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Components of a Pulsed Doppler Radar

Physics model

Plasma density (Ne) 
Ion temperature (Ti) 
Electron temperature (Te) 
Bulk velocity (Vi)

+

+

+

__

_

cos(ωot)s(t)

sT(t) = s(t)cos(ωot)

sR(t) = a(t)cos(ωot + ϕ(t))

sB(tn) = anejϕn = In + jQn

cos(ωot) sin(ωot)



Essential mathematical operations
Fourier Transform:   Expresses a function as a weighted sum of complex exponentials.

Convolution:  Expresses the action of a linear, time-invariant system on a function.

F(ω) = ℱ [f(t)] = ∫
+∞

−∞
f(t)e−jωtdt

f(t) = ℱ−1 [F(ω)] =
1

2π ∫
+∞

−∞
F(ω)ejωtdω

f(t) * g(t) = ∫
+∞

−∞
f(τ)g(t − τ)dτ

f(t) * g(t) ⟺ F(ω)G(ω)

analysis equation:

synthesis equation:

f(t)g(t) ⟺ F(ω) * G(ω)

Duality:  Comparison of �  and �   we obtainℱ ℱ−1

f(t) ⟺ F(ω)

F(t) ⟺ 2πf(−ω)



Dirac Delta Function δ(x)

δ(t) = lim
α→0

1

4πα
e−t2/(4α)

δ(x) = {+∞, x = 0
0, x ≠ 0

x A generalized function, or distribution, with the properties

∫
+∞

−∞
δ(x)dx = 1

Sampling property:   From the above it follows that

f(to) = ∫
+∞

−∞
f(t)δ(t − to)dt

F(ω) * δ(ω − ω0) = ∫
+∞

−∞
F(Ω)δ(ω − ω0 − Ω)dΩ

= F(ω − ω0)

     may be expressed as 
the limit of many functions
δ(t)

argument is zero at t = t0⏟

⏟

Shift property:   Convolution of a function �  with  
�  shifts the entire function by � .   We will  
use this property to understand mixing.  Specifically:

F(x)
δ(x − xo) xo



Fourier analysis of harmonic functions
= e−j0dtℱ [δ(t)] = ∫

+∞

−∞
δ(t)e−jωtdt

ℱ[1] = 2πδ(ω)

=
1

2π
e−jωot

ℱ−1 [δ(ω − ωo)] =
1

2π ∫
+∞

−∞
δ(ω − ωo)e−jωtdω

ℱ [1] = 2πδ(ω)

ℱ [ 1
2π

e−jωot] = δ(ω − ωo)
ℱ [ejωot] = 2πδ(ω − ωo)

= e−jωto

ℱ [δ(t − to)] = ∫
+∞

−∞
δ(t − to)e−jωtdt

From duality property we can also write,

F(ω) = ∫
+∞

−∞

1
2 [ejωot + e−jωot] e−jωtdt

f(t) = cos(ωot) =
1
2 [ejωot + e−jωot]

=
1
2 [∫

+∞

−∞
ejωote−jωtdt + ∫

+∞

−∞
e−jωote−jωtdt]

ℱ [cos(ωot)] = π [δ(ω − ωo) + δ(ω + ωo)]

ℱ [δ(t)] = 1

ℱ [δ(t − to)]

⟺

0 ω →

F(ω) = 1f (t) = 1



Fourier analysis of harmonic functions

ejωot = cos(ωot) + j sin(ωot)



Summary of tools for I/Q demodulation

ejωot ⟺ 2πδ(ω − ωo)

F(ω) * δ(ω − ω0) = F(ω − ω0)

f(t)g(t) ⟺ F(ω) * G(ω)

sin(ωot) ⟺ jπ [δ(ω + ωo) − δ(ω − ωo)]

cos(ωot) ⟺ π [δ(ω + ωo) + δ(ω − ωo)]

Multiplication-convolution: 

Frequency shift property:

Harmonic functions:
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Figure 1.1: Left: quadrature modulator. Right: quadrature demodulator

Let the signal s(t) be bandlimited to the frequency interval [°b/2, b/2] and let
f0 > b/2. In this case SRF (f) is non-zero only over two disjunct intervals [f0 °
b/2, f0 + b/2] and [°f0 ° b/2,°f0 + b/2].

For signals with this property the complex envelope s(t) is uniquely determined
by the RF-signal sRF (t) [4]. Mathematically, the baseband signal s(t) can be recov-
ered by deleting the negative frequency band [°f0°b/2,°f0+b/2] of SRF (f), shifting
the spectrum to the left by f0, multiplying with the factor 2 and transforming it
back to the time domain.

