs to. Categories and labels were 
drawn from Categorical distributions, with 
concentration parameter αs set to 0.1 (near-zero, 
since tautologically objects of the same category 
should be categorized together; and the labels, as 
category names, functioned identically).  

 πc̅ategory  ~ Dirichlet(α ̅= [1,1]) 

αcat = 0.1 

π̅cat  ~ Dirichlet(α ̅= [αcat , αcat])  

zi ~ Categorical(p̅ = πc̅ategory , v̅ = [0,1,2]) 

µfeature 1 ~ Normal(µ = 0, σ = 2) 

µfeature 2 ~ Normal(µ = 0, σ = 2) 

feature 1 ~ Normal(µ = µfeature 1, σ = 0.2) 

feature 2 ~ Normal(µ = µfeature 2, σ = 0.2) 

category ~ Categorical(p̅ = πc̅at , v̅ = 
["approach","avoid"]) 

 

C. Incorporating Label-Based Feedback 

To accommodate the label assignments and label 
feedback, the model for the label condition 
additionally included the following: 

αlabel = 0.1 

π̅label  ~ Dirichlet(α ̅= [αlabel , αlabel])  

label ~ Categorical(p̅ = πl̅abel , v̅ = 
["leebish","grecious"]) 

Given the hierarchical set of priors and the 
likelihood, the model infers which aliens are in 
which categories, the parameters of the distributions 
that define each category, and the distributions over 
the category parameters. 
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IV. RESULTS 

Similar to the results found by Lupyan et al., the 
label condition was overall more accurate than the 
no-label condition, though the difference was less 
significant. The label condition also learned 
categories faster; for instance, the label condition 
reached the 86%-correct performance threshold in 
approximately sixteen trials fewer than the no-label 
condition. 

Peculiarly, however, classification accuracy did 
not continue to rise with the latter half of the 
training blocks, even descending slightly before 
plateauing in both conditions.  

Groups of correlated associations reinforce each 
other. In this model, labels were associated with 
stimuli, but also completely correlated with the 
categorization (‘approach’ or ‘avoid’). Thus, the 
labels would have reinforced the association 
between the stimuli and the categorizations. This 
impact of labels on category learning manifested in 
the results produced by the computational model, 
though not as starkly as in the human experiments. 

 

V. GENERAL DISCUSSION 

The results demonstrated by the implemented 

computational model are limited in scope. For one, 

generalization to previously unseen stimuli 

remained untested (no testing phase). However, it is 

expected that the label condition would continue to 

perform better than the no label condition, even 

without receiving additional feedback. 

There are a number of aspects of the 

implementation of this computational model, that 

render it representationally different from the 

human experiments conducted by Lupyan et al. 

(2007). One, the stimuli set was designed with 

much less nuance. The YUFO stimuli used in the 

human experiments were complex images, and 

human subjects would begin by considering an 

immense number of features before discerning 

which features were most relevant to the 

categorization problem at hand. For the 

computational model, the stimuli set used was 

represented as simple bi-dimensional feature 

vectors, with the only two relevant features ever 

Fig. 2. Mean classification accuracy of the implemented computational model, showing learning 

differences between the label and no label conditions. 
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being used. However, this probably would not 

impact the results, since irrelevant features would 

remain uniform through the Bayesian update 

process; only computation time would be impacted.  

The values for αcategory and αlabel were required to 

be slightly above zero. This is contrary to human 

cognition, wherein subjects would know with 

complete certainty that categories are comprised of 

all aliens to approach or all aliens to avoid, and 

similarly with the labels of “leebish” or “grecious.” 

However, the design of this particular 

computational model involved a non-human feature 

that may have offset this difference slightly. For the 

update process, rather than updating the category 

prototypes and distribution parameters by 

conditioning with just the current observed 

stimulus, the model instead re-generated these 

based on all past observed examples, during each 

trial. This would be equivalent to a human subject 

with infinite memory (and impressive 

computational capability – the closest human 

analogue is, perhaps, card-counting.) The utilized 

inference methods also had to be MCMC, rather 

than enumeration, due to the infinite support of 

Gaussian distributions. This probably contributed to 

more non-human results. 

The computational model was also limited in 

that it could not distinguish between verbal versus 

non-verbal labels. It therefore cannot be leveraged 

to support the linguistic relativity hypothesis. 

However, it did allow for isolation of effects 

specific to labels rather than learning any additional 

association because of the near-zero αlabel value, 

which constrained categories to consist of only one 

label value. 

The evidence of learning differences between 

label and no label conditions produced by the 

implemented computational model lend credence to 

particular theories over others. The correlation of a 

simplified perceptual distinction with a complex 

multi-dimensional feature space is suitable for 

human experiments, but less relevant to a 

computational model. This implementation of the 

computational model, with labels that were purely 

redundant to the category feedback, also provided 

no evidence for the law of dissociation by varying 

concomitants. The application of Miller and 

Dollard’s hypothesis (1941) to this model becomes 

somewhat more interesting, though. Experiments to 

test their hypothesis failed to attribute increased 

discriminability definitively to one of either learned 

associations between labels and stimuli, or 

increased experience with the stimuli. The curious 

performance decreases that appeared in the 

computational model’s results might suggest that (at 

least for this particular case) the learned 

associations between labels and stimuli somehow 

counteract the additional experience with the 

stimuli. 

Overall, however, from the results of the 

computational model, it appears conclusive that 

labels contribute to more robust category attractors, 

because they become associated with the most 

relevant features as they are paired with individual 

examples.  Even when the labels provide no 

additional information, the labeled categories 

appear easier to learn than unlabeled categories. 
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