Dispersion Relations And the IS Spectral Shape

P. J. Erickson MIT Haystack Observatory

Topics covered:

- Dispersion relation concept and examples
- Important dispersion examples for the ionospheric plasma
- Connections to incoherent scatter spectral properties

Key concept for wave behavior within a propagation medium. Its functional form encodes physical properties of a medium and their parameter dependence.

For wave behavior, describes the relationship between SPATIAL frequency (wavelength) and TEMPORAL frequency in the medium.

Some media relate wavelength to frequency **linearly (dispersionless)**, but waves in most media have **nonlinear** relation between wavelength and frequency.

Dispersionless example:

EM radiation propagation through free space (wavelength / velocity = c) $\omega(k) = c \ k$

Nonlinear dispersion example:

splitting of light through a prism (effective speed of light depends on wavelength due to material properties of glass)

http:// veelookang.blogspot.com/ 2011/10/ejs-open-sourcepropagation-of.html

Wikipedia CC-3.0

Knowing the dependence of wavelength as a function of frequency allows us to define:

 $V_{phase} = \omega/k$

Speed of a single frequency sinusoidal wave

В

 $t_A < t_B < t_C$

$$V_{group} = \delta \omega / \delta k$$

Speed of a **collection** of sinusoidal waves Speed of information travel / modulation envelope in comm. theory

(NB: group shape will change over time if dispersion happens)

Example of pulse spreading spatially from time A to B to C due to dispersion.

http://www.mathcaptain.com/statistics/dispersion-statistics.html

Dispersion free travel in a transverse wave with 2 frequencies: Note that phase (red) velocity = group (green) velocity

Unit sphere / CC-BY-SA-3.0

Nonlinear dispersion in a transverse wave with 2 frequencies: Note that phase (red) velocity is **faster** here than group (green) velocity (in other cases, phase velocity might be slower than group velocity)

Kraaiennest / CC-BY-SA-3.0

$$\epsilon(\omega, \vec{k}) =$$
function $\left(\frac{\omega^2}{k^2} \right)$

Dielectric constant of the medium

Phase velocity! (Doppler spectrum is important)

The physics of the medium is described by the dielectric constant (related to plasma conductivities)

Gauss' Law (electric field around
charges)
$$\nabla \cdot \mathbf{D} = \rho_f$$
in free space:
H = B D = EGauss' Law for magnetism (no
magnetic monopoles) $\nabla \cdot \mathbf{B} = 0$ $\nabla \cdot \mathbf{B} = 0$ Faraday's Law (electric field around
a changing magnetic field) $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ (circles = places where
dielectric constant shows
up in
Gauss, Ampere)Ampere's Law (magnetic field
circulation around electric charges) $\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$ Gauss, Ampere) \mathcal{Y} . Gub Theamedt $\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$ \mathcal{T}

$$\epsilon(\omega, \vec{k}) =$$
function $\left(\frac{\omega^2}{k^2}\right)$

Dielectric constant of the medium

Insert plasma dispersion relation here

1) Ion-acoustic fluctuations [sound waves in plasma]

$$\frac{\omega}{k} = \sqrt{\frac{k_B T_e + \gamma_i k_B T_i}{m_i}} = V_s$$

NB: ordinary acoustic waves: adiabatic compression / decompression of fluid particles. Stiff medium transmits forces.

Ion-acoustic fluctuations: restoring force = electrostatic (so applicable in F region; near collisionless)

 $\left\langle \left| n_{e}\left(\mathsf{k},\omega\right) \right| ^{2} \right\rangle$

Important thermal plasma dispersion relations

$$\epsilon(\omega, \vec{k}) =$$
function $\left(\omega^2/k^2\right)$

Insert plasma dispersion relation here

2) Langmuir oscillations (Plasma oscillations):

$$\omega^2 = \omega_p^2 + \frac{3}{2}k^2v_{th}^2$$

 $v_{th}^2 = 2k_B T_e/m_e$

Akin to Brunt-Våisålå oscillations in fluid (parcel in presence of density gradient) here, electrostatic field is restoring force, and electron pressure gradient transmits information

 $\left< \left| n_e \left(\mathsf{k}, \omega \right) \right|^2 \right>$

$$\omega^2 = \omega_p^2 + \frac{3}{2}k^2v_{th}^2$$
$$v_{th}^2 = 2k_BT_e/m_e$$

Important dispersion relations for incoherent scatter

Comparison of the dispersion curves for electron plasma waves and ion acoustic waves.

(Chen, Intro to Plasma Physics)

Ion-acoustic resonance: IS spectral shape

~10 kHz @ UHF frequencies

Why are the peaks finite width and not a delta function? - Landau damping (cf. other lecture)

Langmuir resonance: IS spectral shape

Dispersion Relations And the IS Spectral Shape

Summary

- Plasmas have important nonlinear dispersion relations
- These govern the plasma resonant response to thermal energy input
- Thermal ionospheric plasma parameters set key aspects of the observed incoherent scatter spectral shape
- Remote sensing of the ionosphere can be done!