Data Analysis and Fitting: Introduction

Ashton S. Reimer¹

¹Center for Geospace Studies SRI International

July 2020

The Big Picture

Summary of topics you should be familiar with from previous lectures:

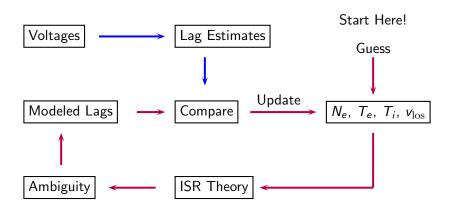
- Radar
- Radar Signal Processing
- Statistical Signal Processing
- The lonosphere
- Incoherent Scatter Radar Theory

The Big Picture

The ISR Technique:

- Radar:
 - Send megawatt pulses, receive femtowatt signals
- Scattering Process: Stochastic Signal
 - Voltage samples of received signals are correlated zero-mean Gaussian random variables
- Autocorrelation Function (ACF):
 - All information about the plasma is encoded in the second moment
- ISR Theory:
 - Relationship between ACF (equivalently, the power spectrum) and ionospheric plasma parameters: N_e , T_e , T_i , V_{los}
- Ambiguity and "Measured" ACF lags:
 - Measurement technique influences the measurement

Data Analysis and Fitting


Questions:

- What does "fitted data" mean?
- What are the key concepts and techniques we need to fit data?
- How do we go from voltage samples to N_e , T_e , T_i , V_{los} ?
- How do I work with and interpret ISR data products?

Topics to Cover

- Data Modeling:
 - Forward and Inverse Problems, Least-Squares
- Errors and Goodness of Fit:
 - Confidence Intervals and Reduced Chi-Squared
- Lag Estimate Statistics:
 - Statistical Properties of Lag Estimates
- Calibration:
 - Calibrating measurements to remove hardware bias
- Fitted and Derived Data Products:
 - An overview with examples
- ISR Data Analysis:
 - Interpreting and working with ISR data products

Sneak Peak Inside The Black Box

