Basic Radar 3.1: Probability Theory for Incoherent Scatter Radar

Roger H. Varney
${ }^{1}$ Center for Geospace Studies
SRI International

July, 2021

The Need for Statistical Descriptions of ISR Signals

If I knew the positions of every single electron in the scattering volume, I would know the received voltage exactly:

Exact expression for scattered electric field as a superposition of Thomson scatterers:

$$
E_{s}=-\frac{r_{e}}{r} E_{0} \sum_{p=1}^{N_{0} \Delta V} e^{j k \cdot r_{p}}
$$

ISR theory predicts statistical aspects of the scattered signal: Scattered Power: $\left.\left.\langle | E_{s}\right|^{2}\right\rangle$ Autocorrelation Function: $\left\langle E_{s}(t) E_{s}^{*}(t-\tau)\right\rangle$ These statistical properties are functions of macroscopic properties of the plasma: $N_{e}, T_{e}, T_{i}, u_{\text {los }}$.

Random Variables

A random variable is a variable whose numerical value depends on the outcome of a probabilistic phenomenon.

Probability Density Function:

$$
P\left(x_{1}<X<x_{2}\right)=\int_{x_{1}}^{x_{2}} p_{X}(x) d x
$$

Expected Values:

$$
E\{g(X)\}=\int_{-\infty}^{\infty} g(x) p_{X}(x) d x
$$

Mean:

$$
\operatorname{Mean}\{X\}=E\{X\}=\bar{X}
$$

Variance:

$$
\operatorname{Var}\{X\}=E\left\{(X-E\{X\})^{2}\right\}=E\left\{X^{2}\right\}-(E\{X\})^{2}
$$

Collections of Random Variables

Multiple RVs must be described by joint-PDFs:

$$
P\left(x_{0}<X<x_{1} \cup y_{0}<Y<y_{1}\right)=\int_{x_{0}}^{x_{1}} \int_{y_{0}}^{y_{1}} p_{X Y}(x, y) d y d x
$$

If X and Y are independent:

$$
p_{X Y}(x, y)=p_{X}(x) p_{Y}(y) \quad p_{X \mid Y}(x \mid y)=p_{X}(x)
$$

Relationships between RV s are defined through covariances:

$$
\operatorname{Cov}\{X, Y\}=E\{(X-E\{X\})(Y-E\{Y\})\}
$$

Uncorrelated RVs have $\operatorname{Cov}\{X, Y\}=0$
Independent RVs are uncorrelated, but uncorrelated RVs are not necessarily independent.

Random Vectors and Covariance Matrices

Column vector of random variables

$$
\begin{aligned}
& \mathrm{X}=\left(\begin{array}{c}
X_{0} \\
X_{1} \\
\vdots \\
X_{N-1}
\end{array}\right) \quad \begin{array}{l}
\operatorname{Cross-covariance~of~two~random~vectors~} \\
K_{X Y}=\operatorname{Cov}\{\mathrm{X}, \mathrm{Y}\}=E\left\{(\mathrm{X}-\overline{\mathrm{X}})(\mathrm{Y}-\overline{\mathrm{Y}})^{T}\right\} \\
K_{X}
\end{array}=\left(\begin{array}{cccc}
\operatorname{Var}\left\{X_{0}\right\} & \operatorname{Cov}\left\{X_{0}, X_{1}\right\} & \cdots & \operatorname{Cov}\left\{X_{0}, X_{N-1}\right\} \\
\operatorname{Cov}\left\{X_{1}, X_{0}\right\} & \operatorname{Var}\left\{X_{1}\right\} & \cdots & \operatorname{Cov}\left\{X_{1}, X_{N-1}\right\} \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left\{X_{N-1}, X_{0}\right\} & \operatorname{Cov}\left\{X_{N-1}, X_{1}\right\} & \cdots & \operatorname{Var}\left\{X_{N-1}\right\}
\end{array}\right)
\end{aligned}
$$

Properties:

$$
\mathrm{Y}=A \mathrm{X}+\mathrm{b} \rightarrow \overline{\mathrm{Y}}=A \overline{\mathrm{X}}+\mathrm{b} \quad K_{Y}=A K_{X} A^{T}
$$

Gaussian Distribution

A Gaussian random variable X has the following probability density function (Normal Distribution):

$$
\begin{aligned}
p(x) & =\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{x-\mu}{2 \sigma^{2}}\right\} \\
E\{X\} & =\mu \quad \operatorname{Var}\{X\}=\sigma^{2} \\
E\left\{(X-\mu)^{4}\right\} & =3 \sigma^{4}
\end{aligned}
$$

