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Doppler Radar Summary:  
“Coherent” hard targets

A Doppler radar measures backscattered power as a function range and velocity. 
Velocity is manifested as a Doppler frequency shift in the received signal. 

What happens when we have multiple targets in the radar volume, moving at different velocities? 

Two key concepts: 

Time              Distance 

Frequency            Velocity 

fD = −
2fo
c

vo

R = −
cΔt
2 R ~100,000 

oscillations

~10-14  Watts

Solid reflecting target,  
single dominant velocity



Concept of a “Doppler Spectrum”
ENG SC700 Radar Remote Sensing J. Semeter, Boston University

Some Other Doppler Spectra

S. Bachman, MS Thesis

NEXRAD WSR-88D

Incoherent Scatter Radar
--random thermal motion of plasma results in Doppler spectrum

..more on that in the next 2 lectures.

Tennis ball, birds, aircraft engine
--examples of solid objects that give Doppler spectrum

ENG SC700 Radar Remote Sensing J. Semeter, Boston University

Some Other Doppler Spectra

S. Bachman, MS Thesis

NEXRAD WSR-88D

Incoherent Scatter Radar
--random thermal motion of plasma results in Doppler spectrum

..more on that in the next 2 lectures.

Tennis ball, birds, aircraft engine
--examples of solid objects that give Doppler spectrum

Velocity (m/s)

P
ow

er
 (d

B
)

If there is a distribution of targets withdifferent velocities (e.g., bird, flapping wings,wind)  
then there is no single Doppler shift but, rather, a Doppler spectrum.

Superposition of targets moving with different velocities within the radar volume

Two key concepts: 

Time              Distance 

Frequency            Velocity 

fD = −
2fo
c

vo

R = −
cΔt
2

p(v)p(R, fD)

p(v)

Processing:



Distributed “beam filling” Target
A Doppler radar measures backscattered power as a function range and velocity. 
Velocity is manifested as a Doppler frequency shift in the received signal. 

For a beam-filling target (like water droplets in a 
tornado), the radar can be used to construct 
insightful images of velocity relative to the radar.

Two key concepts: 

Time              Distance 

Frequency            Velocity 

fD = −
2fo
c

vo

R = −
cΔt
2

v(R, θ)fD(R, t)

 R

θ

p(R, fD, t)
Processing:



Pitched ball

Trackman radar:   “continuous wave” (CW) 
 radar:  precise Doppler but no range  
information. 

Can identify targets and actions based on  
Doppler signatures!
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Micro-Doppler Analysis

Processing:



Wave Interference and Bragg Scatter
Consider two waves with the same 
frequency but different phase. 

Properties of Waves
Constructive vs. Destructive Addition

S

Constructive
(in phase)

Destructive
(180� out of phase)

S

Partially Constructive
(somewhat out of phase)

S

S

Non-coherent signals
(noise)

�λs sin θ

�nλ0 = 2λs sin θ

Consider a wave along the interface between a dielectric 
and a conducting (reflective) medium, as depicted below.  
This is representative of an air-ocean boundary. 

 
 
 
 
 

 
Suppose waves are observed at angle �   using a radar 
with wavelength � .  The condition for maximum 
constructive  interference is

θ
λo

If �  (or if these waves are propagating isotropically), 
then  the Bragg condition is met for �         

θ = 90∘

nλ0 = 2λs



Doppler spectrum of ocean waves

Important points:   
The target is distributed over the entire radar beam width.  
The scattering is from free electrons in the conducting sea water. 
The Doppler spectrum has peaks due to Bragg scatter from waves in the medium. 
The frequency of the peaks tells us the velocity and direction of the waves. 
The height of the peaks tells us something about the amplitude and density of the waves. 
The width of the peaks tells us something about the spread in velocity of the waves 

Backscatter from the ocean at low aspect 
angle shows peaks in the  Doppler 
spectrum from the subset of waves 
matching the Bragg condition for the radar   
(spacing !  half the radar wavelength)≃

Waves moving 
toward the radar

Waves moving 
away from  

the radar

Noise floor



Doppler spectrum of the ionosphere
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Figure 2·4: Longitudinal modes of a plasma. Blue lines relate to ion
acoustic waves and red ones to Langmuir waves.

plasma particles start to interact more strongly with the growing wave, e.g., by heating.

