Radar Signal Processing: Part 1

Basic Operation of a Pulse-Doppler Radar

Josh Semeter
Boston University

Pulse Doppler Radar

Incoherent Scatter Radar (ISR)

ESR

Millstone Hill

Sondrestrom

Traveling Waves

Traveling wave, 1D: $\quad y(x, t)=A \cos (\omega t-k x)$
Angular velocity (radians/s): $\quad \omega=2 \pi f=2 \pi / T$
Wave number (spatial frequency): $\quad k=2 \pi / \lambda$
Phase velocity (c in a vacuum): $\quad u_{p}=\omega / k$

Temporal variation at point in space:

(b) $y(x, t)$ versus t at $x=$

Three snapshots in time:

(b) $t=T / 4$

The velocity of a point on the wave is found by by setting $\omega t-k x=$ constant. By taking the time derivative we obtain the phase velocity,

$$
u_{p}=\frac{d x}{d t}=\frac{\omega}{k}
$$

The functional relationship between ω and k is called a dispersion relation. It appears ubiquitously in the study of wave phenomena

The simplest dispersion relation for an EM wave describes its propagation through free space,

$$
\omega=c k
$$

where $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. We will encounter more complicated dispersion relations soon!

Transverse Electromagnetic (TEM)

Radars transmit TEM waves and measure the scattered radiation from a target

Polarization: Orientation of the Electric Field Vector
Vertical Polarization

Horizontal Polarization
Circular Polarization

Range

Range R to the target is measured by transmitting a pulse of electromagnetic waves, and measuring the time Δt between transmission and reception of the pulse,

$$
R=\frac{c \Delta t}{2}
$$

The pulse length τ is most often expressed in units of time, and corresponds to a distance $c \tau$, where $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Range resolution depends on how well we can resolve Δt. For the case of a simple on-off pulse, the optimal approach is to match the sampling period to the pulse length (the so-called "matched filter" approach).

Range resolution for a simple on-off pulse ("uncoded pulse") is controlled by τ. Shorter τ yields higher range resolution. But a shorter pulse also carry less total energy, and so the reflected signal is more difficult to discriminate from background noise.

Measuring Velocity

Assume a transmitted signal:
$\cos \left(2 \pi f_{o} t\right)$

$$
\cos \left[2 \pi f_{o}\left(t+\frac{2 R}{c}\right)\right]
$$

Now let us allow range R to vary with time. Let's assume the target moves at a constant velocity, with positive away from the radar and negative toward the radar:

$$
R=R_{o}+v_{o} t
$$

Substituting we obtain:

$$
\cos [2 \pi(f_{o}+\underbrace{f_{o} \frac{2 v_{o}}{c}}_{-f_{D}}) t+\underbrace{\frac{2 \pi f_{o} R}{c}}_{\text {constant }}]
$$

The shift in frequency caused by a moving target is proportional to the component of the velocity vector along the radar line of sight:

$$
f_{D}=-\frac{2 f_{o}}{c} v_{o}
$$

How we determine f_{D} is left for other lectures.

Cross-range resolution (beam width)

The cross-range resolution is usually defined by the angular width of the main lobe of the antenna's power pattern. For a dish antenna this is approximately equal to the ration of the wavelength to the physical diameter,

$$
\beta=\frac{\lambda_{o}}{d} \quad \text { (radians) }
$$

Millstone Hill ISR has a $46-\mathrm{m}$ dish operating at a frequency of 440 MHz , or $\lambda=0.68 \mathrm{~m}$, giving a beam width of $\beta \simeq 0.85^{\circ}$.

Doppler Radar Summary: "Coherent" hard targets

Two key concepts:
Time \leadsto Distance
$R=-\frac{c \Delta t}{2}$
Frequency
$f_{D}=-\frac{2 f_{o}}{c} v_{o}$

Solid reflecting target,

A Doppler radar measures backscattered power as a function range and velocity. Velocity is manifested as a Doppler frequency shift in the received signal.

What happens when we have multiple targets in the radar volume, moving at different velocities?

Doppler Radar Summary: Distributed "Incoherent" Targets

Two key concepts:
Time \leadsto Distance
$R=-\frac{c \Delta t}{2}$
Frequency
$f_{D}=-\frac{2 f_{o}}{c} v_{o}$

A Doppler radar measures backscattered power as a function range and velocity. Velocity is manifested as a Doppler frequency shift in the received signal.

What happens when we have multiple targets in the radar volume, moving at different velocities?