Technically, the recovery of s(t) is done by the QDM (see Fig. 1.1 right). The RF-
signal sRF (t) is given to two mixers and mixed down with the LO signals 2 cos(2ºf0t)
and °2 sin(2ºf0t). The outputs of the mixers are filtered by low pass filters with
a bandwidth larger than b and lower than 2f0 ° b which remove the higher bands
centered at ±2f0.

If the output of a QM is given directly into a QDM (’bypass’), the resulting
output signal of the QDM is identical to the input signal of the QM, see Fig. 1.2,
so the QDM performs the inverse operation to that of the QM, the real valued
RF-signal may be regarded as a carrier of the base band-signal s(t), able to be
transmitted as RF waves over long ranges.

! "

! # ! $

" #

! % "

! & ' # ! $ ! & ' # ! $

! # ! $

Figure 1.2: Bypass of quadrature modulator and demodulator

In real systems, mostly there are several mixing stages with individual local fre-
quencies. Nevertheless, the mathematics remains the same, if all LO-frequencies



I/Q Demodulation: Frequency Domain

fo-fo

fo+fD-fo-fD

fD

Transmitted signal:    Frequency domain

Reflected signal from moving target
0

2fo+fD-fD fD-2fo-fD

We thus need to mix with a second oscillator at same frequency but !  out of phase (Lecture 3).    
For a cosine reference, the quadrature function is sine.   The two components are called “in phase” (I)  
and “quadrature” (Q).    Together I and Q represent discrete samples of the baseband analytic signal,  

90∘

To resole both positive and negative Doppler shifts, we need: 

Mixed (multiplied) with oscillator  !cos(2πfot)

FFT**

f = c/� (1)

! = 2⇡f (2)

k = 2⇡/� (3)

! = ck (4)

cos(2⇡(fo + fD)t) (5)

cos(2⇡(fo + fD)t) (6)

e
j2⇡fDt = cos(2⇡fDt) + j sin(2⇡fDt) (7)

k = 2⇡/�

dionosphere = ⌃mA
T
⇣
A⌃mA

T + ⌃e

⌘�1
(measurements) (8)

H(!) =
1000

j! + 200
(9)

d
2
vc

dt2
+ 7

dvc

dt
+ 10vc = 60 (10)

K =
✓
1

2
⇢u

2
◆
û

S =
E ⇥ B

µ0

f(t) =
Z +1

�1
F (!)ej!tdt () F (!) =

Z +1

�1
f(t)e�j!t

dt

f(0) =
Z +1

�1
�(t)f(t)dt

f(t� T ) = f(t) ⇤ �(t� T )

1

(for a single scatterer)

cos(2πfot)

1
2

cos [2π(2fo + fD)t] +
1
2

cos[2πfDt] ⟺

cos[2ωot + ϕ(t)] + cos[ϕ(t)]

cos(2πfot) ⟺

cos(2π( fo + fD)t) ⟺

fo

-fo fo

LPF*

  *Low Pass Filter 
**Fast Fourier Transform

Aδ( f − fD)sB(t) = Ae2πfDt = I(t) + jQ(t)

narrow-band  
signal



Correlation and the ISR Spectrum
How do we compute the power spectrum from our complex voltages ?
One approach is to compute Fourier transform of the range-resolved signal: 

                        
    

Ruu = u(t) ∘ u(t) = u(t) * u(−t)

The discrete  representation of �  is constructed through appropriate scaling and  
multiplication of the complex voltage samples � .    
 
In the next lecture we will begin to explore methods for constructing the ACF.

Rs(r, τ)
s(rk, tn)

Rs(r, τ) = ⟨s(r, t)s(r, t + τ)⟩
⟨ s(r, t)

2⟩
where the angle brackets denote the ensemble average, or the expected value.   
The power spectral density is given by the Fourier transform of the �Rs

Rs(r, τ) ⟺ S(r, f )
2

Ruu = u(t) ∘ u(t) = u(t) * u(−t)

Based on the stochastic nature of the target, and the way ISR  samples the echos,  
we will take a different approach.   We first compute the auto-correlation function (ACF), 

s(r, t) = I(r, t) + Q(r, t) ⟺ S(r, f )

from which the power spectrum may be represent as � S(r, f )
2

(Wiener-Khinchin theorem)

S( f; r)
2

f


