F2 peak analysis from PFISR

Group 5 Heba S.Mohamed (SWMC-Helwan Univ) Mohamed O.Shamat (UMass Lowell) Komal Kumari (Clemson U.) Teddy Braden (Canada) Yu Hong (UTexas Arlington)

Motivation

- IRI often shows a parabolic electron density profile around the F2 layer peak.
- ISR measurements, on the other hand, often suggest the electron density remains ~constant for few kms at the peak.
- What does it mean?- the profile around the F2 layer peak is not parabolic but rather has a flat nose shape.

Let's investigate!!

Experiment Design

What is the appropriate time window for sampling?

Alaska Noon at 22:00 UT and ~14:00 LT- Our time window was between 23:00 UT to 01:00 UT.

We also need good results (high resolution and high sampling rate)

- High resolution: Long pulse or Alternating pulse- AC (4 beams, 2 frequencies)
- High sampling rate: How many beams in a minute? -> Vertical beam sampling rate faster. What is the integration time for each record? -> 30 minutes

Any other data sets? (we have Digisonde data in our time window) Thanks to David Themens!!

Komal

How many pulses are being integrated in _{Komal} 30 minutes for vertical beam?

4 beams - 6 beam in a cycle Beam cycle: Vertical, upB, Vertical, Northwest, Vertical, East 2 Frequencies 449.6 MHz 449.3 MHz 300 KHz apart

(32 codes in the alternating code cycle) AC - 32 : 32*6*2 = 384 pulses/cycle Vertical = 384/2 = 192 pulses Other beams = 64 pulses

Ipp = 5 ms 384*5ms = 1.92 s 1.92s * 4 = 7.6 ms<u>for each record</u>

Vertical 192*4 = 768 pulses / 7.6 s Other beams 64*4 = 256 pulses / 7.6 s

30 minutes*(60 second/minute)/7.6s = total records

Total Vertical beam = 236 * 768 = 181 248 pulses Other beams = 236 * 256 = 60 416 pulses (Those are the number of cycles "K" that we use for the ISR probability or "error statistics" equation)

Long pulse vs Alternating code pulse (vertical beam)

The high altitude region with high errors are not plotted here.

Fitted data with large fitting errors may result from a variety of reasons.

Vr (km/s)

200

ENUL-2.7 lowres-2233-a4b1 WSA_V2.2 GONG-2233

900

550

1250

1600

IMF polarity

3D IMF line

_ _ _

Current sheath

Heba

What is the IMF and Bz condition in our time window?

Kp reaches +2 on 28 July at 01 am in the morning And ap shows 9 · while Dst is -38 nT on 02:30

Plot of Kp index from 2020-07-26 to 2020-07-29

Plot of Dst index from 2020-07-27 to 2020-07-29

HmF2 peak from Digisonde in the time window Notice the wiggles (possibly TIDs but we need error bar) F10.7=71 hmf2 and hmf1 Geographic longitude 212.6, Geographic latitude 65.1 on 28 july 2020 300 hmt2 hmf1 F2 peak hme wiggles 250 F1 peak 900 filmer 200 filmer E-peak 100 50 Jul 28, 20:00 Jul 28, 22:00 Jul 29, 00:00 Jul 29, 02:00 Jul 29, 04:00 Jul 29, 06:00 Jul 29, 08:00 time

Heba

Why the wiggles in AC code results?

Fitted data with large fitting errors may result from a variety of reasons $k \neq 1$, for example, the inapplicability of the theoretical model to the actual scatter physics, inappropriately determined or specified ion compositions, or low signal-to-noise ratios.

ety of reasons
$$\frac{a}{k} = \sqrt{\frac{aB+e}{k}}$$

(1)

 $\sqrt{\frac{k_B T_e + \gamma_i k_B T_i}{m_i}} = V_s$

Teddy

Ion Composition: For Alternating code, Vertical Beam

Teddy

Ion Composition Model Fixed

Teddy

Time evolution of NeF2 (Vertical beam)

Changes over the two hours Notice the shape of NeF2-peak!!

Vertical Velocity

Altitudinal variation of vertical velocity (V_{up}) derived from ISR in four different LT (LT=UT-8, vertical beam elm=90°)

#%% convert ion v_los into the 3-D velocities
v_up = vel * np.sin(d2r*elm)
v_e = (vel * np.cos(d2r*elm))*np.sin(d2r*azm)
v_n = (vel*np.cos(d2r*elm))*np.cos(d2r*azm)
alt = rag * np.sin(d2r*elm)

Temporal variation of vertical derived from Ionosonde (d(hmF2)/dt) with the ISR data region window

- First two intervals: downward (above) & upward (below) → increase the peak (parabolic)
- Last two intervals: disturbing and different gradient
 → constant variation along altitude

Altitudinal variation of horizontal velocity ($V_{east \&} V_{north}$) derived from ISR in four different LT (LT=UT-8, 4th beam elm=65°)

High-latitude electric electric potential (convection) and horizontal speed (sqrt ($V_{east}^2 + V_{north}^2$)) GITM simulation

Summary

- We see a variability in the shape of the F2 peak. We first see a parabolic shape but over the span of two hours, the peak recedes to a flat (constant) shape.
- The electron density from alternating code experiment is consistent with the results derived from lonosonde below F2 peak.
- Due to the ambiguity between the Te/Ti and mi, the ion composition must be modelled. When our models misbehave, the errors associated can propagate through to other parameters such as electron density.
- The vertical velocity below and above F2 peak height has significant impact on the electron density (gradient) at F2 peak, which has been confirmed by ISR and lonosonde.
- In order to clarify the dynamics process of electron density at F2 peak, more investigation (eg., gravity waves and TIDs) are needed.

Acknowledgement

- We thank all the instructors especially Dr. Ashton Reimer and Dr. Roger Varney from the ISR Summer School for their kind help both on lectures and research work
- We acknowledge Dr. David Themens from the University of New Brunswick for providing the Digisonde Data from Poker Flat station.

Thanks! Questions?