Data Analysis and Fitting: Errors and Goodness of Fit

Ashton S. Reimer

¹Center for Geospace Studies SRI International

July 2021

Errors

Goodness of Fit

Chi-Squared

We can use least-squares to solve inverse problems:

$$\chi^2(\mathbf{p}) = [\mathbf{y} - f(\mathbf{p})]^T \Sigma_e^{-1} [\mathbf{y} - f(\mathbf{p})]$$

where \hat{p}_{LS} are the "best-fit" model parameters, those that minimizes $\chi^2(p)$

Great! But:

- What are the errors in the fitted parameters p̂_{LS}?
- Is the fit meaningful? Does the model accurately reproduce the measurements?

For a linear forward model:

$$y = f(p) + e$$
 $f(p) = Hp$

The Least-Squares solution is:

$$\hat{\mathsf{p}}_{LS} = \left[\boldsymbol{H}^{T} \boldsymbol{\Sigma}_{\mathsf{e}}^{-1} \boldsymbol{H} \right]^{-1} \boldsymbol{H}^{T} \boldsymbol{\Sigma}_{\mathsf{e}}^{-1} \mathsf{y}$$

Given that jointly Gaussian random variables have the following property:

$$Y = AX \quad \Rightarrow \quad \Sigma_Y = A\Sigma_X A^T$$

it can be shown that:

$$\Sigma_{\hat{p}_{\mathrm{LS}}} = \left[H^T \Sigma_e^{-1} H
ight]^{-1}$$

For a non-linear forward model, guess a p_i , linearize, and step towards minimum:

$$y = f(p) + e$$
 $f(p_i + \Delta p) \approx f(p_i) + J_i \Delta p$ $J_i = \frac{\partial f}{\partial p_i}$

J is known as the Jacobian:

Non-linear fitting process:

 $\mathsf{J} = \begin{pmatrix} \frac{\partial f_0}{\partial p_0} & \frac{\partial f_0}{\partial p_1} & \cdots & \frac{\partial f_0}{\partial p_{N-1}} \\ \frac{\partial f_1}{\partial p_0} & \frac{\partial f_1}{\partial p_1} & \cdots & \frac{\partial f_1}{\partial p_{N-1}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_{M-1}}{\partial p_0} & \frac{\partial f_{M-1}}{\partial p_1} & \cdots & \frac{\partial f_{M-1}}{\partial p_{N-1}} \end{pmatrix} \quad \bullet \text{ iterate until } \mathsf{p}_{i+1} = \hat{\mathsf{p}}_{\mathrm{LS}} : \cdots \\ \text{minimizes } \chi^2 \\ \bullet \text{ The covariance of } \hat{\mathsf{p}}_{\mathrm{LS}} \text{ is:} \\ \sum_{n=1}^{\infty} \frac{\partial f_{M-1}}{\partial p_0} & \frac{\partial f_{M-1}}{\partial p_1} & \cdots & \frac{\partial f_{M-1}}{\partial p_{M-1}} \end{pmatrix}$

J is $M \times N$ (tall and skinny)

• iterate until $p_{i+1} = \hat{p}_{LS}$: that which

$$\boldsymbol{\Sigma}_{\hat{p}_{\mathrm{LS}}} = \left[\boldsymbol{J}^{\mathcal{T}}\boldsymbol{\Sigma}_{e}^{-1}\boldsymbol{J}\right]^{-1}$$

Note the similarity to the linear case!

The covariance of the fitted parameters is the covariance of the input data propagated through the least-squares operation:

$$\Sigma_{\hat{\mathsf{p}}_{\mathrm{LS}}} = \left[\mathsf{J}^{\mathcal{T}} \Sigma_{e}^{-1} \mathsf{J}\right]^{-1}$$

"Error bars" for fitted parameters:

- Assumption: measurement errors are Gaussian distributed with covariance Σ_e, denoted N(0, Σ_e)
- The "errors" in the fitted parameters are related to confidence intervals
- \bullet Confidence intervals are constructed from $\Sigma_{\hat{p}_{\rm LS}}$
- $\bullet~\Sigma_{\hat{p}_{\mathrm{LS}}}$ may look reasonable, even if the fit is meaningless

Error bars, δp_m , for a fitted parameter can be constructed from the covariance $\Sigma_{\hat{p}_{\rm LS}}$ and a $\Delta \chi^2$:

$$\delta p_m = \pm \sqrt{\Delta \chi^2} \sqrt{\Sigma_{mm}}$$

The value of $\Delta\chi^2$ selects the "significance level":

- $\Delta\chi^2$ is found in lookup tables calculated from the CDF of the χ^2 distribution
- Single parameter fit, N = 1:
 - a 68% significance: $\Delta \chi^2 = 1$
 - a 95.4% significance: $\Delta \chi^2 = 4$
- Two parameter fit, N = 2:
 - a 68% significance: $\Delta\chi^2 = 2.3$

Challenges With Constructing Confidence Intervals

A. S. Reimer (SRI)

Only quantitatively valid when:

- measurement errors are Gaussian, and
 - the model f(p) is linear in for all p, or
 - measurement errors are small enough that f(p) can be accurate approximated by a linear model in the region around p

Otherwise, alternative fitting methods are required: Monte Carlo, Bayesian, etc.

How do we know if the fit is even meaningful? The standard goodness of fit test involves computing the "reduced chi-squared":

$$\chi_{\nu}^2 = \chi^2/(m-n+1)$$

Then, typically:

- $\chi^2_{\nu} \approx 1$: a good fit
- $\chi^2_{\nu} << 1$: an "over fit"
- $\chi^2_\nu >> 1:$ a poor fit

The χ^2_{ν} could also be slightly larger or smaller than 1 depending on how accurately one is able to estimate the input measurement errors.

Now we can answer the question: Are the fitted parameters meaningful?

- What is the uncertainty in the fitted parameters?
 - Error bars correspond to confidence intervals (CI)
 - Cls are constructed from covariance of the fitted parameters
 - For a 68% CI, interpretation is: "If we could hypothetically make and infinite set of new measurements and fit each of those, 68% of the time the 'true' value of the parameter would lie within the CI."
- Is the fit good?
 - Compute the reduced chi-squared
 - $\chi^2_{
 u} pprox 1$: usually means the model accurately represents the data
- All of this error analysis depends on the assumption that measurement errors are **Gaussian** distributed with covariance Σ_e such that $(y_m f_m)/\sigma_m$ are $\mathcal{N}(0, 1)$