Phased Arrays for Atmospheric and Geospace Science

Superposition Principle

Maxwell's Equations are Linear:

$$
\begin{aligned}
\mathrm{J}_{1} & =\frac{1}{\mu_{0}} \nabla \times\left(\mathrm{B}_{1}\right)-\epsilon_{0} \frac{\partial}{\partial t}\left(\mathrm{E}_{1}\right) \\
0 & =\nabla \times\left(\mathrm{E}_{1}\right)+\frac{\partial}{\partial t}\left(\mathrm{~B}_{1}\right) \\
\mathrm{J}_{2} & =\frac{1}{\mu_{0}} \nabla \times\left(\mathrm{B}_{2}\right)-\epsilon_{0} \frac{\partial}{\partial t}\left(\mathrm{E}_{2}\right) \\
0 & =\nabla \times\left(\mathrm{E}_{2}\right)+\frac{\partial}{\partial t}\left(\mathrm{~B}_{2}\right) \\
\mathrm{J}_{1}+\mathrm{J}_{2}= & \frac{1}{\mu_{0}} \nabla \times\left(\mathrm{B}_{1}+\mathrm{B}_{2}\right)-\epsilon_{0} \frac{\partial}{\partial t}\left(\mathrm{E}_{1}+\mathrm{E}_{2}\right) \\
0= & \nabla \times\left(\mathrm{E}_{1}+\mathrm{E}_{2}\right)+\frac{\partial}{\partial t}\left(\mathrm{~B}_{1}+\mathrm{B}_{2}\right)
\end{aligned}
$$

Superposition Applied to Antenna Arrays

Fields radiated by single element at the origin with applied current I_{0} :

$$
E=E_{0} I_{0} \frac{e^{-j k|r|}}{|r|}
$$

Fields radiated by entire array:

$$
\mathrm{E}=\mathrm{E}_{0} \sum_{n=0}^{N-1} I_{n} \frac{e^{-j k\left|r-r_{n}\right|}}{\left|r-r_{n}\right|}
$$

Far Field Approximation (Fraunhofer Zone)

If r and $r-r_{n}$ are almost parallel lines:

$$
r-r_{n} \approx r-\left|r_{n}\right| \cos \theta \hat{r}
$$

Assume $\left|r_{n}\right| \ll|r|$:

$$
\begin{aligned}
\left|r-r_{n}\right| & \approx|r| \text { for demoninator terms } \\
-j k\left|r-r_{n}\right| & \approx-j k|r|+j k\left|r_{n}\right| \cos \theta \\
\mathrm{E} & \approx \underbrace{\mathrm{E}_{0} \frac{e^{-j k|r|}}{|r|}}_{\text {Element Factor }} \underbrace{\sum_{n=0}^{N-1} I_{n} e^{j k\left|r_{n}\right| \cos \theta}}_{\text {Array Factor }}
\end{aligned}
$$

Distance to Far Field: Fresnel Numbers

Fresnel Number:

$$
\begin{aligned}
\frac{L^{2}}{r \lambda} & \ll 1 \rightarrow \text { Far Field } \\
\frac{L^{2}}{r \lambda} & >1 \rightarrow \text { Near Field } \\
L & =\text { Array length } \\
\lambda & =\text { wavelength }
\end{aligned}
$$

AMISR: $L=32 \mathrm{~m} \quad \lambda=0.67 \mathrm{~m} \quad L^{2} / \lambda=1.5 \mathrm{~km}$
Arecibo: $\quad L=305 \mathrm{~m} \quad \lambda=0.70 \mathrm{~m} \quad L^{2} / \lambda=133 \mathrm{~km}$

1-D Linear Phased Array

Array Factor:

$$
\begin{aligned}
F & =\sum_{n=0}^{N-1} e^{j n \alpha} e^{j k n d \cos \theta} \\
& =\frac{1-e^{j N \alpha+j N k d \cos \theta}}{1-e^{j \alpha+j k d \cos \theta}} \\
& =e^{j \frac{(N-1)}{2}(k d \cos \theta+\alpha)} \frac{\sin \left[\frac{N}{2}(k d \cos \theta+\alpha)\right]}{\sin \left[\frac{1}{2}(k d \cos \theta+\alpha)\right]} \\
|F|^{2} & =\frac{\sin ^{2}\left[\frac{N}{2}(k d \cos \theta+\alpha)\right]}{\sin ^{2}\left[\frac{1}{2}(k d \cos \theta+\alpha)\right]}
\end{aligned}
$$

