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Doppler Radar Summary:
“Coherent” hard targets
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A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.

What happens when we have multiple targets in the radar volume, moving at different velocities?



Concept of a “Doppler Spectrum”

Superposition of targets moving with different velocities within the radar volume

Two key concepts:
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Processing: p(R, fD)
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If there is a distribution of targets withdifferent velocities (e.g., bird, flapping wings,wind)
then there is no single Doppler shift but, rather, a Doppler spectrum.



Distributed “beam filling” Target

A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.

Two key concepts:
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Processing:

p(RafD’ t) fD(Ra t)

For a beam-filling target (like water droplets in a
tornado), the radar can be used to construct

V(R, 0)

insightful images of velocity relative to the radar.



Trackman radar: “continuous wave” (CW)
radar. precise Doppler but no range
information.

Can identify targets and actions based on
Doppler signatures!

Processing:

p(fD9 t) p(V, t)
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Wave Interference and Bragg Scatter

Consider two waves with the same
frequency but different phase.

w2

Constructive
(in phase)

VW

Destructive
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Consider a wave along the interface between a dielectric
and a conducting (reflective) medium, as depicted below.
This is representative of an air-ocean boundary.
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Suppose waves are observed at angle @ using a radar

with wavelength 4,. The condition for maximum
constructive interference is

niy = 2A;sin 0

If @ = 90° (or if these waves are propagating isotropically),
then the Bragg condition is met for nd, = 24



Doppler spectrum of ocean waves
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Important points:

The target is distributed over the entire radar beam width.

The scattering is from free electrons in the conducting sea water.

The Doppler spectrum has peaks due to Bragg scatter from waves in the medium.

The frequency of the peaks tells us the velocity and direction of the waves.

The height of the peaks tells us something about the amplitude and density of the waves.
The width of the peaks tells us something about the spread in velocity of the waves



Doppler spectrum of the ionosphere

Let's put this all together for the ionosphere. The two predominant longitudinal modes in a
thermal plasma:

lon-acoustic mode:
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Computer simulation of the ionosphere

Simple rules yield
complex behavior
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ISR measures a cut through this surface
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ISR measures a cut through this surface
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Doppler Radar:
“Incoherent” Distributed Target

Two key concepts:
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A Doppler radar measures backscattered power as a function range and velocity.
Velocity is manifested as a Doppler frequency shift in the received signal.

What happens when we have multiple targets in the radar volume, moving at different velocities?



Incoherent Averaging

Normalized ISR spectrum for different integration times at 1290 MHz _ _
1 | v | | — We are seeking to estimate the

h l 1 sample power spectrum of a Gaussian
random process. This requires
that we sample and average many
independent “realizations” of the
process.
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p, = Mean Square Error
K = number of samples
SNR = per-pulse Signal-to-Noise Ratio
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