# **Radar Physics - Part 1**

**Anthea J. Coster** 

#### **Outline**

## Electromagnetic spectrum Radio waves and propagation

## The Electromagnetic Spectrum





| Frequency (1/s) = | Speed of light (m/s)     |
|-------------------|--------------------------|
|                   | Wavelength $\lambda$ (m) |

| Examples: | <b>Frequency</b> | Wavelength |
|-----------|------------------|------------|
|           | 100 MHz          | 3 m        |
|           | 1 GHz            | 30 cm      |
|           | 3 GHz            | 10 cm      |
|           | 10 GHz           | 3 cm       |



## **Radio Waves**



### **Properties of Waves** Constructive vs. Destructive Addition

Σ

Constructive (in phase)

Partially Constructive (somewhat out of phase)

Destructive (180° out of phase)

Σ  $\mathcal{M}$ MM

Σ

Non-coherent signals (noise)

## **Polarization**





**Horizontal Polarization** 

Ζ

#### **TEM Waves:** *Transverse electromagnetic (TEM) modes* neither electric nor magnetic field in the direction of propagation



#### Electromagnetic waves in free space propagate in TEM mode





# Phase Velocity, Group Velocity, Index of Refraction





 $v_{\mathbf{p}}$ 



## **Refraction and Dispersion**



ISR School 2017

From Attila Komjathy, JPL

## **Illustration of Atmospheric Effects**



Index of Refraction 
$$n = \frac{c}{v_p}$$
. in the lonosphere  
 $n^2 = 1 - \frac{X}{1 - iZ - \frac{\frac{1}{2}Y^2 \sin^2 \theta}{1 - X - iZ}} \pm \frac{1}{1 - X - iZ} \left(\frac{1}{4}Y^4 \sin^4 \theta + Y^2 \cos^2 \theta (1 - X - iZ)^2\right)^{1/2}}$ 
where  
n is the index of refraction  
 $X = \frac{\omega_{pe}^2}{\omega^2} \quad Y = \frac{\omega_c}{\omega} \quad Z = \frac{\nu}{\omega} \quad \omega_{pe} = \left(\frac{Ne^2}{\varepsilon_0 m_e}\right)^{1/2} \quad \omega_c = \frac{e|B|}{m_e}$   
 $\omega$  = the angular frequency of the radar wave,  
 $Y_L = Y \cos \theta, \quad Y_T = Y \sin \theta,$   
 $\theta$  = angle between the wave vector  $\overline{k}$  and  $\overline{B}$ ,  
 $\overline{k}$  = wave vector of propagating radiation,  
 $\overline{B}$  = geomagnetic field,  $N$  = electron density  
 $e$  = electronic charge,  $m_e$  = electron mass,  $\nu$  = electron collision frequency  
and  $\varepsilon_e$  = permittivity constant.

Key concept for wave behavior within a propagation medium.

Describes the relationship between SPATIAL frequency (wavelength) and TEMPORAL frequency.

Some wave modes relate wavelength to frequency **linearly**, but waves in most media have **nonlinear** relation between wavelength and frequency.

#### Linear dispersion example:

EM radiation propagation through free space (wavelength / velocity = c)

#### Nonlinear dispersion example:

splitting of light through a prism (effective speed of light depends on wavelength due to glass' non-unity index of refraction)



http://weelookang.blogspot. com/2011/10/ejs-opensource-propagation-of.html

Wikipedia CC-3.0

Simple linear case: uniform phase velocity

$$\omega(k) = c \ k$$

Most propagation speeds depend nonlinearly on the wavelength and/or frequency.

NB: for a **nonlinear** dispersion relation, the pulse will typically spread in either spatial frequency or temporal frequency as a function of time.



## **Radar Physics - Part 1**

What we covered

Basic properties of electromagnetic waves: Phase and amplitude, angular frequency, wave number, constructive and destructive addition, polarization, phase velocity and group velocity, refraction and dispersion, concept of dispersion relation