Introduction to the lonosphere (part 3)

2020 ISR Summer School

Elizabeth Kendall University of Central Florida

Major credits to: Roger Varney, SRI International Anita Aikio, University of Oulu

Radio measurements of the upper atmosphere

- Propagation and Reflection Experiments:
 - Consider ionospheric plasma as a continuum
 - Ray-bending and reflection governed by variable index of refraction
- Incoherent Scatter Radar:
 - Consider ionospheric plasma as a collection of electron point targets
 - Assume plasma is stable and near thermodynamic equilibrium
 - Use statistical mechanics to describe scatter
- Coherent Scatter Radar:
 - Consider ionospheric plasma as a heterogenous, structured medium
 - Scatter from turbulence, plasma irregularities, etc.

The Appleton-Hartree equation

$$n^{2} = \underline{1} - \frac{X(1-X)}{(1-X) - \frac{1}{2}Y_{T}^{2} \pm \left(\frac{1}{4}Y_{T}^{4} + (1-X)^{2}Y_{L}^{2}\right)^{\frac{1}{2}}}$$

$$X = \frac{\omega_N^2}{\omega^2} \qquad Y = \frac{\omega_H}{\omega} \qquad \omega_N = \left(\frac{Ne^2}{\varepsilon_0 m_e}\right)^{\frac{1}{2}} \qquad \omega_H = \frac{e|B|}{m_e}$$

 ω = the angular frequency of the radar wave,

$$Y_{L} = Y \cos \theta, \quad Y_{T} = Y \sin \theta$$

 θ = angle between the wave vector $\overline{\mathbf{k}}$ and $\overline{\mathbf{B}}$,

 \overline{B} = geomagnetic field, N = electron density

e = electronic charge, m_e = electron mass,

and ε_0 = permittivity constant.

The Appleton-Hartree equation

Index of refraction in an unmagnetized plasma:

$$n^2 = 1 - \omega^2_{pe} / \omega^2$$

Electron plasma frequency: $\omega_{pe}^2 = e^2 n_e / \epsilon_0 m_e$

Reflection experiments: ionosondes

lonograms

GPS time difference of arrival

- Satellite radio signals have to traverse the ionosphere to reach the ground.
- Different frequencies travel at different speeds through the ionosphere. A dual frequency GPS receiver can measure the time difference of arrival of signals at different frequencies.
- Time difference of arrival gives the line integral of the electron density along the ray path (total electron content, or TEC).

Ionospheric response to 2011 Tohoku earthquake

Tsugawa et al., 2011

Total electron content maps

Coster and Skone, 2009

Literature

- Brekke, A.: Physics of the Upper Atmosphere, John Wiley & Sons, 1997.
- Hunsucker, R. D. and J.K. Hargreaves, The High-Latitude Ionosphere and its Effects on Radio Propagation, Cambridge University Press, 2003
- Kelley, M. C.: The Earth's Ionosphere, Academic Press, 1989
- H. Risbeth and O. K. Garriot: Introduction to Ionospheric Physics, Academic Press, 1969
- Hargreaves, J. K., The solar-terrestrial environment, Cambridge University Press, 1992.