This can sometimes be described in terms of the so-called quasi-linear saturation within

the Vlasov theory.

A way of categorizing plasma instabilities is to divide them between macroscopic (con-

figurational) and microscopic (kinetic) instabilities. The division is the same as within

plasma theory in general. A macroinstability is something that can be described by

macroscopic equations in the configuration space. Examples of a macroinstability are the

Rayleigh-Taylor, Farley-Buneman and Kelvin-Helmholtz instabilities. On the other hand,

a microinstability takes place in the (x,v)-space and depends on the actual shape of the

distribution function. A consequence of a microinstability is a greatly enhanced level of

fluctuations in the plasma associated with the unstable mode. These fluctuations are called

microturbulence. Microturbulence can lead to enhanced radiation from the plasma and to

enhanced scattering of particles, resulting in anomalous transport coe⇤cients, e.g., anoma-

lous electric and thermal conductivities. Examples of microinstability are the beam-driven,

ion acoustic and electrostatic ion cyclotron instabilities.
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can account for the simultaneous enhancement in the two ion lines, and the simultaneous55

ion and plasma line enhancement.56

This purpose of this paper is to provide a unified theoretical model of modes expected in57

the ISR spectrum in the presence of field-aligned electron beams. The work is motivated58

by the phenomenological studies summarized above, in addition to recent theoretical59

results–in particular, those of Yoon et al. [2003], and references therein, which suggest60

that Langmuir harmonics should arise as a natural consequence of the same conditions61

producing NEIALs. Although these e�ects have been treated in considerable detail in the62

plasma physics literature, their implications for the field of ionospheric radio science (and63

ISR in particular) have not yet been discussed. The conditions to detect all the modes64

present within the IS spectrum within the same ISR is also presented in this work.65

2. Plasma in Thermal Equilibrium

There exist two natural electrostatic longitudinal modes in a plasma in thermal equilib-66

rium: the ion acoustic mode, which is the main mode detected by ISRs, and the Langmuir67

mode [Boyd and Sanderson, 2003]. Using a linear approach to solve the Vlasov-Poisson68

system of equations, the dispersion relation of these modes is obtained. The real part of69

the ion acoustic dispersion relation reads70

⇥s = Csk, (1)

and the imaginary part (assuming ⇥si � ⇥s, k2�2
De � 1 and Ti/Te � 1) can be written71

as72

D R A F T May 29, 2010, 6:36am D R A F T

X - 6 DIAZ ET AL.: BEAM-PLASMA INSTABILITY EFFECTS ON IS SPECTRA

⇤si = �
 

⇥

8

⇧�
me

mi

⇥ 1
2

+

�
Te

Ti

⇥ 3
2

exp

⇤
� Te

2Ti
� 3

2

⌅⌃
⇤s (2)

where Cs =
⌥

kB(Te + 3Ti)/mi is the ion-acoustic speed. The dependence of this mode

on ionospheric state parameters is observed in Eq. 2. The Langmuir mode is detected by
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⇤L =
�

⇤2
pe + 3 k2 v2

the ⇥ ⇤pe +
3

2
vthe�Dek

2, (3)

and the imaginary part (assuming ⇤Li ⇤ ⇤L) is73

⇤Li ⇥ �
 

⇥

8

⇤3
pe

k3

1

v3
the

exp

⇤
�

⇤2
pe

2k2v2
the

� 3

2

⌅
⇤L. (4)

The forward model used to estimate ionospheric parameters in ISR assumes that these74

are the dominating modes in the ISR spectrum. However, an injected beam of particles,75

in particular electrons, can destabilize the plasma, altering the dispersion relations and76

amplitudes of these modes.77

3. Current Model of the Langmuir Decay Process for NEIAL Formation

The model presented by Forme et al. [1993] to explain NEIALs is a two step process.

