Data Analysis and Fitting: Errors and Goodness of Fit

Ashton S. Reimer
${ }^{1}$ Center for Geospace Studies
SRI International

$$
\text { July } 2021
$$

Topics

(1) Errors
(2) Goodness of Fit

Chi-Squared

We can use least-squares to solve inverse problems:

$$
\chi^{2}(p)=[y-f(p)]^{T} \Sigma_{e}^{-1}[y-f(p)]
$$

where $\hat{\mathrm{p}}_{L S}$ are the "best-fit" model parameters, those that minimizes $\chi^{2}(\mathrm{p})$

Great! But:

- What are the errors in the fitted parameters $\hat{\mathrm{p}} L S$?
- Is the fit meaningful? Does the model accurately reproduce the measurements?

Error Propagation (e.g. Linear Least-Squares)

For a linear forward model:

$$
y=f(p)+e \quad f(p)=H p
$$

The Least-Squares solution is:

$$
\hat{\mathrm{p}}_{L S}=\left[H^{T} \Sigma_{e}^{-1} H\right]^{-1} H^{T} \Sigma_{e}^{-1} \mathrm{y}
$$

Given that jointly Gaussian random variables have the following property:

$$
Y=A X \quad \Rightarrow \quad \Sigma_{Y}=A \Sigma_{X} A^{T}
$$

it can be shown that:

$$
\Sigma_{\hat{\mathrm{p}}_{\mathrm{LS}}}=\left[H^{T} \Sigma_{e}^{-1} H\right]^{-1}
$$

Error Propagation (e.g. Nonlinear Least Squares)

For a non-linear forward model, guess a p_{i}, linearize, and step towards minimum:

$$
\mathrm{y}=f(\mathrm{p})+\mathrm{e} \quad f\left(\mathrm{p}_{i}+\Delta \mathrm{p}\right) \approx f\left(\mathrm{p}_{i}\right)+\mathrm{J}_{i} \Delta \mathrm{p} \quad \mathrm{~J}_{i}=\frac{\partial f}{\partial \mathrm{p}_{i}}
$$

J is known as the Jacobian:
$\mathrm{J}=\left(\begin{array}{cccc}\frac{\partial f_{0}}{\partial p_{0}} & \frac{\partial f_{0}}{\partial p_{1}} & \cdots & \frac{\partial f_{0}}{\partial p_{N-1}} \\ \frac{\partial f_{1}}{\partial p_{0}} & \frac{\partial f_{1}}{\partial p_{1}} & \cdots & \frac{\partial f_{1}}{\partial p_{N-1}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_{M-1}}{\partial p_{0}} & \frac{\partial f_{M-1}}{\partial p_{1}} & \cdots & \frac{\partial f_{M-1}}{\partial p_{N-1}}\end{array}\right)$
J is $M \times N$ (tall and skinny)

Non-linear fitting process:

- iterate until $\mathrm{p}_{i+1}=\hat{\mathrm{p}}_{\mathrm{LS}}$: that which minimizes χ^{2}
- The covariance of \hat{p}_{LS} is:

$$
\Sigma_{\hat{\mathrm{p}}_{\mathrm{LS}}}=\left[\mathrm{J}^{T} \Sigma_{e}^{-1} \mathrm{~J}\right]^{-1}
$$

Note the similarity to the linear case!

Error Propagation

The covariance of the fitted parameters is the covariance of the input data propagated through the least-squares operation:

$$
\Sigma_{\hat{\mathrm{p}}_{\mathrm{LS}}}=\left[\mathrm{J}^{T} \Sigma_{e}^{-1} \mathrm{~J}\right]^{-1}
$$

"Error bars" for fitted parameters:

- Assumption: measurement errors are Gaussian distributed with covariance Σ_{e}, denoted $\mathcal{N}\left(0, \Sigma_{e}\right)$
- The "errors" in the fitted parameters are related to confidence intervals
- Confidence intervals are constructed from $\Sigma_{\hat{p}_{\text {LS }}}$
- $\Sigma_{\hat{p}_{\mathrm{LS}}}$ may look reasonable, even if the fit is meaningless

Constructing Confidence Intervals: From Fitted Covariance

Error bars, δp_{m}, for a fitted parameter can be constructed from the covariance $\Sigma_{\hat{\rho}_{L S}}$ and a $\Delta \chi^{2}$:

$$
\delta p_{m}= \pm \sqrt{\Delta \chi^{2}} \sqrt{\Sigma_{m m}}
$$

The value of $\Delta \chi^{2}$ selects the "significance level":

- $\Delta \chi^{2}$ is found in lookup tables calculated from the CDF of the χ^{2} distribution
- Single parameter fit, $N=1$:
- a 68% significance: $\Delta \chi^{2}=1$
- a 95.4% significance: $\Delta \chi^{2}=4$
- Two parameter fit, $N=2$:
- a 68% significance: $\Delta \chi^{2}=2.3$

Challenges With Constructing Confidence Intervals

Validity of Confidence Intervals

Only quantitatively valid when:

- measurement errors are Gaussian, and
- the model $f(\mathrm{p})$ is linear in for all p , or
- measurement errors are small enough that $f(\mathrm{p})$ can be accurate approximated by a linear model in the region around p

Otherwise, alternative fitting methods are required: Monte Carlo, Bayesian, etc.

Goodness of Fit

How do we know if the fit is even meaningful? The standard goodness of fit test involves computing the "reduced chi-squared":

$$
\chi_{\nu}^{2}=\chi^{2} /(m-n+1)
$$

Then, typically:

- $\chi_{\nu}^{2} \approx 1$: a good fit
- $\chi_{\nu}^{2} \ll 1$: an "over fit"
- $\chi_{\nu}^{2} \gg 1$: a poor fit

The χ_{ν}^{2} could also be slightly larger or smaller than 1 depending on how accurately one is able to estimate the input measurement errors.

Summary

Now we can answer the question: Are the fitted parameters meaningful?

- What is the uncertainty in the fitted parameters?
- Error bars correspond to confidence intervals (CI)
- Cls are constructed from covariance of the fitted parameters
- For a $68 \% \mathrm{Cl}$, interpretation is: "If we could hypothetically make and infinite set of new measurements and fit each of those, 68% of the time the 'true' value of the parameter would lie within the CI."
- Is the fit good?
- Compute the reduced chi-squared
- $\chi_{\nu}^{2} \approx 1$: usually means the model accurately represents the data
- All of this error analysis depends on the assumption that measurement errors are Gaussian distributed with covariance Σ_{e} such that $\left(y_{m}-f_{m}\right) / \sigma_{m}$ are $\mathcal{N}(0,1)$

