Radar Signal Processing: Part 3

I-Q demodulation: Time-domain perspective

Josh Semeter
Boston University

Components of a Pulsed Doppler Radar

A Simple Radar Pulse

Measuring Velocity

Conducting sphere, constant velocity,
\Rightarrow Coherent echo

Assume a transmitted signal:

$$
a(t) \cos \left[2 \pi f_{o}\left(t+\frac{2 R(t)}{c}\right)\right]
$$

Let's assume target moves with constant velocity with respect to the radar during the measurement,

$$
R=R_{o}+v_{o} t
$$

Substituting we obtain:

$$
\begin{aligned}
& a(t) \cos [\underbrace{2 \pi f_{o} t}+\underbrace{2 \pi f_{D} t+\frac{2 \pi f_{o} R_{o}}{c}}_{\phi(t)}] \quad f_{D}=-\frac{2 f_{o}}{c} v_{o} \\
& a(t) \cos \left[\omega_{o} t+\phi(t)\right] \quad \omega_{D}=2 \pi f_{D}=\frac{d \phi}{d t}
\end{aligned}
$$

$$
f_{o} \sim 500 \mathrm{MHz}, \quad f_{D} \sim 50 \mathrm{kHz}=0.0001 f_{o}
$$

Two issues:

1) How do we discriminate positive from negative f_{D} ?
2) How do we remove f_{o}, and just sample $a(t) \cos [\phi(t)]$?

Analytic Signal Model

From Euler's identity

$$
\begin{aligned}
& r e^{j \theta}=(r \cos \theta)+j(r \sin \theta) \quad j=\sqrt{-1} \\
& r \cos (\theta)=\mathfrak{R}\left\{r e^{j \theta}\right\} \quad \text { "real part" } \\
& r \sin (\theta)=\mathfrak{\Im}\left\{r e^{j \theta}\right\} \quad \text { "imaginary part" }
\end{aligned}
$$

Setting $r=a(t)$ and $\theta=\omega_{o} t+\phi(t)$, we obtain a general complex signal model for radio and radar applications.

Or by letting $\omega_{d}=d \phi / d t \rightarrow \phi(t)=\omega_{d} t$

$$
s(t)=a(t) e^{j\left(\omega_{o}+\omega_{d}\right) t} \underbrace{}_{\mathrm{FM}}
$$

Note that:

$$
\begin{aligned}
& \mathfrak{R}\{s(t)\}=a(t) \cos \left(\omega_{o} t+\phi(t)\right) \\
& \mathfrak{J}\{s(t)\}=a(t) \sin \left(\omega_{o} t+\phi(t)\right)
\end{aligned}
$$

I and Q Demodulation

Consider radar transmission of a simple RF pulse. The reflected signal from the target will be the original pulse with some time varying amplitude and phase applied to it:

$$
s_{R}(t)=a(t) \cos \left(\omega_{o} t+\phi(t)\right)
$$

We compute the analytic signal by "mixing" with cosine and sine.
Mixing with cosine give the "in-phase" (I) channel:

$$
\begin{aligned}
s_{R}(t) \cos \left(\omega_{o} t\right) & =a(t) \cos \left(\omega_{o} t+\phi(t)\right) \cos \left(\omega_{o} t\right) \\
& =a(t) \frac{1}{2}(\underbrace{\cos \left[2 \omega_{o} t+\phi(t)\right]}_{\text {filter out }}+\cos [\phi(t)])
\end{aligned}
$$

Mixing with sine give the "quadrature" (Q) channel:

$$
\begin{aligned}
s_{R}(t) \sin \left(\omega_{c} t\right) & =a(t) \cos \left(\omega_{o} t+\phi(t)\right) \sin \left(\omega_{o} t\right) \\
& =a(t) \frac{1}{2}(\underbrace{-\sin \left[2 \omega_{o} t+\phi(t)\right]}_{\text {filter out }}+\sin [\phi(t)])
\end{aligned}
$$

If we include a gain of 2 , we retain the original signal energy. Using Euler's identity we obtain the analytic baseband signal:

$$
s_{B}(t)=a(t) \cos \phi(t)+j a(t) \sin \phi(t)=I+j Q
$$

I/Q demodulation produces a time-series of complex voltage samples $\left(I_{n}, Q_{n}\right)$ from which we can construct a discrete representation of $s_{B}(t)$. The Doppler frequency shift is the time rate of change of the phase, $\omega_{D}=d \phi / d t$.

Doppler Detection: Intuitive Approach

Closing on target - positive Doppler shift

Echo 1 Echo 2 Echo 3 Echo 4 Echo 5 Echo 6 Echo 7

Strobe light at ω_{o}

Target

But do we expect an electron to maintain a constant velocity between pulses?

Echo 6

Target's Doppler frequency shows up as a pulse-to-pulse shift in phase.

Doppler Detection: Intuitive Approach

Closing on target - positive Doppler shift
Echo 1 Echo 2 Echo 3 Echo 4 Echo 5 Echo 6 Echo 7

Target

But do we expect an electron to maintain a constant velocity between pulses?

What is the maximum Doppler shift that can be unambiguously measured?

