Basic Radar 3.5: Ambiguity Functions

Roger H. Varney

¹Center for Geospace Studies SRI International

July, 2020

- Given $N_e(r)$, $T_e(r)$, $T_i(r)$, and $u_{los}(r)$ as functions of range, you can theoretically compute a 2D ACF $A(r, \tau)$ as a continuous function of range and lag time.
- The LPA is a 2-index array where the *i* approximately represents range and ℓ approximately represents lag time.

$$L_{\ell}^{i} \equiv \left\langle V_{i-\left\lfloor \frac{\ell}{2} \right\rfloor}^{*} V_{i+\left\lfloor \frac{\ell}{2} \right\rfloor+(\ell \bmod 2)} \right\rangle$$

Ambiguity function theory defines the mathematical relationship between these two quantities.

LPA Mixes Range and Time Information

Each lagged product contains information smeared in range over the dark overlap regions.

After transmitting a pulse envelope s(t), the scattered signal is

$$x(t) = \int d^3 r \, e^{j \mathbf{k} \cdot r} s\left(t - rac{2r}{c}
ight) \Delta N_e\left(r, t - rac{r}{c}
ight)$$

The receiver records a filtered and sampled version of the scattered signal

$$y(t_s) = \int dt x(t) h^*(t_s - t)$$

= $\int dt d^3 r e^{jk \cdot r} s\left(t - \frac{2r}{c}\right) \Delta N_e\left(r, t - \frac{r}{c}\right) h^*(t_s - t)$

Define the amplitude ambiguity function

$$W_{t_s} \equiv s\left(t - \frac{2r}{c}\right)h^*\left(t_s - t\right)$$
$$y\left(t_s\right) = \int dt d^3 r \, e^{j\mathbf{k}\cdot\mathbf{r}} W_{t_s}(t, r) \Delta N_e\left(\mathbf{r}, t - \frac{r}{c}\right)$$

Range-Lag Ambiguity Function

When we form ACFs, we take products of samples and average:

$$\langle y(t_{s2}) y^*(t_{s1}) \rangle = \int dt_1 dt_2 d^3 r_1 d^3 r_2 e^{j\mathbf{k} \cdot (r_2 - r_1)} \left\langle \Delta N_e \left(\mathbf{r}_2, t_2 - \frac{r_2}{c} \right) \Delta N_e^* \left(\mathbf{r}_1, t_1 - \frac{r_1}{c} \right) \right\rangle W_{ts2} \left(t_2, r_2 \right) W_{ts1}^* \left(t_1, r_1 \right)$$

Change variables $t_1 = t$ $t_2 = t + \tau$ $r_1 = r$ $r_2 = r + r'$ Perform r' integral and take expected value

$$\langle y(t_{s2}) y^{*}(t_{s1}) \rangle = \int d\tau d^{3} r A(r,\tau) \underbrace{\int dt W_{ts2}(t+\tau,r) W_{ts1}^{*}(t,r)}_{W_{ts1},t_{s2}(\tau,r)}$$

The measured lag-product is the ISR ACF we want $A(r, \tau)$ blurred the the range-lag ambiguity function $W_{t_{s1},t_{s2}}(\tau, r)$

2-D Range-lag Ambiguity Function of Long Pulse

Ambiguity function with a boxcar filter. 480 μ s long pulse, 30 μ s sampling.

Theoretical Long Pulse Examples

A particular exaggerated example using 1.5 $\rm ms$ long pulses and a profile with a sharp T_e gradient at 500 km.

Coded Pulse Experiments

Range-lag Ambiguity Function of Alternating Codes

Ambiguity function for a boxcar filter. 480 μ s (16-baud, 30 μ s baud, 32 pulse). Full 2d Ambiguity Function 500 0.000064 0.000056 400 0.000048 300 0.000040 Range (μs) 0.000032 200 0.000024 0.000016 100 0.000008 0 000000 0 100 200 300 400 500 $\tau(\mu s)$

- Ambiguity functions mathematically describe the relationship between the plasma ACF (a function of N_e , T_e , T_i , u_{los}) and the lagged products we actually estimate.
- Ambiguity functions are only a function of the transmit waveform (s) and the receiver impulse response (h).
- Ambiguity functions act like blurring functions that smear information out in range.
- In long pulse experiments the extent of blurring is related to the pulse length.
- In coded pulse experiments the extent of blurring is related to the baud length.