AMISR Experiment Design

Ashton S. Reimer Roger H. Varney

Center for Geospace Studies SRI International

20 July 2021

Reimer & Varney (SRI)

1 Experiment Design

Experiment Design

Science objectives and radar operations are a coupled system. Designing a radar experiment is an optimization problem.

Many parameters need to be determined:

- pulse length \longleftrightarrow range resolution
- pulse type/code \longleftrightarrow range resolution
- Rx sampling rate \longleftrightarrow range resolution
- interpulse period \longleftrightarrow maximum range
- Tx/Rx frequencies \leftrightarrow increasing duty cycle/sampling statistics
- \bullet antenna pointing, "look directions" or "line-of-sight" \longleftrightarrow capturing dynamics, time resolution
- \bullet measurement uncertainty \longleftrightarrow duty cycle, total number of pulses, time resolution
- etc.

Parameters are radar dependent. Each ISR is different.

Experiment Design	AMISR Modes	Operations

Relative Error

Most of the experiment design choices are trying to balance:

$$\text{\%error}\approx\frac{1}{\sqrt{\mathcal{K}}}\left(1+\frac{1}{\text{SNR}}\right)$$

K is affected by:

- interpulse period \longleftrightarrow maximum range
- Tx/Rx frequencies ↔ increasing duty cycle/sampling statistics
- antenna pointing, "look directions" or "line-of-sight" ↔ capturing dynamics, time resolution

SNR is affected by:

- pulse length \longleftrightarrow range resolution
- pulse type/code \leftrightarrow range resolution
- Rx sampling rate \longleftrightarrow range resolution

Example: Different ISR Antennas

Dish antenna:

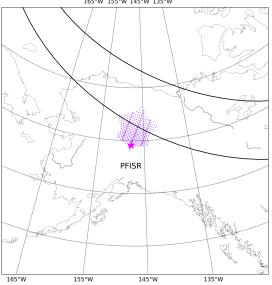
- Single pointing direction
- Moving the dish requires time, usually minutes
- Spatial-temporal ambiguities: is the plasma moving or evolving in time?

Phased array antenna:

- Multiple pointing directions, change on a "pulse-to-pulse" basis
- Volumetric determination of scalar parameters: density and temperature
- Measurements can be post-integrated; flexible integration time

AMISR Modes

PFISR: Poker Flat Incoherent Scatter Radar



(May 2021)

Experiment Design

Reimer & Varney (SRI)

PFISR Location

165°W 155°W 145°W 135°W

Pulse Types

AMISR pulse types, a qualitative summary:

- Uncoded Long Pulse
 - Low range resolution, high sensitivity
 - Best suited for F-region measurements above peak (\gtrsim 250km)
- Alternating Code
 - High range resolution, medium sensitivity
 - ${\scriptstyle \bullet}\,$ Best suited for E- and lower F-region measurements (\lesssim 250km)
- Barker Code
 - Highest range resolution, high sensitivity
 - $\bullet\,$ Best suited for D- and lower E-region measurements ($\lesssim\,$ 120km)

Note: There are many other radar pulse types, including: psuedo-random phase codes, poly-phase codes, amplitude modulated, frequency modulated, etc.

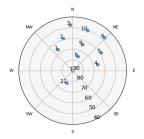
3 Flavors

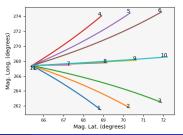
Can propose one of 3 "flavors" of experiments:

- E- and F-region:
 - alternating code
 - long pulse

• D-region focus, E- and F-region context:

- barker code
- alternating code
- long pulse

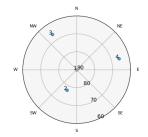

• F-region only:

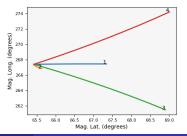

long pulse only

E- and F-region

Example Mode, WorldDay35:

- 480 us pulse, alternating code, 30 us bauds, 10 us samples
- 330 us uncoded long pulse, 20 us samples
- Both upshifted and downshifted plasma line channels
- 11 Beams
- 1/1 pulses split between long pulse/alternating code
- F-region ion velocity field reconstruction and E-region neutral winds

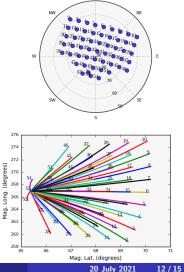




D-region focus, E- and F-region context

Example Mode, MSWinds26.v03:

- 130 us, 13 baud barker code, 10 us bauds, 5 us samples
- 480 us pulse, alternating code, 30 us bauds, 10 us samples
- 480 us uncoded long pulse, 30 us samples
- 4 Beams
- 8/1/1 pulse split between barker code/long pulse/alternating code
- F-region ion velocity field reconstruction and both D- and E-region neutral winds



20 July 2021 11 / 15

F-region only

Example Mode, ZenithImaging:

- Tri-frequency uncoded long pulse
- 330 us uncoded long pulse, 20 us samples
- 54 Beams
- F-region ion velocity field reconstruction

N

AMISR Modes

Operations

Experiment Design Choices

Limited Design Choices

- Propose an experiment for PFISR
- Pick a flavor: D-, E- and F-region, E- and F-region, or F-region only
- Specify a beam pattern (elevation/azimuth pairs)
- Specify a beam revisit pattern (e.g. evenly spread pulses? revisit 1 beam?)

PFISR Beams:

• PFISR beamcodes:

https://amisr.com/amisr/about/about_pfisr/pfisr-specs/

PFISR Schedule:

https://amisr.com/database/61/sched/2019/08

Operations

PFISR Realtime Displays:

https://amisr.com/realtime/viewer

Global Context:

- Realtime Alaska magnetometer data: https://www.gi.alaska.edu/monitors/magnetometer
- Realtime SuperDARN data: https://superdarn.ca/real-time
- Realtime solar wind data:

https://www.swpc.noaa.gov/products/real-time-solar-wind

If you have any questions or would like feedback on experiment proposals, please speak to Roger Varney or Ashton Reimer. Email: roger.varney@sri.com and ashton.reimer@sri.com