Data Analysis and Fitting: Modeling Data and Fitting

Ashton S. Reimer

¹Center for Geospace Studies SRI International

July 2020

- Forward Models
- Inverse Problems
- Least-Squares Technique

A forward model, f, predicts observables, y, given parameters, p:

 $\mathbf{y} = f(\mathbf{p})$

$$\mathbf{p} = p_1, p_2, ..., p_N$$
 $\mathbf{y} = y_1, y_2, ..., y_M$

For example, a forward model can be:

- a polynomial that we want to fit to data
- a physical model relating observations to physical parameters

• ...

For ISR data analysis:

• Given physical parameters (*N_e*, *T_e*, *T_i*, *v_{LOS}*), ISR theory is part of the forward model we use to predict what the radar will observe.

Inverse problem:

• What if we have a forward model, *f*, and observations, **y**? How do we get the parameters (**p**)?

We can try $f^{-1}(\mathbf{y}) = \mathbf{p}$, but what if measurements are noisey:

So a better forward model is $\mathbf{z} = f(\mathbf{p}) + \mathbf{e}$, but how do we invert this?

For *M* data points, z_m , with independent measurement errors, σ_m , compute the "chi-square"; an error weighted difference between the data and the model, f_m :

$$\chi^{2}(\mathbf{p}) = \sum_{m=1}^{M} \frac{\left[z_{m} - f_{m}(\mathbf{p})\right]^{2}}{\sigma_{m}^{2}}$$

the model parameters that provide the "best fit" of the model to the data, $\hat{\mathbf{p}}_{LS}$, are those that minimizes $\chi^2(\mathbf{p})$: $\underset{\mathbf{p}}{\operatorname{argmin}} \left\{ \sum_{m=1}^{M} \frac{[z_m - f_m(\mathbf{p})]^2}{\sigma_m^2} \right\}$

In general, measurements **z** may not be independent. The generalized least-squares estimate is:

$$\chi^{2}(\mathbf{p}) = [\mathbf{z} - f(\mathbf{p})]^{T} \mathbf{\Sigma}_{\mathbf{e}}^{-1} [\mathbf{z} - f(\mathbf{p})]$$

where $\boldsymbol{\Sigma}_e$ is the covariance matrix of measurements $\boldsymbol{z}.$

Least-Squares Estimation from Maximum Likelihood

What is the likelihood of obtaining the data given the parameters?

$$P(\mathbf{z}|\mathbf{p}) \propto \prod_{m=1}^{M} \exp\left(-\frac{1}{2} \frac{\left[z_m - f_m(\mathbf{p})\right]^2}{\sigma_m^2}
ight)$$

 $\propto \exp\left(-\frac{1}{2} \sum_{m=1}^{M} \frac{\left[z_m - f_m(\mathbf{p})\right]^2}{\sigma_m^2}
ight)$

The "most likely" parameters $\hat{\mathbf{p}}_{ML}$ maximize $P(\mathbf{z}|\mathbf{p})$:

$$\hat{\mathbf{p}}_{ML} : \operatorname{argmax}_{\mathbf{p}} \{ P(\mathbf{z}|\mathbf{p}) \}$$

$$\hat{\mathbf{p}}_{ML} : \operatorname{argmax}_{\mathbf{p}} \{ \log P(\mathbf{z}|\mathbf{p}) \}$$

$$\hat{\mathbf{p}}_{ML} : \operatorname{argmin}_{\mathbf{p}} \left\{ \sum_{m=1}^{M} \frac{[z_m - f_m(\mathbf{p})]^2}{\sigma_m^2} \right\}$$

Some important terminology/concepts:

- $\frac{z_m f_m(\mathbf{p})}{\sigma_m}$ are known as the "normalized errors". The numerator is called the "residual".
- \bullet assumed that each "normalized error" is normally distributed with zero mean and unit variance: $\mathcal{N}(0,1)$
- the chi-square, χ^2 , is the sum of the square of $\mathcal{N}(0,1)$ random variables, so by definition, χ^2 is a chi-squared distributed random variable, with M N degrees of freedom.

Example: Fitting a Linear Model to Data

Given a Model:

Calculate
$$\chi^2(m, b)$$
:

Given a Model:

For some simple models (linear, quadratic, etc):

 \bullet analytic solutions exist for the minimum χ^2

In general, non-linear least squares algorithms are required:

- Levenberg-Marquardt (LM) algorithm is most commonly used
- LM requires a good initial guess
- Standard LM packages:
 - FORTRAN: MINPACK Imdif.f and Imder.f
 - Python: scipy.optimize.leastsq (wrapper around Imdif and Imder)
 - Matlab: Optimization Toolbox Isqnonlin
 - IDL: LMFIT

- A forward model is a function that predicts measurements given input (physical) parameters
- Solving the inverse problem:
 - Given: measurements, measurement errors, and forward model
 - How do we solve for the model parameters?
- Least-squares can be used to solve inverse problems:
 - chi-squared: sum of the error weighted differences between the data and the forward model
 - "best-fit" model parameters are those that minimize chi-squared

Next topic:

- Is a fit meaningful?
- What is the confidence in the fit (uncertainty)?