A jointly-Gaussian vector of random variables
$\mathrm{X}=\left[X_{0}, X_{1}, X_{2}, \cdots, X_{N-1}\right]^{T}$ has the joint pdf:

$$
\begin{aligned}
p(\mathrm{x}) & =\frac{1}{(2 \pi)^{\frac{N}{2}}|K|^{\frac{1}{2}}} \exp \left\{-\frac{1}{2}[\mathrm{x}-\mu]^{T} K^{-1}[\mathrm{x}-\mu]\right\} \\
E\{\mathrm{X}\} & =\mu \\
\operatorname{Cov}\{\mathrm{X}\} & =E\left\{[\mathrm{X}-\mu][\mathrm{X}-\mu]^{T}\right\}=K
\end{aligned}
$$

Central Limit Theorem

Given a set of finite-variance, independent and identically distributed RV, $\left[X_{0}, X_{1}, \cdots, X_{K-1}\right]$, the distribution function of the average:

$$
\hat{X}=\frac{1}{K} \sum_{n=0}^{K-1} X_{n}
$$

will asymptotically approach a Gaussian distribution as K increases.

$$
E\{\hat{X}\}=E\left\{X_{n}\right\} \quad \operatorname{Var}\{\hat{X}\}=\frac{1}{K} \operatorname{Var}\left\{X_{n}\right\}
$$

This is an amazingly useful theorem:

- Only the mean and variances of the intermediate quantities need to be calculated to predict the distribution of the final averaged result.
- Distribution functions of intermediate quantities do not need to be calculated in detail since the final averaged result will just be Gaussian.

Complex-valued Random Variables

A vector of complex-valued random variables can be written as two vectors of real-valued random variables representing the real and imaginary parts.

$$
\begin{aligned}
\mathrm{X} & =X_{R}+j X_{I} \\
\text { Mean: } \bar{X} & =E\{\mathrm{X}\}=E\left\{X_{R}\right\}+j E\left\{X_{I}\right\} \\
\text { Covariance: } K_{X} & =E\left\{(\mathrm{X}-\overline{\mathrm{X}})(\mathrm{X}-\overline{\mathrm{X}})^{H}\right\} \\
\text { Pseudo-Covariance: } J_{X} & =E\left\{(\mathrm{X}-\overline{\mathrm{X}})(\mathrm{X}-\overline{\mathrm{X}})^{T}\right\}
\end{aligned}
$$

The covariance and cross-covariance matrices of the real vectors are related to the covariance and pseudo-covariance of the complex vector by

$$
\begin{aligned}
\operatorname{Cov}\left\{\mathrm{X}_{R}\right\} & =\frac{1}{2} \Re K_{X}+\frac{1}{2} \Re J_{X} & \operatorname{Cov}\left\{\mathrm{X}_{I}\right\} & =\frac{1}{2} \Re K_{X}-\frac{1}{2} \Re J_{X} \\
\operatorname{Cov}\left\{\mathrm{X}_{I}, \mathrm{X}_{R}\right\} & =\frac{1}{2} \Im K_{X}+\frac{1}{2} \Im J_{X} & \operatorname{Cov}\left\{\mathrm{X}_{R}, \mathrm{X}_{I}\right\} & =-\frac{1}{2} \Im K_{X}+\frac{1}{2} \Im J_{X}
\end{aligned}
$$

Describing ISR Voltages

ISR signals are complex valued, zero mean, and random phase.

$$
\begin{aligned}
V & =V_{R}+j V_{l} \quad E\left\{V_{R}\right\}=E\left\{V_{l}\right\}=0 \\
E\left\{V V^{*}\right\} & =\sigma^{2} \quad E\left\{V_{R} V_{l}\right\}=0 \quad \operatorname{Cov}\left\{\binom{V_{R}}{V_{l}}\right\}=\frac{1}{2}\left(\begin{array}{cc}
\sigma^{2} & 0 \\
0 & \sigma^{2}
\end{array}\right)
\end{aligned}
$$

When we talk about correlations between ISR signals

$$
\begin{aligned}
& E\left\{V_{1} V_{1}^{*}\right\}=\sigma_{1}^{2} \quad E\left\{V_{2} V_{2}^{*}\right\}=\sigma_{2}^{2} \\
& E\left\{V_{1} V_{2}^{*}\right\}=\rho=\rho_{R}+j \rho_{I}
\end{aligned}
$$