First, a beam-plasma instability enhances Langmuir Waves (LW). Second, if the enhance-

ment of LW is high enough then the enhanced LW can decay, enhancing Ion Acoustic

Waves (IAWs) and counter-propagating LWs. The plasma-beam process involves three

species: thermal electrons, thermal ions, and an electron beam with a bulk velocity of

vb. By assuming small perturbations and small damping/growth (vthe, vthi, vb ⇤ ⇤/k),

linearization of Vlasov-poison system can be used to find the dispersion relation of the
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Let's put this all together for the ionosphere.   The two predominant longitudinal modes in a 
thermal plasma:   

Ion-acoustic mode:

 

Langmuir mode:

 



Computer simulation of the ionosphere
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2.4 The Particle-in-Cell Method

The simulator uses a particle-in-cell (PIC) method for both the ions and electrons. This

accurately models all dynamics, including thermal e�ects, at the cost of substantial com-

puter time. The idea of the PIC method, described in detail in books by Birdsall and

Langdon (1985), Hockney and Eastwood (1988) or Tajima (1988), is simple: The code

simulates the motion of plasmas particles in continuous phase space, whereas moments of

the distribution such as densities and currents are computed on discrete points (or cells)

from the position and velocity of the particles. The macro-force acting on the particles is

calculated from the field equations. The name “Particle-in-Cell” comes from the way of

assigning macro-quantities to the simulation particles.

In general PIC codes solve the equation of motion of particles with the Newton-Lorentz

force

dxi

d t
= vi and

dvi

d t
=

qi

mi
(E(xi) + vi ⇥B(xi)) for i = 1, . . . , N (2.49)

and the Maxwell’s equations (Equations 2.4 and 2.7) together with the prescribed rule of

calculation of � and J

� = �(x1,v1, . . . ,xN ,vN ), (2.50)

J = J(x1,v1, . . . ,xN ,vN ). (2.51)

� and J are the charge and current density of the medium at certain iteration. A

simplified scheme of the PIC simulation is given in Figure 2·8.

PIC codes usually are classified depending on dimensionality of the code and on the

set of Maxwell’s equations used. The codes solving a whole set of Maxwell’s equations are

called electromagnetic codes; electrostatic ones solve just the Poisson equation.

Specifically the code used in this work can perform two and three dimensional simu-
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When the plasma is warm, which means that the thermal velocity of the particles is

important, it can be described as previously with a force-balance motion equation but this

time with a term that accounts for the thermal velocity of the particles, a pressure term

(�pTj⌅nj). Thus, the equation becomes

mjnj
⌅v
⌅t

= qjnj(E + v⇤B)� �pTj⌅nj , (2.2)

where �p is a proportionality constant and Tj the temperature of the species j.

Even though the main modes present in a warm plasma can be obtained with Equation

2.2, part of the physics of those modes is lost in the over simplification of the motion

equation. When the temperature of a plasma is finite and the thermal velocity of the

particles is comparable to the phase velocity of the propagating wave, the interaction of

the particles and the wave becomes important. Some of the typical interactions are Landau

damping and microinstabilities. Those phenomena can be explained only through a motion

equation that takes into account the space-velocity distribution of the particles forming the

plasma. This equation is the Boltzman equation, which becomes Vlasov equation (Equation

2.3) in absence of collisions.

Landau damping and microinstabilities are important in determining the shape of the

incoherent scatter radar spectrum at high latitudes, therefore a kinetic approach, which

uses a Vlasov equation as motion equation, has to be used. The system of equations formed

by Equations 2.3 to 2.9, which includes the Vlasov equation plus Maxwell’s equations, has

to be solved self-consistently to obtain the wave modes propagating along the plasma.

⌅fj(t,x,v)
⌅t

+ v · ⌅fj(t,x,v)
⌅x

+
qj

mj
(E + v⇤B) · ⌅fj(t,x,v)

⌅v
= 0 (2.3)

⌅⇤E =
�⌅B
⌅t

(2.4)

⌅⇤B = µ0J +
1
c2

⌅E
⌅t

(2.5)
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⇥ · E =
⇤

�0
(2.6)

⇥ · B = 0 (2.7)

Coupling is complete via charge and current densities.

⇤ =
�

j

qj nj =
�

j

qj

⇥
fj d3v (2.8)

J =
�

j

qj nj vj =
�

j

qj

⇥
fj v d3v, (2.9)

where fj(x,v) represents the space-velocity distribution function of the species j, �0 and

µ0 are the permitivity and permeability of the air respectively, and c is the speed of light.