1-D Linear Phased Array Cont.

$$
\begin{aligned}
& |F|^{2}=\frac{\sin ^{2}\left[\frac{N}{2}(k d \cos \theta+\alpha)\right]}{\sin ^{2}\left[\frac{1}{2}(k d \cos \theta+\alpha)\right]} \\
& \theta_{0}=90.0
\end{aligned}
$$

Peak appears when $k d \cos \theta=-\alpha \rightarrow \alpha=-k d \cos \theta_{0}$
Additional peaks could appear when $k d \cos \theta=-\alpha+2 \pi m$ (Grating Lobes) Visible Region: $0<\theta<\pi \rightarrow-k d<k d \cos \theta<k d$

Multi-Dimensional Arrays

$$
\begin{aligned}
-j k\left|r-r_{n}\right| & \approx-j k|r|+j k\left(\hat{r} \cdot r_{n}\right) \\
\mathrm{E} & \approx \underbrace{\mathrm{E}_{0} \frac{e^{-j k|r|}}{|r|}}_{\text {Element Factor }} \underbrace{\sum_{n=0}^{N-1} I_{n} e^{j k\left(\hat{r} \cdot r_{n}\right)}}_{\text {Array Factor }}
\end{aligned}
$$

In spherical coordinates:

$$
\hat{r} \cdot r_{n}=x_{n} \cos \phi \sin \theta+y_{n} \sin \phi \sin \theta+z_{n} \cos \theta
$$

2-D Rectangular Array

Array Factor:

$$
\begin{aligned}
|F(\theta, \phi)|^{2} & =\left|\sum_{n=0}^{N_{x}-1} \sum_{m=0}^{N_{y}-1} e^{j\left(n k d_{x} \cos \phi \sin \theta+n \alpha+m k d_{y} \sin \phi \sin \theta+m \beta\right)}\right|^{2} \\
& =\frac{\sin ^{2}\left[\frac{N_{x}}{2}\left(k d_{x} \cos \phi \sin \theta+\alpha\right)\right]}{\sin ^{2}\left[\frac{1}{2}\left(k d_{x} \cos \phi \sin \theta+\alpha\right)\right]} \frac{\sin ^{2}\left[\frac{N_{y}}{2}\left(k d_{y} \sin \phi \sin \theta+\beta\right)\right]}{\sin ^{2}\left[\frac{1}{2}\left(k d_{y} \sin \phi \sin \theta+\beta\right)\right]}
\end{aligned}
$$

2-D Rectangular Array

Ground Planes: Method of Images

Antenna above conducting ground plane

$$
\begin{aligned}
& \qquad \begin{aligned}
& F=I_{0} e^{j k h \cos \theta}-I_{0} e^{-j k h \cos \theta} \\
&=2 j I_{0} \sin (k h \cos \theta) \\
&|F|^{2}=4\left|I_{0}\right|^{2} \sin ^{2}(k h \cos \theta) \\
& \text { When } h=\frac{\lambda}{4} \rightarrow k h=\frac{\pi}{2} \\
&|F|^{2}=4\left|I_{0}\right|^{2} \sin ^{2}\left(\frac{\pi}{2} \cos \theta\right)
\end{aligned}
\end{aligned}
$$

Peaks at $\theta=0$ (upwards).

Hexagonal Spacing

Hexagon
Honeycomb Rectangular Array One AMISR panel:

Sibelobe Patterns for Squares vs Hexagons

A "Circular" Array: MU Radar

Introduction to Phased Array Summary

- Phased arrays work due to the superposition principle
- Focusing is achieved in the far field
- Gain pattern is dominated by the array factor
- Gain pattern typically has a main lobe and many smaller side lobes
- Side lobe pattern depends on the shape of the array (rectangular vs "circular")

