Data Analysis and Fitting: Introduction

Ashton S. Reimer ${ }^{1}$

${ }^{1}$ Center for Geospace Studies
SRI International

July 2021

The Big Picture

You should be familiar at an introductory level with the following topics:

- Radar
- Radar Signal Processing
- Statistical Signal Processing
- Incoherent Scatter Radar Theory

The Big Picture

The IS Radar Technique:

- Radar:
- Send megawatt pulse, receive femtowatt signals
- Scattering Process: Stochastic Signal
- Voltage samples of received signals are correlated zero-mean Gaussian random variables
- Autocorrelation Function (ACF):
- All information about the plasma is encoded in the second moment
- IS Radar Theory:
- Relationship between ACF (equivalently, the power spectrum) and ionospheric plasma parameters: $N_{e}, T_{e}, T_{i}, V_{\text {los }}$
- Ambiguity and "Measured" ACF lags:
- Measurement technique influences the measurement

Data Analysis and Fitting

Questions:

- What does "fitted data" mean?
- What are the key concepts and techniques we use to "fit" data?
- How do we go from voltage samples to $N_{e}, T_{e}, T_{i}, V_{l o s}$?
- How do I work with and interpret IS Radar data products?

Topics to Cover

- Data Modeling:
- Forward and Inverse Problems, Least-Squares
- Errors and Goodness of Fit:
- Confidence Intervals and Reduced Chi-Squared
- Calibration:
- Calibrating measurements to remove hardware bias
- Fitted and Derived Data Products:
- An overview with examples
- IS Radar Data Analysis:
- Interpreting and working with IS Radar data products

Sneak Peak Inside The Black Box

Compare measurements and modeled measurements:

