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How are ACFs and LPAs Related?

Given Ne(r), Te(r), Ti(r), and ulos(r) as functions of range, you can
theoretically compute a 2D ACF A(r , τ) as a continuous function of
range and lag time.

The LPA is a 2-index array where the i approximately represents
range and ℓ approximately represents lag time.

Liℓ ≡
〈

V ∗

i−⌊ ℓ
2⌋
V
i+⌊ ℓ

2⌋+(ℓ mod 2)

〉

Ambiguity function theory defines the mathematical relationship between
these two quantities.
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LPA Mixes Range and Time Information

Each lagged product contains information smeared in range over the dark
overlap regions.
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Amplitude Ambiguity Function

After transmitting a pulse envelope s(t), the scattered signal is

x(t) =

∫

d3r e jk·r s

(

t −
2r

c

)

∆Ne

(

r, t −
r

c

)

The receiver records a filtered and sampled version of the scattered signal

y (ts) =

∫

dt x(t)h∗ (ts − t)

=

∫

dtd3r e jk·rs

(

t −
2r

c

)

∆Ne

(

r, t −
r

c

)

h∗ (ts − t)

Define the amplitude ambiguity function

Wts ≡ s

(

t −
2r

c

)

h∗ (ts − t)

y (ts) =

∫

dtd3r e jk·rWts (t, r)∆Ne

(

r, t −
r

c

)
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Range-Lag Ambiguity Function

When we form ACFs, we take products of samples and average:

〈y (ts2) y
∗ (ts1)〉 =

∫

dt1dt2d
3r1d

3r2e
jk·(r2−r1)

〈

∆Ne

(

r2, t2 −
r2

c

)

∆N∗

e

(

r1, t1 −
r1

c

)〉

Wts2 (t2, r2)W
∗

ts1 (t1, r1)

Change variables t1 = t t2 = t + τ r1 = r r2 = r + r′

Perform r′ integral and take expected value

〈y (ts2) y
∗ (ts1)〉 =

∫

dτd3rA (r , τ)

∫

dt Wts2 (t + τ, r)W ∗

ts1 (t, r)

︸ ︷︷ ︸

Wts1,ts2 (τ,r)

The measured lag-product is the ISR ACF we want A (r , τ) blurred the the
range-lag ambiguity function Wts1,ts2 (τ, r)
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2-D Range-lag Ambiguity Function of Long Pulse

Ambiguity function with a boxcar filter. 480 µs long pulse, 30 µs sampling.
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Theoretical Long Pulse Examples

A particular exaggerated example using 1.5 ms long pulses and a profile
with a sharp Te gradient at 500 km.
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Coded Pulse Experiments
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Range-lag Ambiguity Function of Alternating Codes

Ambiguity function for a boxcar filter. 480 µs (16-baud, 30 µs baud, 32 pulse).
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Ambiguity Functions Summary

Ambiguity functions mathematically describe the relationship between
the plasma ACF (a function of Ne , Te , Ti , ulos) and the lagged
products we actually estimate.

Ambiguity functions are only a function of the transmit waveform (s)
and the receiver impulse response (h).

Ambiguity functions act like blurring functions that smear information
out in range.

In long pulse experiments the extent of blurring is related to the pulse
length.

In coded pulse experiments the extent of blurring is related to the
baud length.
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