What we really mean is

$$
\begin{gathered}
V_{1}=V_{1 R}+j V_{1 I} \quad V_{2}=V_{2 R}+j V_{2 l} \\
\operatorname{Cov}\left\{\left(\begin{array}{l}
V_{1 R} \\
V_{1 I} \\
V_{2 R} \\
V_{2 I}
\end{array}\right)\right\}=\frac{1}{2}\left(\begin{array}{cccc}
\sigma_{1}^{2} & 0 & \rho_{R} & -\rho_{l} \\
0 & \sigma_{1}^{2} & \rho_{l} & \rho_{R} \\
\rho_{R} & \rho_{l} & \sigma_{2}^{2} & 0 \\
-\rho_{l} & \rho_{R} & 0 & \sigma_{2}^{2}
\end{array}\right)
\end{gathered}
$$

Stochastic Processes

- Stochastic Process (aka Random Process):
$V(t)$ where value at every time is a random variable
- Gaussian Stochastic Process:
- PDF of each $V(t)$ is a Gaussian distribution (aka normal distribution)
- Joint PDF of any subset of samples of $V(t)$ is a jointly Gaussian distribution (aka Multivariate Normal Distribution)
- Moments of a Stochastic Process:
- Mean: $\bar{V}(t)=E\{V(t)\}$
- Autocorrelation: $R_{V}(t, t-\tau)=E\left\{V(t) V^{*}(t-\tau)\right\}$
- Autocovariance:

$$
\begin{aligned}
& C_{V}(t, t-\tau)=E\left\{[V(t)-\bar{V}(t)]\left[V^{*}(t-\tau)-\bar{V}^{*}(t-\tau)\right]\right\} \\
& C_{V}(t, t-\tau)=R(t, t-\tau)-\bar{V}(t) \bar{V}^{*}(t-\tau)
\end{aligned}
$$

- (Wide Sense) Stationary Stochastic Process
- $\bar{V}(t)=\bar{V}$ is independent of t
- $R(t, t-\tau)=R(\tau)$ is independent of t

Power Spectra of Deterministic Signals

Given a signal $f(t)$ and its fourier transform $F(\omega)=\mathcal{F}\{f(t)\}=\int_{-\infty}^{\infty} f(t) e^{-j \omega t} d t$, the power spectrum is:

$$
\begin{aligned}
S_{F}(\omega)=|F(\omega)|^{2} & =F^{*}(\omega) F(\omega) \\
& =\mathcal{F}\left\{f\left(-t^{\prime}\right) * f\left(t^{\prime}\right)\right\} \\
& =\mathcal{F}\left\{\int_{-\infty}^{\infty} f\left(t^{\prime}\right) f\left(t^{\prime}-t\right) d t^{\prime}\right\}
\end{aligned}
$$

When you filter a signal:

$$
\begin{aligned}
g(t) & =h(t) * f(t) \\
G(\omega) & =H(\omega) F(\omega) \\
S_{G}(\omega) & =|H(\omega)|^{2} S_{F}(\omega)
\end{aligned}
$$

Power Spectra of Stochastic Signals

Fourier transforms of stationary random processes do not exist. Fourier transforms of ACFs will exist, and are the power spectra:

$$
S_{V}(\omega)=\int_{-\infty}^{\infty} R_{V}(\tau) e^{-j \omega \tau} d \tau=\int_{-\infty}^{\infty} E\left\{V(t) V^{*}(t-\tau)\right\} e^{-j \omega \tau} d \tau
$$

Properties:

- $S(\omega)$ is real and $S(\omega) \geq 0$
- Short correlation times \leftrightarrow wide bandwidth and vice versa
- $\int_{-\infty}^{\infty} S_{V}(\omega) d \omega=R(0)=E\left\{|V|^{2}\right\}$ (total power)
- If $U=\mathrm{h} * V, S_{U}(\omega)=|H(\omega)|^{2} S_{V}(\omega)$

Intuitive interpretation: $\int_{\omega_{1}}^{\omega_{2}} S_{V}(\omega) d \omega$ is the power in the frequency band from ω_{1} to ω_{2}.

Building Blocks

- Random Variables (Mean, Variance)
- Random Vectors (Mean, Covariance Matrix)
- Complex Random Vectors (Mean, Complex Covariance Matrix, Complex Pseudo-Covariance Matrix)
- Stochastic Processes (Mean, Autocorrelation Function, Power Spectrum)