The complexity of this system of equations is evident and the quasi-linear approach is

used to obtain an approximated solution. The traditional development of the quasi-linear

theory of waves in plasmas follows a well established procedure (Krall, 1974; Nicholson,

1983): First, electromagnetic fields, and in the case of warm plasmas the space-velocity

distribution of the particles, are linearized; then the linear Vlasov equation is subjected

to a Fourier/Laplace analysis in space/time, yielding fluctuating particles distributions

which are used to settle the current density (J) and electric field (E) relation. Usually

the conductivity tensor (�) is obtained from this relation; Fourier analyzed in both space

and time, Faraday’s and Ampere’s equations are combined to yield a dispersion equation.

The solution of this dispersion equation relates frequency ⌅ and wavevector k and thereby

determines the normal modes of the plasma; thus the final step is to insert the conductivity

tensor (which brings the plasma properties) into the dispersion relation (which states waves

main features) to obtain the plasma waves. This is the path that is followed in this section.

Following this path, the linearization of the fields and space-velocity distribution func-

tion comes first and is used together with a Fourier/Laplace space/time transform of the
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Particle-in-cell (PIC) simulation:

Simple rules yield  
complex behavior
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(a)

(b)

(c) (d)

Figure 4·5: Simulated incoherent scatter spectrum (for periodic boundary
conditions), obtained integrating 120 angular independent spectra,(a) as a
function of the frequency and the wavenumber. (b) As a function of fre-
quency for the wavenumber k ⇥54 m�1(or radar frequency of ⇥ 1300 MHz),
which is similar to the wavenumber of Sondrestrom. (c) and (d) are close
ups of the negative and positive Langmuir modes, respectively.
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Figure 2·5: The top figure shows an Incoherent Scattering Spectrum,
including the three lines. The middle figure shows a zoom to the ion acoustic
line, which is the focus of this research. The bottom figure shows the
autocorrelation function �(⇥) of the ion acoustic line. f+ is the Doppler
frequency associated with the ion acoustic phase velocity.

                                                  

!𝗐𝖺𝗏𝖾𝗇𝗎𝗆𝖻𝖾𝗋 k (𝟣/𝗆)

ISR measures a cut through this surface 
77

Figure 3·6: Simulated ISR spectra for many scatter wave numbers with
105 macroparticles (top plot). Simulated and theoretical ISR spectrum for
three di�erent scatter wave numbers with 105 macroparticles (bottom plot).
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frequency associated with the ion acoustic phase velocity.
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Figure 3·6: Simulated ISR spectra for many scatter wave numbers with
105 macroparticles (top plot). Simulated and theoretical ISR spectrum for
three di�erent scatter wave numbers with 105 macroparticles (bottom plot).
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(a)

(b)

(c) (d)

Figure 4·5: Simulated incoherent scatter spectrum (for periodic boundary
conditions), obtained integrating 120 angular independent spectra,(a) as a
function of the frequency and the wavenumber. (b) As a function of fre-
quency for the wavenumber k ⇥54 m�1(or radar frequency of ⇥ 1300 MHz),
which is similar to the wavenumber of Sondrestrom. (c) and (d) are close
ups of the negative and positive Langmuir modes, respectively.
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Doppler Radar:  
“Incoherent” Distributed Target

A Doppler radar measures backscattered power as a function range and velocity. 
Velocity is manifested as a Doppler frequency shift in the received signal. 

What happens when we have multiple targets in the radar volume, moving at different velocities? 

e-

Two key concepts: 

Distant             Time 

Velocity            Frequency 

e-

e-

fD = −
2fo
c

vo

R = −
cΔt
2 R

“Incoherent” distributed target

?



Incoherent Averaging
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Figure 3·2: Simulated IS spectra for di�erent number of independent spec-
tra integrated at an operation frequency of 1289 MHz. Top plot shows an
average of one spectrum. The middle plot shows an average of 30 inde-
pendent spectra. The bottom plot shows an average of 600 independent
spectra.

Normalized ISR spectrum for different integration times at 1290 MHz
We are seeking to estimate the 
power spectrum of a Gaussian 
random process.  This requires 
that we sample and average many 
independent “realizations” of the 
process. 
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