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Components of a Pulsed Doppler Radar

Physics model

Plasma density (Ne) 
Ion temperature (Ti) 
Electron temperature (Te) 
Bulk velocity (Vi)

+

+

+

__

_

cos(ωot)s(t)

sT(t) = s(t)cos(ωot)

sR(t) = a(t)cos(ωot + ϕ(t))

sB(tn) = anejϕn = In + jQn

cos(ωot) sin(ωot)



A Simple Radar Pulse

Waves, modulated 
by “on-off” action of  

pulse envelope

How many cycles are in a typical pulse?   
   PFISR frequency:  449 MHz 
   Typical long-pulse length: 480 µs 215,520 cycles!

cos(ωot)
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Connection between Fourier Transform and Laplace 
Transform

X Compare Fourier Transform:

X With Laplace Transform:

X Setting s = jω in this equation yield:

X Is  it true that:                           ?
X Yes only if x(t) is absolutely integrable, i.e. has finite energy:
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Define three useful functions

X A unit rectangular window (also called a unit gate) function rect(x):

X A unit triangle function Δ(x):

X Interpolation function sinc(x):
or
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s(t) = A rect (t/τ)
X

sT(t) = s(t)cos(ωot)

=

sT(t) = A 𝗋𝖾𝖼𝗍 (t/τ) cos(ωot)



Measuring Velocity
Assume a transmitted signal:             � 


After return from target:         � 


s(t)cos(2πfot)

a(t)cos [2πfo (t +
2R(t)

c )]
Let’s assume target moves with constant velocity with 
respect to the radar during the measurement,                      

R = Ro + vot

Substituting we obtain:    

� 
a(t)cos [ωot + ϕ(t)]

fD = −
2fo
c

vo� 
a(t)cos [2πfot + 2πfDt +
2πfoRo

c ]� 
⏟
ωot

� 


� 
ϕ(t)

� ~ 50 kHz�  fD = 0.0001fo

2) How do we remove �  , and just sample � ?fo a(t)cos[ϕ(t)]

R

Conducting sphere,  
constant velocity,  

Coherent echo

ωD = 2πfD =
dϕ
dt

 �  MHz, fo ∼ 500

1) How do we discriminate positive from negative  � ?fD

Receive

Receive

Transmit

Two issues:



where r is the magnitude of z, and is the phase of z. We notice that
z can be represented in three ways:

(9.15)

The relationship between the rectangular form and the polar form
is shown in Fig. 9.6, where the x axis represents the real part and the
y axis represents the imaginary part of a complex number. Given x and
y, we can get r and as

(9.16a)

On the other hand, if we know r and we can obtain x and y as

(9.16b)

Thus, z may be written as

(9.17)

Addition and subtraction of complex numbers are better performed
in rectangular form; multiplication and division are better done in polar
form. Given the complex numbers

the following operations are important.
Addition:

(9.18a)z1 ! z2 " (x1 ! x2) ! j( y1 ! y2)

z2 " x2 ! jy2 " r2 lf2

z " x ! jy " r lf,  z1 " x1 ! jy1 " r1 lf1

z " x ! jy " r lf " r ( cos f ! j sin f)

x " r cos f,  y " r sin f

f,

r " 2x 
2

! y 
2
,  f "  tan 

#1
 
y
x

f

 z " re 
j f
   

 
Exponential form

 z " r lf   Polar form

 z " x ! jy   Rectangular form

f

9.3 Phasors 377

Charles Proteus Steinmetz (1865–1923), a German-Austrian
mathematician and engineer, introduced the phasor method (covered in
this chapter) in ac circuit analysis. He is also noted for his work on the
theory of hysteresis.

Steinmetz was born in Breslau, Germany, and lost his mother at the
age of one. As a youth, he was forced to leave Germany because of
his political activities just as he was about to complete his doctoral dis-
sertation in mathematics at the University of Breslau. He migrated to
Switzerland and later to the United States, where he was employed by
General Electric in 1893. That same year, he published a paper in
which complex numbers were used to analyze ac circuits for the first
time. This led to one of his many textbooks, Theory and Calculation
of ac Phenomena, published by McGraw-Hill in 1897. In 1901, he
became the president of the American Institute of Electrical Engineers,
which later became the IEEE.

Historical
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Figure 9.6
Representation of a complex number 
x ! jy " r lf.
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Analytic Signal Model

s(t) = a(t)ej(ωot+ϕ(t))

rejθ = (r cos θ) + j(r sin θ)

cos(θ) = sin(θ + π/2)

From Euler's identity

Setting  �  and � ,  we obtain a general  
complex signal model for radio and radar applications.

r = a(t) θ = ωot + ϕ(t)

θ = ωt = 2πft

AM
PM

Carrier

s(t) = a(t)ej(ωo+ωd)t

Or by letting �  ωd = dϕ/dt → ϕ(t) = ωdt

j = −1

ejx = cos(x) + j sin(x)
r cos(θ) = ℜ{rejθ}

r sin(θ) = ℑ{rejθ}

“real part”

“imaginary part”

where r is the magnitude of z, and is the phase of z. We notice that
z can be represented in three ways:

(9.15)

The relationship between the rectangular form and the polar form
is shown in Fig. 9.6, where the x axis represents the real part and the
y axis represents the imaginary part of a complex number. Given x and
y, we can get r and as

(9.16a)

On the other hand, if we know r and we can obtain x and y as

(9.16b)

Thus, z may be written as

(9.17)
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form. Given the complex numbers
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z " x ! jy " r lf " r ( cos f ! j sin f)
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f,

r " 2x 
2 ! y 

2,  f "  tan 
#1 

y
x

f

 z " re 
j f    Exponential form

 z " r lf   Polar form

 z " x ! jy   Rectangular form

f
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θ

FM

−θ

ℜ{s(t)} = a(t)cos(ωot + ϕ(t))
Note that:

rejθ

r cos θ

r sin θ

ℑ{s(t)} = a(t)sin(ωot + ϕ(t))



I and Q Demodulation
Consider radar transmission of a simple RF pulse.  The reflected signal from the target will be the original pulse 
with some time varying amplitude and phase applied to it:

sR(t) = a(t)cos(ωot + ϕ(t))
We compute the analytic signal by “mixing” with cosine and sine. 
Mixing with cosine give the “in-phase” (I) channel:

sR(t)cos(ωot) = a(t)cos(ωot + ϕ(t))cos(ωot)

= a(t)
1
2 (cos[2ωot + ϕ(t)] + cos[ϕ(t)])

Mixing with sine give the “quadrature” (Q) channel:
sR(t)sin(ωct) = a(t)cos(ωot + ϕ(t))sin(ωot)

= a(t)
1
2 (−sin[2ωot + ϕ(t)] + sin[ϕ(t)])

If we include a gain of 2, we retain the original signal energy.  Using  
Euler’s identity we obtain the analytic baseband signal:

sB(t) = a(t)cos ϕ(t) + ja(t)sin ϕ(t) = I + jQ

I/Q demodulation produces a time-series of complex voltage samples (� , � )  from which we can construct a 
discrete representation of � .  The Doppler frequency shift is the time rate of change of the phase,� .

In Qn
sB(t) ωD = dϕ/dt

filter out

filter out

 a 



Doppler Detection:  Intuitive Approach
Closing on target – positive Doppler shift

e-

Transmitted 
Received

Target’s Doppler frequency shows up  
as a pulse-to-pulse shift in phase.

f = c/� (1)

! = 2⇡f (2)

k = 2⇡/� (3)

! = ck (4)

cos(2⇡(fo + fD)t) (5)

cos(2⇡(fo + fD)t) (6)

e
j2⇡fDt = cos(2⇡fDt) + j sin(2⇡fDt) (7)

Ae
j2⇡fDt = I(t) + jQ(t) (8)

�(!) (9)

�1 (10)

�2 (11)

We transmit an amplitude-modulated cosine of frequency !c. The received
signal will have some time varying amplitue a(t) and time-varying phase �(t)
applied to this,
prec(t) = a(t)cos(�(t) + !ct)
We compute the analytic signal through Euler’s identity by “mixing”
the signal with cosine and sine

dionosphere = ⌃mA
T
⇣
A⌃mA

T + ⌃e

⌘�1
(measurements) (12)

H(!) =
1000

j! + 200
(13)

d
2
vc

dt2
+ 7

dvc

dt
+ 10vc = 60 (14)

K =
✓
1

2
⇢u

2
◆
û

S =
E ⇥ B

µ0

1

f = c/� (1)

! = 2⇡f (2)

k = 2⇡/� (3)

! = ck (4)

cos(2⇡(fo + fD)t) (5)

cos(2⇡(fo + fD)t) (6)

e
j2⇡fDt = cos(2⇡fDt) + j sin(2⇡fDt) (7)

Ae
j2⇡fDt = I(t) + jQ(t) (8)

�(!) (9)

�1 (10)

�2 (11)

We transmit an amplitude-modulated cosine of frequency !c. The received
signal will have some time varying amplitue a(t) and time-varying phase �(t)
applied to this,
prec(t) = a(t)cos(�(t) + !ct)
We compute the analytic signal through Euler’s identity by “mixing”
the signal with cosine and sine

dionosphere = ⌃mA
T
⇣
A⌃mA

T + ⌃e

⌘�1
(measurements) (12)

H(!) =
1000

j! + 200
(13)

d
2
vc

dt2
+ 7

dvc

dt
+ 10vc = 60 (14)

K =
✓
1

2
⇢u

2
◆
û

S =
E ⇥ B

µ0

1

But do we expect an electron  
to maintain a constant velocity 
between pulses?Strobe light at  !ωo
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Inter-pulse period (IPP)



Doppler Detection:  Intuitive Approach
Closing on target – positive Doppler shift

e-
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What is the maximum Doppler shift 
that can be unambiguously measured?

Strobe light at  !ωo
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Inter-pulse period (IPP)
But do we expect an electron  
to maintain a constant velocity 
between pulses?


